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Abstract—Despite its enormous economical and societal im-
pact, lack of human-perceived control and safety is re-defining
the design and development of emerging AI-based technologies.
New regulatory requirements mandate increased human control
and oversight of AI, transforming the development practices
and responsibilities of individuals interacting with AI. In this
paper, we present the SPATIAL architecture, a system that
augments modern applications with capabilities to gauge and
monitor trustworthy properties of AI inference capabilities. To
design SPATIAL, we first explore the evolution of modern
system architectures and how AI components and pipelines are
integrated. With this information, we then develop a proof-of-
concept architecture that analyzes AI models in a human-in-the-
loop manner. SPATIAL provides an AI dashboard for allowing
individuals interacting with applications to obtain quantifiable
insights about the AI decision process. This information is then
used by human operators to comprehend possible issues that
influence the performance of AI models and adjust or counter
them. Through rigorous benchmarks and experiments in real-
world industrial applications, we demonstrate that SPATIAL
can easily augment modern applications with metrics to gauge
and monitor trustworthiness, however, this in turn increases the
complexity of developing and maintaining systems implementing
AI. Our work highlights lessons learned and experiences from
augmenting modern applications with mechanisms that support
regulatory compliance of AI. In addition, we also present a road
map of on-going challenges that require attention to achieve
robust trustworthy analysis of AI and greater engagement of
human oversight.

Index Terms—Trustworthy AI; AI Act; Industrial Use Cases;
Accountability; Resilience; Human Oversight; Practical Trust-
worthiness

I. INTRODUCTION

The adoption of AI is imminent in everyday applications.
The AI market value is expected to reach a valuation of
two trillion USD by 2030 [1], emphasizing the impact of
AI on current software practices and systems development.
Machine and deep learning components (aka AI components)
are part of larger systems that provide autonomous decision
capabilities for modern applications. AI components imple-
ment machine/deep learning pipelines to build AI models.
These models are improving the perception, experience and
interaction between users and digital applications [2], pro-
viding human-like and insightful functionality that facilitates
application usage and provides added value to users. Examples
of this include advanced Chat-bots (ChatGPT, Gemini, Ernie)
for e-commerce recommendations [3], optimal route planning
for practical drone delivery [4], [5] and sophisticated diagnosis
capabilities in healthcare applications [6] to mention some. A
key limitation for the adoption of AI at scale is its inherent
black-box characteristics [7]. Indeed, the incomprehensible
advanced performance of AI caused distrust in humans when
massively trained, leading to the release of an open global pe-
tition in March 2023 to slow down the developments of AI for
at least 6 months [8]. AI probabilistic decision nature cannot
be dissected using existing methods to verify software [9].
Besides this, AI models can be easily hampered throughout
their life cycle, making them vulnerable and exposed to
many threats, impacting their autonomous decisions. This is
worrisome in cybersecurity situations, where AI models can be



(purposely) attacked to perturb their inference process, which
can cause life-critical consequences for people and society.
As applications equipped with AI continue proliferating every
aspect of human life, new methods to gauge, adjust and
monitor its inference capabilities are required.

As recognized by all economic and regulatory frameworks,
with a primary emphasis on the EU but also encompassing
the US and China, artificial intelligence (AI) stands out as
the pivotal focus to developing a trustworthy technology.
Traditionally, trustworthy computing ensures that a piece
of software is trustful to users by verifying several of its
properties, e.g., robustness, reliability, resilience, accuracy and
so on. Audit and accountability compliance on trustworthy
software is simpler as there is a quantifiable understanding
of its performance sensitivity to drifts and errors. As trust-
worthy verification cannot be conducted directly with AI
using traditional methods, there is a lack of transparency,
accountability and resilience towards AI technologies. This
has made Europe to impose strict regulations for the use of
AI, becoming a benchmark at an international level. The US
also has acknowledged the significance of regulating AI usage
through its US AI ACT Executive Order 13859/13960 [10].
Likewise, China has emphasized the importance of regulating
generative AI developments as crucial steps in developing a
trustworthy AI [11]. AI trustworthiness extends fundamental
principles of trustworthy computing with additional properties
that have been considered and some defined by regulatory enti-
ties. Trustworthy AI is valid, reliable, safe, fair, free of biases,
secure, robust, resilient, privacy-preserving, accountable, trans-
parent, explainable, and interpretable [12]. Notice however,
that AI trustworthiness is an ongoing process whose definition
is evolving continuously and involves collaboration among
technologists, developers, scientists, policymakers, ethicists,
and other stakeholders. As emerging regulatory standards
mandate increased human control and oversight of AI, this
concurrently reshapes the development practices and respon-
sibilities of individuals engaging with AI. Moreover, new
methods and approaches that help to understand the behavior
of AI are being investigated or have re-gained attention, e.g.,
Explainable AI (XAI) methods [13]. As applications equipped
with AI continue proliferating every aspect of human life,
new methods are required to gauge, adjust and monitor the
trustworthiness of AI inference capabilities.

