
Python in Heliophysics Community Spring 2024 Meeting
March 11th, 2024 - March 14th, 2024

Meeting materials are located at http://pyhc.org/meetings/

http://pyhc.org/meetings/


Table of Contents
Python in Heliophysics Community Spring 2024 Meeting 1
Table of Contents 2
Participants 3
Meeting Overview 4
Core Packages Updates 4

SunPy 4
PlasmaPy 5
HAPI 6
SpacePy 7
Kamodo 7
pySPEDAS 9
pysat 10

HTM efforts 11
New Magnetometer Data for Space Physics Research from Seismological Networks,
Incorporation into pySPEDAS - Alexander (Sasha) Drozdov 11
Radiation Belts Analysis and Modeling Library in Python - Alexander (Sasha) Drozdov 12
Enabling Cloud Compatibility in Heliophysics Python Software - Brent Smith 12
splot: Spatiotemporal Plotting Capabilities for Heliophysics - Brent Smith 13

Science Platforms Coordination IHDEA Working Group - Shawn Polson 14
Heliophysics Software Search Interface - Eric Lopez 17
PHEP-1: discussion and voting 19
PyHC - pyOpenSci Partnership - Leah Wasser 21
Unconference Discussion Summary 22

pyOpenSci and PyHC: How do we define affiliation with PyHC? Carrots for going through
the pyOpenSci review process? 22

Next Steps 25
Final agenda 26



Participants
56 people registered to participate in the virtual Spring 2024 meeting via the meeting’s
Google sign up form. Meeting participants’ home institutions (as indicated by responses
to the Google sign up form) included the following:

● pyOpenSci
● NASA Goddard Space Flight Center
● University of New Hampshire
● LASP
● Center for Astrophysics | Harvard & Smithsonian
● Lockheed Martin
● Heliophysics Digital Resource Library
● NRL
● Institute of astronomy, Bulgarian academy of sciences
● Johns Hopkins University Applied Physics Lab
● Dublin Institute for Advanced Studies
● University of Arizona
● UC Berkeley Space Sciences Lab
● Southwest Research Institute
● European Space Agency
● University of California Los Angeles (UCLA)
● Swedish Institute of Space Physics (IRF-Uppsala)
● George Mason University
● University of Turku
● NASA Space Physics Data Facility (SPDF)
● National Solar Observatory
● Space Environment Laboratory, Egypt-Japan University of Science and

Technology
● American University
● National Research and Innovation Agency (BRIN)
● Observatoire de Paris
● University of Edinburgh, UK
● Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA)
● Lockheed Martin Space and Astrophysical Laboratory
● Observatoire de Paris - PSL - LESIA
● University of Georgia
● Aperio Software
● PSI



Meeting Overview
The PyHC spring 2024 meeting spanned four days, saw average attendance based on past
meetings, and was held only on Zoom to combat in-person meeting fatigue. The first day
consisted of updates from PyHC “core” packages: HAPI, PlasmaPy, SunPy, pySPEDAS,
Komodo, SpacePy, and pysat. On Day 2, several NASA Heliophysics Tools and Methods (HTM)
presentations were given by awardees: New Magnetometer Data for Space Physics Research
from Seismological Networks and Incorporation into PySPEDAS, Radiation Belts Analysis and
Modeling Library in Python, Enabling Cloud Compatibility in Heliophysics Python Software, and
splot: Spatiotemporal Plotting Capabilities for Heliophysics. We wrapped up with an overview on
the new Science Platforms Coordination group, and an overview of the novel Heliophysics
Software Search Interface effort. Day 3 was devoted to discussions surrounding the new PyHC
Enhancement Proposal (PHEP) process, through reviewing PHEP 1 and completing the first
vote on it (which passed), as well as further discussions on a PyHC - pyOpenSci partnership.
Lastly, Day 4 focused entirely on unconferences, which have been a proven popular method for
discussing trickier topics in the community.

Core Packages Updates
For future PyHC meetings, a few general comments will be kept in mind: 1) PyHC leadership
will encourage presenters to avoid long package introductions as these are meant to be short
presentations with purely updates since the last meeting, 2) there are a lot of documentation
updates happening in the community, which is great, and PyHC leadership will encourage
packages to continue to highlight these efforts, and 3) many core packages are showing some
interoperability work happening, which will also continue to be highly encouraged by PyHC
leadership.

SunPy
Will Barnes and Stuart Mumford gave an update on the SunPy package. v5.1 release Nov of
2023. Many changes therein came as a result of discussions at DASH 2023. For example, solar
disc occultation as function of time, computation using SPICE kernels (wrapper of SpiceyPy
package), coordinate frames related to Earth’s magnetic dipole, support for GONG synoptic
data, new method for determining visibility of Helioprojective coords, and improved support for
PSP WISPR data. SunPy also saw seven new contributors to this release effort! SunPy is
consistently bringing in new developers. A great example to other packages. Look out for v6.0
to be released May 2024.

Further, SunPy has a new affiliated package, sunkit-magex, which is the successor to pfsspy.
Additionally, SunPy officially has a partnership with pyOpenSci after completing their review
process. This was accepted January 18th 2024 (note that this is separate from a PyHC
partnership review). Completing the review required an overhaul of the affiliated package
process.



Note from this presentation - Cruft1 is used for maintaining boilerplate for package automation.
i.e. if you started with a cookie cutter recipe, how do you update according to it? Cruft stops the
cookie crumbling!

PlasmaPy
Nick Murphy gave a quick overview of PlasmaPy and best-developed subpackages. Updated
features (all completed by students!) include: refactored ParticleTracker (J. Roberts), classes for
MHD wave dispersion relations (T. Simon), classes for 1D MHD equilibria (M. Haque), and
functionality to calculate thermalization ratio for a plasma in transit due to Coulomb collisions (E.
Johnson). The last one could be used, for example, to look at plasma traveling in solar wind and
predict temperature ratios for different ions. There were also a few infrastructure improvements:
1) added static type checking with mypy (Using mypy2 on an existing codebase from mypy’s
docs) and 2) speeding up CI checks (switching from pip to uv, written primarily in Rust).

Nick mentioned that they hosted booths in 2022 and 2023 at the APS Division of Plasma
Physics meeting. Their feedback was that it was an excellent way to get in touch with students
and early career scientists. Furthermore, the booths had a lot of traffic. This is a good way for
PyHC packages (and PyHC as a whole) to get further involved with the student and early career
community.

Similar to PyHC, PlasmaPy also has an upcoming summer school/workshop over the summer,
to be held from July 29 - August 1. This will be a sequel to Plasma Hack Weeks (held
2021/2022 from pandemic times). The summer school will cover how to contribute to open
source Python packages (using PlasmaPy as an example). Bryn Mawr (from outside of
Philadelphia) will contribute to the workshop. Further, there is an NSF award for travel support
for up to approximately 20 participants. This begs the question, should PyHC have a “How to
contribute to an open source package” summer school? Alternate years with regular summer
school? Add on to current summer school material?

PlasmaPy, like many other software packages, faces the issue of sustained funding. The current
NSF award concludes by next spring. As such, Nick has applied for NSF successor award and
is looking at other DOE opportunities. Currently, no follow-up funding exists for this important,
core package in PyHC.

Nick concluded their presentation with some ways towards integration with other PyHC
packages, including: astropy.units, ionization states, plasma diagnostics in space and lab,
plasma science data environment, changing culture across plasma community (to which they
helped organize a psychological safety workshop), and onboarding new contributors.

During the presentation, Nick shared several helpful tools with the community:

2 https://mypy.readthedocs.io/en/stable/existing_code.html
1 https://github.com/cruft/cruft/

https://mypy.readthedocs.io/en/stable/existing_code.html
https://github.com/cruft/cruft/


● Pre-commit hooks
○ ruff (superseding flake8)
○ ruff-format (superseding black)
○ codespell
○ rst-directive-colons
○ rst-inline-touching-normal
○ sphinx-lint
○ check-github-workflows

● Pytest
○ pytest-xdist (run tests in parallel)
○ pytest-rerunfailures (for flaky tests)

● Sphinx extensions
○ sphinxcontrib.bibtex (for a bibliography with bibtex)
○ sphinxcontrib.globalsubs
○ sphinx_issues
○ sphinx-hoverxref (tooltip popups of links)
○ sphinx_copybutton (adds copy button to code blocks)
○ sphinx_tabs.tabs
○ sphinx_collapse
○ Sphinx_reredirects

HAPI
Jon Vandegriff gave a short HAPI package overview before delving into updates and new
developments, with a reminder that HAPI is a specification: a standard interface for serving time
series data, with python capabilities with HAPI.

Updates on HAPI adoption and usage include the updating of HAPI’s Python server3. HAPI has
applied for NSF funding to further update this. There were also recent and useful addition to
HAPI specification: additions to 3.2 (fully backward compatible with 3.1), a catalog option to
show metadata all at once for everything (optional feature), and data responses contain URIs
that point to resources like images and FITS image files (not CDF files to encourage access to
numbers with HAPI).

As for V3.2 and what’s next, the HAPI developer meeting will occur the same day as this
presentation to push merge on PR to make 3.2 official! New updates in V3.2: an ability to link
datasets of different cadences in standard way, provenance considerations (listing data sources
involved in generating HAPI response), federation of HAPI servers, and a JSON schema
development (checking catalog and info responses, etc.).

Final note: What’s the major difference between HAPI and dos2 servers? They have a similar
approach. However, DAS24 (led by Jeremy Faden) is more complicated with more features. Can
do more with it, but it is harder to implement.

4 https://das2.org
3 github.com/hapi-server/server-python

https://das2.org
http://github.com/hapi-server/server-python


SpacePy
Jonathan Niehof gave an update on SpacePy5. SpacePy is at its essence a space science data
analysis and modeling software package (magnetosphere and heliosphere primarily). A
hot-off-the-press release for 0.5.0 release went up approximately five hours prior to the
presentation. Included in this new version release were the following: 1) more binaries—binary
wheels on all 4 platforms, including NASA CDF library, migrate from distutils to
setuptools—though he still needs to replace f2py with ctypes, this is at least not a user-visible
issue, 2) officially declaring Python 2.x as dead, with all focus placed now on Python 3.6, 3)
explicit ISTP support for all datamodel objects, 4) Pybats updates, 5) Irbem - dose calculation
model, and 7) > 100 commits, done by just over four contributors (a note to the reader that lots
of issues will be answered by “check out new release”). It appears that Github discussions
increased usage, which hopefully means future releases get out faster.

What is next then, on the horizon for SpacePy? 0.6 or 1.0? Per Jon, SpacePy is trying for the
latter. There is a little bit of NASA support for issue responsiveness (focusing on user issues
and PyHC standards). SpacePy has a couple undergrads lined up with a no-cost extension
(NCE) to get those done over spring and summer. The next update will also see an ability to
adapt between PyHC data objects (Jon Vandegriff of HAPI is behind a lot of this), as well as
cloud file support (not just purely S3 objects, but thinking about what people want to treat like
files), 3D SWMF support (thanks to Dan), and finally, a documentation overhaul! That last point
includes separating api and usage docs and leveraging more autodoc (nicely integrated with
numpy docs).

Questions and comments from the question and answer portion of the presentation:
● Why not leverage the fact that binaries on github actions automatically on CIbuild?

○ Didn’t quite work for their purposes.
● Will SpacePy collaborate with or leverage the fsspec package?

○ This is on the radar; it came up during a conversation last spring. fsspec has a
similar approach. It’s just a matter of getting their heads around the use case and
ensuring it's the way to go.

● PyHC software environment should be significantly simpler with installing SpacePy now!
● SpacePy may be able to have binary wheels that are not python version dependent in

the future with future updates.