We contribute SPATIAL, a proof-of-concept architecture
that augments modern applications with capabilities to robustly
gauge and monitor the trustworthiness of AI in a human-
in-the-loop manner. To achieve this, SPATIAL uses an AI
dashboard and instruments applications with AI sensors. Con-
ceptually, an AI dashboard serves as a tool to provide insights
to human operators, enabling them to monitor and adjust AI
trustworthiness according to their preferences. Additionally, it
facilitates the verification of AI systems for potential audits
and ensures compliance with accountability regulations set
by regulatory bodies. In parallel to this, AI sensors that
monitor specific trustworthy properties are instrumented within
applications. Simply put, an AI dashboard shows to users

quantifiable metrics extracted by AI sensors [14]. To design
SPATIAL, first, we investigate the sensitivity of machine
learning pipelines to (induced/non-induced) changes - from
input data to model deployment. With this information, trust-
worthy metrics that can be instrumented as AI sensors are
reviewed in current state-of-the-art. For instance, a sensor for
fairness can be instrumented to analyze raw input data as
well as to characterize fairness in decision making after model
deployment [15]. Notice that currently, there is a misalignment
between regulatory (legal) and technical trustworthy require-
ments. Thus, relevant metrics are selected from a technical
point of view. Naturally, as regulatory trustworthiness evolves,
it is possible to replace technical metrics with alternatives
that adjust better to legal requirements. To augment modern
applications with AI dashboards and sensors, we develop
SPATIAL following a micro-service pattern. The key idea of
using this pattern is that each micro-service contributes with
the specific functionality to monitor a trustworthy property,
and this functionality is requested by an AI sensor instru-
mented in the application (like an API). Besides this, the
pattern also helps analyse a specific set of trustworthy prop-
erties. Indeed, as demonstrated by previous work, trustworthy
properties are not agnostic. Thus, the number of trustworthy
properties that can be derived from an application depends
on its inherent characteristics [12], [16]. Through rigorous
analysis and benchmarks conducted in real industrial use cases,
we evaluate the performance and scalability of SPATIAL.
Our results indicate that to measure trustworthiness in AI is
necessary to instrument every step of the AI pipelines with
sensors. Moreover, our results also suggest that AI dashboard
and sensors are useful to individuals to monitor AI inference
capabilities, but it increases the complexity of developing and
maintaining AI components in modern applications. Our work
also highlights lessons learned from designing and developing
SPATIAL, and describes on-going challenges that require
attention to achieve a robust analysis of AI trustworthiness
and greater engagement of human oversight.