Kamodo
Darren De Zeeuw gave the Kamodo core package update presentation. Updates included: 1)
Komodo has more model readers: GAMERA_GM (very complicated model, own custom tools)
and VERB model reader under development to accommodate its unique data coords and
interpolation needs, 2) a new model driving using Kamodo (new science application; ITM
models are ‘driven’ by conditions applied at the lower and upper boundaries of the model, often
by single empirical solution. Other model outputs can be processed to provide an alternative

5 https://drive.google.com/file/d/19_kzBpfeGP_H07_2f5J9Tcad9sUXHTTv/view?usp=drive_link

https://drive.google.com/file/d/19_kzBpfeGP_H07_2f5J9Tcad9sUXHTTv/view?usp=drive_link


driver), see Figs 1 and 2 for more information, 3) a new web interface to visualize seven of the
supported models in Kamodo, available through a new web interface (all CCMC RoR can be
visualized with Kamodo online without Python environment, page adapts menus for variables
with different
dimensions,
1-3D plots
available, and
each page has
link to Python
code that
created the
code), and 4) a
new HAPI
interface to
retrieve satellite
extractions from
models (a lot of
work from Brent
Smith
contributed
towards this). (4)
allows selection
of a model and
specific model run in CCMC’s RoR (runs on request) as well as a satellite to fly through the
model output. It uses Kamodo on the backend to read passed options, executes data
extractions, and provides in a HAPI-like manner. Basically, HAPI with a twist. This is nearing
completion! Online soon in the next month or two. For (3), Darren gave a live demo of the new
capabilities (website output and new visualization - not yet available on web), with a note that
the CCMC website now has a link with “view output in Kamodo”.

Questions and comments from the question and answer portion of the presentation:
● Jon Vandegriff commented that it would be good to talk with Darren about the HAPI

mechanism. Having a HAPI server be the output of a service request is something HAPI
has thought about a little, but it would be great to learn from Darren’s experience doing
this.

○ Jeremy Faden noted that they are also working on a caching mechanism with
HAPI, which could be useful for storing these short-lived servers' output.

● It would be great to use Kamodo as well to pull runs on demand results from CCMC.
How straightforward is it to get a reader from mass output into Kamodo?

○ This is not currently on the next to-do list in Kamodo; it comes down to what the
data structure is (e.g. if data output is in straightforward structure, it’s much
easier to implement).

● Lots of efforts doing similar things with streamviewer, tracers, etc. Is there a way to work
together more effectively?



○ Hard with a data tracer that works with all objects. Lutz Rastaetter has an old tool
in C that they’re thinking of modifying to work with Kamodo, but if there’s shared
usage for tracing algorithms for more packages to use, Komodo would be
interested.

pySPEDAS
Jim Lewis gave the pySPEDAS update presentation. He noted that pySPEDAS is a big group of
developers; further, there’s a steady stream of contributions from anonymous benefactors.

pySPEDAS has put immense work into Improving the onboarding experience. A documentation
scrub is in process. pySPEDAS is all hands on deck for docstrings (with embedded examples),
bringing things up-to-date, type hints, renaming things to better match IDL SPEDAS (improves
AI-assisted IDL, and thus, Python porting), added Jupyter notebooks and updated existing
notebooks to better work with Google colab, and added libs tool (input wildcard expression, look
up matching routines). Currently, pySPEDAS is working on a new user installation and setup
guides on spedas.org. The overall goal for these updates is to provide the best possible support
for a potential influx of new users from upcoming PyHC summer school.

pySPEDAS made improvements to their plotting functionalities, including addressing issues,
especially with spec plots (when Y-axis binning changes over time), line plot symbol shapes and
colors, and pseudo variable debugging (plotting several quantities on a plot panel; this includes
a magnetic field model and tracing with the geopack package). They have also created a new
analysis tool, FOTE magnetic null finding; this update provides support to missions with
tetrahedral spacecraft formations (e.g. MMS, Cluster). That is, pySPEDAS can estimate the
local field and its 3D gradients at the center of formation and use a first order Taylor expansion
to infer the location and topology of nearby magnetic null points (similar to curlometer
technique). Lastly, pySPEDAS is in progress with creating access to magnetotelluric data sets
via the MTH5 interface. In fact, Alexander (Sasha) Drozdov will present on that HTM effort on
Tuesday of this meeting.

Future development plans for pySPEDAS (i.e. by the 2024 summer school) include plotting
improvements (orbit plots especially), refactoring code to make navigation easier/more intuitive,
and resolving some packaging issues (“pip install pytplot” gives wrong package; Cdflib 1.0.0
introduced some non-backward-compatible changes and pySPEDAS and PyTplot currently
pinned at cdflib < 1.0.0). Future development plans (post 2024 summer school and on) include
making pySPEDAS available via conda, supporting HelioCloud through allowing the opening of
CDFs directly from S3 buckets, including field modeling, creating more efficient generation of 2D
particles slices from 3D data at multiple time values, porting IDL SPEDAS tools to Python
(especially mission-specific calibration tools), and finally, implementing a pySPEDAS GUI.

Questions and comments from the question and answer portion of the presentation:
● Many were thankful for the quick addition of the null point finding functionality.



pysat
Jeff Klenzing gave an
update on pysat activities.
This included a scrub of
pysat documentation for all
packages, updating core
packages to build with
pyproject.toml, leveraging
standard GitHub actions
workflows for testing and
code coverage, and
including a core testing
suite for all instrument
libraries. A general
reminder was included that
the pysat package interfaces to multiple data libraries (see Fig 3).

Specifically for the core package, the last version, 3.1.0, was released in May 2023. This
improved support for xarray and improved support for exporting datasets to netCDF4. A new
Release Candidate (RC) 3.2 is currently under review. Other updates for packages included
within the pysat ecosystem include: 1) pysatNASA - once pysat 3.2.0 is finalized, work will begin
on the 0.0.6 RC for pysataNASA in summer 2024, 2) pysatMissions - V0.3.4 was released in
June 2023 (this interfaces with sgp4 propagation software), 3) pysatMadrigal has an RC for
0.2.0 currently under review, and 4) an ecosystem template package. As for operational use
with pysat, an early use case would be using pysat to make end-user datasets for IVM data.
This is why pysat was built this way (they had to live up to CDAAC and PSDF standards).
Finally, pysat is reaching out to API folks and to see how to streamline support and coding
processes.



HTM efforts

New Magnetometer Data for Space Physics Research from
Seismological Networks, Incorporation into pySPEDAS -
Alexander (Sasha) Drozdov
This effort has been made available via pySPEDAS, and is quickly nearing completion! The
main idea of the effort is to provide easy access for this set of data. MTH5 structure is complex,
but is required for those working in seismology. The PySPEDAS-MTH5 tool is available as a
separate mth5 branch to be released soon.

A general question: what would it take to get a HAPI interface on top of the regularized version
of the data that has been created? Essentially, they provide this access through pySPEDAS.
Further, for any direct access for pySPEDAS variables through HAPI this effort is willing to make
that work. MTH5 tool creates mth5 files locally, reads them in and extracts time series, etc. and
puts them in the tplot variable. See Fig 4 below for how this effort simplifies MTH5 data access
through incorporation into pySPEDAS.



Radiation Belts Analysis and Modeling Library in Python -
Alexander (Sasha) Drozdov
This project regarding radiation belt modeling and forecasting has just begun its efforts.
Originally, this library existed at UCLA in MATLAB. It was never intended to be a public-facing
software package, but rather was an internal library that grew over time. As a result, it is not well
tested, nor well documented. Furthermore, it does not exist in Python. Therefore, this work aims
to make the MATLAB capabilities available within Python. One can see and follow along with the
project work on GitHub6. In the spirit of open-source development, should anyone be interested
in participating in development, let Sasha know.

The library itself is lightweight with minimal dependencies (currently, only requires numpy), and
is open source. As hinted at above, it is also open for contribution. Truly, this package embraces
the ethos of PyHC. Note that this effort is not a direct port from MATLAB to Python, but rather
aims to be a Python extension that builds on top of the MATLAB code. Documentation for this
Python project can be found on readthedocs7. Rather than reinventing the wheel, the
documentation is based off of the highly popular PlasmaPy documentation.

There are three parts to this new Python software: 1) system properties (including reusable
code of basic equations), 2) modeling support (ease modeling routine tasks and facilitate an
introduction to modeling for new students and students), and 3) collection of empirical models
(encapsulate existing published equations for easy use in radiation belt research). The code is
also tested with the unittest library, with one test class per module. The architecture of the code
is built into one function in its own Python file (where the Python files are functions, and
packages are modules). This creates fewer instances of merge conflicts. If any private functions
are needed for the empirical models, those can be included in the top level in the file.

The following question was posed to Sash during the presentation, “is PRGEM on your radar?”
PRBEM is a COSPAR body8. The answer is no, as PRBEM focuses on magnetic fields and has
Python wrappers. This project’s idea is to extend the MATLAB library to the fullest and be
lightweight. When PRBEM or SpacePy is installed, the packages are fairly heavy.

Enabling Cloud Compatibility in Heliophysics Python Software -
Brent Smith
Brent Smith presented on this new effort to enable cloud compatibility in Heliophysics Python
software. The PI is Wenli. Specifically, this effort addresses how most PyHC packages rely on
local data storage for any type of file I/O. Currently, if one tries to run ton the cloud locally it ends
up being expensive, not scalable, and not accessible to others. Hence, this HTM effort is meant
for switching to use S3 object storage for this compatibility.

8 https://github.com/PRBEM
7 https://rbamlib.readthedocs.io
6 https://github.com/radiation-belts

https://github.com/PRBEM
https://rbamlib.readthedocs.io
https://github.com/radiation-belts


The effort will Initially focus on PySPEDAS, SpacePy, and SunPy due to their I/O calls. They
also have data readers that are generalized and abstract for data parsing. Adding S3
capabilities will have a small impact on core developers and users. The work will be done in
AWS as the limited nature of HTM timeline and funding is such that a full cloud-agnostic setup
won’t be possible. Work will be modeled after existing open-source community software (i.e.,
pandas, cdflib, astropy.io.fits).

As for S3 awareness, this work will add enhancements for PySPEDAS (access data from S3
locations), SpacePy (allow PyCDF module to load data when given S3 URI), and SunPy (extend
data handlers to recognize S3 paths; ingest and save data to S3). Once implemented, these
software packages will have access to mission data already on S3 (SDO and MMS), leveraging
cloud computational scaling and resources.

Questions and comments after the presentation included:
1. Has h5netCDF (used by Xarray) been considered?

a. That has S3 capability pulled in, but there are problems with netCDF3. Unsure on
CDF support at this time. Further, some PyHC packages use cdflib, which is
different from netCDF, so it may or may not be useful here.

2. What services are returning lists of items on S3. HelioCloud is already doing this; are
there others?

a. This effort is not aware of any other big S3 catalogues (SDO ML is on there). The
nice thing is that one can specify which S3 bucket to link to and if it’s accessible,
then it can be read with PyHC packages.

3. Is there an S3-aware FITS reader out there?
a. There is a tutorial that does this (possibly written by Will Barnes).

4. If you want to see things managed by NASA, have to go to their site9. It is unfortunate
that there exists no master list of all data resources out there. Furthermore, different lists
managed by different groups. This speaks to a more systemic problem.

5. Should PyHC use its indexing standard to make S3 listable by others? For example,
cloudcatalog10.

6. Is the s3 growth in SpacePy going to include pybats, or is that dependent on Dan
Welling?

a. That is going to be very naive. The bigger thing is getting SWMF output into hdf5.
There, there’s a big dependency on Dan being able to do that.

splot: Spatiotemporal Plotting Capabilities for Heliophysics - Brent
Smith
splot is a new effort, with Brent Smith serving as PI. The work is motivated by taking a closer
look at how we visualize data. splot is similar to the existing tplot, but is focused on the spatial

10 https://pypi.org/project/cloudcatalog/
9 https://registry.opendata.aws/sdoml-fdl/

https://pypi.org/project/cloudcatalog/
https://registry.opendata.aws/sdoml-fdl/


component instead of time. Example of this is the Enlil model output, which shows planets and
spacecraft positions in context of plasma density. More on this effort to come!

Science Platforms Coordination IHDEA Working
Group - Shawn Polson
The Science Platforms Coordination group is a new IHDEA working group, formed in December
2023, headed by the PyHC Tech Lead, Shawn Polson. It was inspired by the PyHC
environment, presenting at the IHDEA 2023 meeting at JHU/APL. The group meets monthly to
discuss issues and actions, and plans moving forward. The current plan is to create
Heliophysics software environments for the community at large (not purely the PyHC
environment). The effort has begun with dockerized Python environments and will expand
eventually to browser-based environments, publish paper(s) and DOI(s), coordinate software
versioning, and improve reproducibility.

A few updates have been made since the IHDEA 2023 meeting. For one, further testing of the
PyHC environment has been performed. Secondly, Shawn built a CI/CD for the environment
with GitHub actions, which has thus far performed nominally (see Figs 5 and 6). No conflicts
have yet been introduced from a PyHC package update. Note that PyHC is not yet requiring
compatibility with this environment.

To look at the source code behind the PyHC environment, see the GitHub repository11, as well
as the docker container on docker’s Hub12.

12 https://hub.docker.com/u/spolson
11 https://github.com/heliophysicsPy/pyhc-docker-environment

https://hub.docker.com/u/spolson
https://github.com/heliophysicsPy/pyhc-docker-environment


Questions and comments after the presentation:
● What is being used for the base Docker image? Also, will there be an imposed docker

image file size so that it’s minimized for use with those interactive documents?
○ The PyHC environment uses a miniconda3 base image. The compressed size is

1.33 GB. The idea is to keep the image smaller. Though, currently, more of the
focus is making sure all packages are included, without as much thought to size.



● Is there a place to learn more about the working group? Or other IHDEA working
groups?

○ Yes, you can go to the IHDEA web page for this13. Note that not all the links work,
and there is currently a problem with the science platforms link. Further, there is a
yearly meeting for IHDEA where working groups report and meet (i.e., the
meeting at which the PyHC environment was originally presented). Last
year—and this year as well—the IHDEA meeting was held adjacent to the DASH
meeting (Data, Analysis and Software in Heliophysics). You can find out more
information about the DASH meeting on its website14. Registration for the DASH
meet can be found there as well15.

● Has there been thought put to adding the tests from the package repositories?
○ That would be a much bigger task. It could be something to suggest for each

package CI (e.g. a weekly build against the PyHC environment). It’s technically
not a hard thing to do, just a lot of busy work. PyHC is hoping to hire a student for
that, but it may get pushed depending on the funding.

● There are issues with running docker under Windows. One person noted using a
sandbox and installing as many packages as possible. All in all, not everyone will use
docker, thus are there other options?

○ Not yet. However, eventually this will be browser-based. Currently, there are
infrastructure requirements that make this quite not possible at this time.

● There is an effort to understand what packages the community uses even outside of
PyHC. Please take the Science Platforms Coordination group’s survey to provide an
understanding of what software is used in scientific research16.

● Would it make sense to add a CI run to test building the environment from the GitHub
repositories of each package? Or perhaps just the core packages? That way, PyHC
would be able to find out dependency conflicts before releases.

○ Indeed, that’s a good method to do that. One thing to have eventually is to have
packages do an RC before they push releases to PyPI. A requirement to accept
an RC is to prove it's still compatible with PyHC environment.

○ A note from PlasmaPy that RCs are a great idea! PlasmaPy has been hoping to
automate monthly beta releases for PlasmaPy. This idea has not yet been
implemented due to strain on developer time and resources.

● it would be interesting for reproducibility to have a data environment. People could
publish data in a certain way (e.g. on Zenodo), develop a HAPI mechanism that could
read that structure and thus be permanently accessible via HAPI. There could be a data
container to capture that? This is something PyHC could contribute towards (and bonus
points, be citable).

○ There’s a lot of support within PyHC to look towards an avenue for funding this.
Further, a HAPI-Zenodo server could also help with findability for Zenodo
datasets via HAPI metadata.

16 https://forms.gle/CNrFBard9KGXGZNAA
15 https://www.cosmos.esa.int/web/ihdea/ihdea-dash-2024
14 https://dash.heliophysics.net
13 https://ihdea.net

https://forms.gle/CNrFBard9KGXGZNAA
https://www.cosmos.esa.int/web/ihdea/ihdea-dash-2024
https://dash.heliophysics.net
https://ihdea.net


Heliophysics Software Search Interface - Eric Lopez
To promote software reuse and reduce duplication of efforts, the Heliophysics Software Search
Interface (HSSI) is predicated on already-existing software. Specifically, the HSSI will leverage
the Exoplanet Modeling and Analysis Center’s (EMAC) interface17.

Eric Lopez, an exoplanet scientist at NASA GSFC, and Joe Renaud, a planetary scientist and
geophysicist at NASA GSFC, head the EMAC interface. EMAC’s goal is to try to host and
provide web access to a repository of models. With this, users can then find, store, and
compare different models, how they load those, how they recruit them, etc. EMAC is looking to
inspire each other and share lessons learned. Further, EMAC encompasses all things exoplanet
modeling and analysis tools; there for exoplanets science codes and analysis tools. EMAC is
based on the Django package (written in Python) and docker. Lastly, since EMAC is at NASA
Center its resources are on the Discovery HPC cluster.

Users can publish their code to EMAC, but the EMAC team also goes out and searches for new
codes as well. Over 200 codes have been submitted, almost all of the codes are Python codes!
But there are also other file types. EMAC has an automated email system to reach out to
potential software tool maintainers, and is bringing on recruiters to help further recruit software
tools. EMAC had a virtual workshop in spring 2023 for people to present their tools.

Questions and comments after the presentation:
● Does EMAC have any overlap with the ASCL18?

○ Yes, it does. EMAC started talking with ASCL a lot in the last year. However, it’s
different in that the ASCL wants to find all open-source astrophysics codes and
provide a listing. EMAC isn’t limited to codes. Moreover, EMAC is chalk full of
early career professionals with open source codes; these users tend to be more
motivated to submit resources, but also host web applications, observatory
exposure time calculators, and databases of pre-computed models (providing a
citable location for those). EMAC does make efforts to list a tool if it’s findable on
ASCL, and vice versa.

● What is the reasoning to include stellar catalogs in a software search interface rather
than on a data search interface? Would EMAC change that if starting from scratch?

○ First, EMAC sorts by science and by broad classes of tools that might be relevant
to exoplanets. That’s how that got included, and it's relevant! The worry is that
there becomes confusion between responsibility of data archival versus software
archival. Data and software must be linked to be useful to each other. But,
although the subject matter experts that understand the archivals of software
versus those that understand the archival of data have complimentary skills,
they’re still different. EMAC doesn’t endeavor to make one group learn both.
Additionally, EMAC does not store everything. They are not the place to store
catalogs of host stars for example. Generally, that kind of data is handled via

18 http://ascl.net/
17 https://emac.gsfc.nasa.gov/

http://ascl.net/
https://emac.gsfc.nasa.gov/


linking to a data file at a site that’s archiving it. That being said, if an EMAC user
knows the sort of data they need to find, but doesn’t know where to look, EMAC
can point them in the right direction.

● Can EMAC provide a link to its “add a resource” form to see what metadata you ask for?
○ Certainly19.

● Regarding metadata for software cataloging, is there a schema for metadata cataloging?
Some things are domain specific, but what lessons are there about that?

○ Basically, try and start from the beginning to build flexible infrastructure so things
can be added as development continues. Before launching the website, EMAC
had a back-end engineer make sure everything worked on servers and that all
information could be parsed. Also, make sure to have a development
environment and always test there first. Lastly, talk to professional programmers
and follow their best practices.

● Are the metadata records based on DataCite (https://datacite.org/) in the background to
some extent?

○ With DataCite, generally the metadata registration is how you get a DOI (which is
what Zenodo uses). However, EMAC doesn’t generate DOI. The permanent link
is the EMAC ID. Thus, for anything published, EMAC tries to ensure there’s a link
of an ADS record20.

● A suggestion was made that EMAC could move any useful information out of its Slack
and into a wiki. This would greatly help new EMAC team members find information
instead of having to search Slack.

EMAC and the broader HSSI session was concluded with a general discussion amongst PyHC
members. PyHC members were asked what kinds of things do PyHC packages want potential
users to be able to search by (e.g. short package descriptions)? This was decided to be
discussed in a telecon (multiple, possibly), plus at other meetings. Several examples were given
for community members to consider (HSOConnect21, ASCL22, EMAC17, PyHC23, and PyHC’s
current taxonomy24. Members were encouraged to think about their target audience and what
those users would want and need (e.g. devs developing codes, as well as the audience of users
trying to find codes). A final piece of advice was then presented: think about the logic of how to
relate different parts of taxonomy to each other (e.g., show only “AND” logic, or include “OR”).

24 https://github.com/heliophysicsPy/heliophysicsPy.github.io/blob/main/_data/taxonomy.yml
23 www.pyhc.org
22 https://ascl.net/
21 https://hsoconnect.hpde.gsfc.nasa.gov/
20 https://ui.adsabs.harvard.edu/
19 https://emac.gsfc.nasa.gov/submissions/

https://github.com/heliophysicsPy/heliophysicsPy.github.io/blob/main/_data/taxonomy.yml
http://www.pyhc.org
https://ascl.net/
https://hsoconnect.hpde.gsfc.nasa.gov/
https://ui.adsabs.harvard.edu/
https://emac.gsfc.nasa.gov/submissions/


PHEP-1: discussion and voting
To begin this discussion, Jon Niehof presented a slide deck with a basic PHEP 1 overview25,26,
which is in its essence the PHEP that defines the definition of all future PHEPs. PHEP 1 was
first proposed last August 2023, and discussed again at later telecons. The idea behind PHEP
1—and hence, other PHEPs—is that there is no “accepted” state; a PHEP goes straight to the
final state once voted in. That is, a PHEP is immutable once final except things that don’t
change its substance (e.g. link rot, typos, header updates from normal processes). Revisions
are committed at the discretion of PHEP editors. Further, a PHEP has to be unanimously
agreed upon to pass (abstained votes are allowable). The author of a PHEP should be present
at votes.

Since PHEP 1 was solely focused on defining the PHEP process, there is a PHEP 2 currently
on GitHub that creates a template for future PHEPs to follow for ease of creation27.

No objections were noted to the PHEP process or PHEP 1. However, there were several
questions noted:

● Someone without investment in the community could hold up votes with objections. How
should PyHC handle that?

○ Code of conduct and governance needs to come into play. Objections must be
concrete, actionable, and of good faith. Leadership may need to come into play
as well (the PHEP editor should avoid involving themselves in this).

● Do we not need a defined governance first?
○ How do we agree on governance if we don’t have a way to agree to make those

decisions? At some point, we’ll need a steering committee. ‘This PHEP refers to
"PyHC leadership": individuals or groups with statutory authority over the PyHC
project. This may be the Principal Investigator or other individuals or groups
appropriately designated in the future, such as a steering committee.'

● Mutability versus immutability has been addressed in PHEP 1, which is great. That being
said, the process is a little arduous. The trade off of well definedness is having the ability
to change quickly. PyHC coud try the latter out and if the related concerns play out, the
community can go through this process to revise it. For reference, the PLEPs for
PlasmaPy have a section on amending PLEPs28. PlasmaPy has used this for the PLEP
that defines PlasmaPy's top-level subpackages29.

29 https://github.com/PlasmaPy/PlasmaPy-PLEPs/blob/main/PLEP-0007.rst

28

https://github.com/PlasmaPy/PlasmaPy-PLEPs/blob/main/PLEP-0001.rst#amending-or-superseding-a-ple
p

27 https://github.com/heliophysicsPy/standards/pull/25

26

https://github.com/heliophysicsPy/standards/blob/a4b3f558b9ffa712324e63ff6a83325cc69e367f/pheps/ph
ep-0001.md

25

https://docs.google.com/presentation/d/1Fwwa6kP4Alscs8bY-Cp-agFhX0-pK4H5TgG3qFWwuoo/edit?us
p=sharing

https://github.com/PlasmaPy/PlasmaPy-PLEPs/blob/main/PLEP-0007.rst
https://github.com/PlasmaPy/PlasmaPy-PLEPs/blob/main/PLEP-0001.rst#amending-or-superseding-a-plep
https://github.com/PlasmaPy/PlasmaPy-PLEPs/blob/main/PLEP-0001.rst#amending-or-superseding-a-plep
https://github.com/heliophysicsPy/standards/pull/25
https://github.com/heliophysicsPy/standards/blob/a4b3f558b9ffa712324e63ff6a83325cc69e367f/pheps/phep-0001.md
https://github.com/heliophysicsPy/standards/blob/a4b3f558b9ffa712324e63ff6a83325cc69e367f/pheps/phep-0001.md
https://docs.google.com/presentation/d/1Fwwa6kP4Alscs8bY-Cp-agFhX0-pK4H5TgG3qFWwuoo/edit?usp=sharing
https://docs.google.com/presentation/d/1Fwwa6kP4Alscs8bY-Cp-agFhX0-pK4H5TgG3qFWwuoo/edit?usp=sharing


○ Indeed, to this point, community members can submit a PHEP about the PHEP
process itself.

● Should PHEPs be reviewed yearly at the in-person PyHC meeting?
○ This could consist of an open session of looking at all of them, governance, etc.?

Further, one member added a suggested write-in for PHEP 1: "The PHEP
process will be reviewed informally yearly at the in-person PyHC meeting for that
year, with more formal reviews occurring every 3-5 years as determined by the
PyHC community attending those meetings."

○ This conversation was resolved with the final decision that a note will be written
into PHEP-1 that PyHC will discuss at one PyHC meeting per year about the
PHEP process and PHEPs in general. Intermediate discussion is saved for
GitHub issues and discussions.

● What is the main advantage of having a heavy formalized process versus a discussion?
○ The main benefit is future proofing. This nicely sets up PyHC to continue to grow,

sustainably. Having a process for decision making is good to define early. Also
considering some bigger updates to PyHC, the community needs a new way to
formalize these things. For example, at the last DASH meeting, Rebecca
Ringuette led a session that teased out coordinate transformations and how to
handle that for interoperability. But, PyHC can’t have rules on how to approach
this concept, etc., if there’s no way to draft it as a community and require it of
packages at certain tiers. There’s not enough of a hammer at PyHC; PyHC can’t
have formal enforcement of something without a structure and community input
and buy-in. Further proof of this point is that Nick Murphy put up standards
change four years ago, but with no existing formal process to implement it has
remained an unanswered issue on GitHub30.

○ Original standards were imposed by people who happened to be in-person; this
is kind of a scary situation. Additionally, at request, the PyHC standards have
gone into NASA funding calls. This further underlines the need for PyHC
processes and standards to be formalized. Another thing to consider in this
conversation is not just the packages joining but what happens to a PyHC
package over time. This PHEP process can help implement standards that make
a package easier to maintain, make it easier to find a new maintainer, and/or
make it easier for others to contribute to a package.

The initial vote for PHEP 1 passed successfully. 21 total people were present—15 of these
people gave a “Yea” vote, there were no “Nay” votes, two abstained from voting, and four did
not vote at all (which resulted in a default abstained vote). The second, and final, vote for PHEP
1 will take place on April 15, 2024 at a regular, bi-weekly PyHC telecon. A list of the individuals
and their votes for PHEP 1 from vote 1 are as follows:

● Yea: 15
○ Rebecca Ringuette, Nick Murphy, Mike Shumko, Ashley Smith, Sandy Antunes,

Julie Barnum, Darren De Zeeuw, Jon Vandegriff, Jim Lewis, Marcus Hughes,
Shawn Polson, Nick Hatzigeorgiu, Stuart Mumford, Laura Hayes, Will Barnes

30 https://github.com/heliophysicsPy/standards/pull/16

https://github.com/heliophysicsPy/standards/pull/16


● Nay: 0
● Abstain: 2

○ Jonathan Niehof, Alexander Drozdov
● No Vote (default): 4

○ Angeline Burrell, Joe Plowman, Leah Wasser, Nabil Freij

PyHC - pyOpenSci Partnership - Leah Wasser
Lasser Wasser, the Executive Director and Founder of pyOpenSci31 presented once more at a
PyHC meeting on pyOpenSci, given the increasing desire to adopt a PyHC - pyOpenSci
partnership. Some of the PyHC packages were on board to at least go through a pyOpenSci
review (e.g., PlasmaPy and SunPy), however there were some concerns and reservations from
others. Leah reiterated that the pyOpenSic peer review isn’t meant to be a scary thing. It’s
meant to be a constructive conversation, where quality, usability, and maintainability of a
package is the end goal. A JOSS publication is just a final credit for the work.

Notably, SunPy has already undergone the pyOpenSci review process (not as an affiliated
package for PyHC, but as a stand-alone package). SunPy commented that the experience was
very similar to the JOSS review process and in the end was productive with some interesting
results. There was never a “you must do this!”, but rather “hey, you could improve this part of
your code.” It was as light a weight of a review process as it could have been. Moreover, SunPy
found that it was quite productive to have someone “from the outside” look at code base and
processes and find blind spots. The experience was overall comprehensive and positive. The
review can be seen by all and is located on GitHub32.

Of note to the SunPy and astropy examples is that those communities are pretty cohesive with
one main package and several affiliated packages. PyHC does not follow this same process.
Thus, it is not the same in the sense of being “affiliated” with PyHC. We would need to define
what it is to be affiliated with PyHC, which could be pulled in part from the astropy - pyOpenSci
affiliation requirements33. A comment was made during discussion that a simple requirement
could be “is this well documented, useful for our field, and reviewed.” Additionally, another
community member commented that the ability to install things in the same environment (i.e.,
within the PyHC environment spearheaded by Shawn Polson) is not the same thing as
interoperability between packages. Being able to be installed side-by-side does not ensure
compatibility. This must be kept in mind as PyHC determines affiliation requirements.

One result of the above noted discussion and concerns was that this was a great impetus to
discuss what the overall goal of PyHC is. Is PyHC to remain a collection of packages that we
advertise for people to use, or, is the community cultivating an interoperable ecosystem of
packages? This decision, and the PyHC - pyOpenSci partnership, should be the highest priority

33 https://www.pyopensci.org/software-peer-review/partners/astropy.html
32 https://github.com/pyOpenSci/software-submission/issues/147
31 https://www.pyopensci.org/

https://www.pyopensci.org/software-peer-review/partners/astropy.html
https://github.com/pyOpenSci/software-submission/issues/147
https://www.pyopensci.org/


for the community to define following the conclusion of the PyHC summer school. Based on this
presentation and ensuing discussion, it was suggested that PyHC chat with the astropy
community about their experience with pyOpenSci and why they decided to go with
pyOpenSci’s review process.

Unconference Discussion Summary
Although there were several important and valid unconference topics suggested, based on the
previous day’s discussion around a PyHC - pyOpenSci partnership and the various
considerations therein, the entirety of the two-hour unconference session was focused on that
topic. A short summary of the session is given below. Full notes and comments can be found in
the Spring 2024 meeting notes Google document34.

pyOpenSci and PyHC: How do we define affiliation with PyHC?
Carrots for going through the pyOpenSci review process?
What would affiliation with PyHC impose on packages? In reality, most pyOpenSci standards
are already in-line with PyHC standard, and partnering shows more carrots than sticks.
pyOpenSci wants to help users learn how to create packages, test them, apply CI/CD, and so
on. If anything, pyOpenSci can assist packages and new community members in learning how
to meet our standards. They will also assist PyHC in finding new maintainers of the package if
the current developers abandon it, or gracefully sunset the project if it makes sense to do so.

To have a truly interoperable system of software, the standard listing of packages we do now
isn’t sufficient. Criteria has to be defined for what it means to be a part of PyHC. This also
comes back to the need to define what is the main goal of PyHC. This begs the question, shall
the community finally settle on common standards for things like coordinates, time, and units?

There lies an opportunity though to have a “marriage” of the two ideas: a listing of packages and
a standards-based, interoperable PyHC. A new PyHC package tiering system would allow a
repository for old, once useful and potentially still needed codes to reside within the community,
while also advocating for and highlighting packages that are doing the work to reach the higher
interoperability goal. The further “up the rung” a package goes on the tiers, the more carrots
there are to a package (e.g., inclusion with the PyHC-Chat AI bot, funding for conference travel,
or inclusion within PyHC summer school). The basic levels could be as such (with more details
needed):

○ Tier 0 - everything (dead code)
○ Tier 1 - self-reviewed packages
○ Tier 2 - meets PyHC standards

34

https://docs.google.com/document/d/1htbibknl1Npv1hQ1O4L22RKO_s8uc9dZT1iTJ49nMJg/edit?usp=sh
aring

https://docs.google.com/document/d/1htbibknl1Npv1hQ1O4L22RKO_s8uc9dZT1iTJ49nMJg/edit?usp=sharing
https://docs.google.com/document/d/1htbibknl1Npv1hQ1O4L22RKO_s8uc9dZT1iTJ49nMJg/edit?usp=sharing


○ If packages are no longer meeting a certain criteria, then they are bumped down
a tier, informed, and given ways to go back up again.

The community agreed overall that tiering would be a good way to move forward. Once that is
initiated by the community, a discussion for the PyHC - pyOpenSci can resume. This will all be
handled within PHEPs. See Figs 7 and 8 for captures of a Miro board used to discuss what it is
to be a PyHC package (this heavily guided discussion during the unconference session).





Next Steps
The meeting concluded with the action plans to continue conversations and development of the
PyHC environment, focus on preparing for the upcoming PyHC 2024 summer school, as well as
to submit a PHEP on the new PyHC package tiering system. For now, discussions regarding the
PyHC - pyOpenSci partnership are tabled until the fundamental PyHC considerations are ironed
out. Unlike the past year, PyHC will still have a hybrid fall 2024 meeting, considering the
important topics to come (PHEPs, PyHC governance, etc.). Planning for that will begin in
earnest a few months prior. Lastly, as usual, unconference topics not touched upon will be
considered for future PyHC telecons:

● How to handle the contacts section for packages? Names listed at the moment, but no
way of how to contact them.

● PySPEDAS, SunPY, and SpacePy seem to be working on similar tasks in field line
tracing. Perhaps they can discuss how to design the efforts to be interoperable, maybe
similar/identical syntaxes?

● Associating PyHC software packages with datasets (working session).



● Adding security checks to PyHC standards.
● What categories do PyHC contributors want people to use to search for their packages?
● Discussion on using all-contributors package as a PyHC recommendation.
● Discussion on creating categories of standards in PyHC (looking ahead to more complex

codes that cannot be pip installed)?
● Will PyHC serve as a software search interface that includes restricted codes (e.g.

person can find the code and contact info but needs access to get to it)?
● What does the community want from PyHC leadership, if Julie and Shawn are not

enough for these requests then should a leadership team be created, how should others
be elected onto such a PyHC leadership team?

● What happens if a project maintainer is unable/unwilling to continue? Should PyHC
projects have a defined succession plan (not just github, but pypi, readthedocs, conda
and other relevant assets)? Should we define a process for retiring or merging
packages?

Final agenda