II. RELATED WORK

AI trustworthiness: All regulatory and economic frame-
works have recognized the need for trustworthiness in AI.
As a result, several initiatives, projects and efforts are on-
going to define how to verify it. EU projects, such as EU
TRUST-AI (https://trustai.eu/), EU SPATIAL (https://spatial-
h2020.eu/) and EU TAILOR (https://tailor-network.eu/) have
proposed principles and guidelines to ensure trustworthiness
in AI development practices. Likewise, leading technologi-
cal vendors have proposed frameworks to achieve AI trust-
worthiness, including, IBM’s AI fairness 360, the what-if
tool and ML fairness gym of google, Microsoft’s fairlearn,
Linkedin Fairness Toolkit (LIFT), AT&T software System
to Integrate Fairness Transparently (SIFT), and Fat forensic.
Other initiatives also include, PwC AI trust index, AI trust and
transparency of Microsoft, and AI Impact Assessment of Open
AI. In parallel to this, development toolkits also have been
released by private vendors and open-source communities. For
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instance, Google’s model card toolkit measures transparency
in AI models. Other development initiatives to verify integrity
and robustness of AI include open-source SHAPASH [17],
IBM AI explainability 360 toolkit [18], Microsoft Interprete
ML, and IBM Adversarial Robustness 360 toolkit. While
there is a clear overlapping between all these works, a key
challenge that remains unexplored is identifying essential and
general requirements of trustworthiness. Unlike others, our
work investigates how to augment modern applications with
practical trustworthiness analysis and shares experiences and
lessons learned from our developments.
Human oversight and AI: Regulatory trustworthiness man-
dates human oversight in AI developments. While mul-
tiple frameworks have been developed to measure differ-
ent trustworthy properties [19], it is still unclear the
role that humans play in the monitoring and supervision
[20], [21]. XAI methods are the most common method to
communicate the logic of AI models to users via (opti-
mized) explanations, numerical values, visual diagrams, and
so on [22]. At the machine and deep learning levels,
several tools and frameworks are available to tune the in-
ference process of AI models. For instance, TensorLeap
(https://tensorleap.ai/), Neptune AI (https://neptune.ai/), and
Comet ML (https://www.comet.com/site/). Unlike others, our
SPATIAL uses an AI dashboard to communicate to human
operators the inference capabilities of AI, making it possible
to adjust it.

Fig. 1: AI perturbations based on algorithm type and attack.

AI perturbations: Attacks on machine learning systems
can be identified by threat modeling using frameworks like
ENISA, MITRE, NIST, IBM, Microsoft. AI pipelines im-
plement a set of steps to build AI models. These models
can be hampered by induced and non-induced changes in
any step of its construction [23]. Non-induced changes occur
due to situational events, e.g., environment, data quality and
failures of devices. Induced changes (aka adversarial attacks)
are perpetrated by an attacker with the main intention to
control/induce the inference process of AI models. Poisoning
attacks are of a significant issue as they contaminate the
data used for model training [24]–[30], [30]–[42], [42]–[51].
Adversarial attacks can also occur at the model level by
changing internal structure and parameters of the model [28],
[32], [35], [37], [52]–[54], e.g., model evasion, model stealing.

A summary of attacks investigated in the relevant literature in
the last years is shown in Figure 1. From the figure, it is
possible to observe the type of attack that can be performed
depending on each AI algorithm used for training. SPATIAL
augments modern applications with functionality to gauge and
monitor changes in AI inference capabilities such that human
operators can visualize and react to them.

III. BACKGROUND AND MOTIVATION

We continue by analyzing how modern applications im-
plement AI components and their respective AI pipelines for
building AI models. After this, we reflect on regulations for
the use of AI and its implications for software development
practices and systems deployment.

Modern architectures: As shown in Figure 2, the underlying
system of modern applications have evolved considerably from
its fundamental client-server architecture. At the same time,
there has been a rise in design and development considerations.
In early developments, in a basic client-server architecture,
end devices acting as clients send requests to the server. At
the server, the request is then processed and a response is sent
back to the client (Figure 2(a)). After this, more advanced
architectures are designed to collect data in a centralized
manner (at the server) from users interacting with applications.
This data is then used to train machine learning models to
improve certain functionality over time (Figure 2(b)). Further
developments have made these architectures capable of collect-
ing data from clients in a distributed manner, such that more
robust datasets can be used to train models. Currently, a global
model is trained by data contributions of clients collected in a
privacy-preserving manner, e.g., using federated learning, once
trained, this model is then propagated to all the end devices.
Figure 2(c) extends the ML architecture presented in [55] to
depict the latest advances of distributed training.

AI model construction in a nutshell: Applications equipped
with AI models implement pipelines that facilitate their con-
struction and incremental improvement over time. The stan-
dard pipeline for building an AI model can be summarized
in Figure 4(a). Applications implement these typical steps
to update models continuously as new data contributions are
obtained. In the first step (data collection), available data
is cleaned and prepared using common methods to enhance
its quality, e.g., missing data, removing duplicates, and data
augmentation [56]. After this step, data is transformed into a
suitable input for the AI algorithm, meaning data is labelled,
e.g. using human annotators. Next, the training process takes
place. Here, an algorithm is selected, e.g., Random Forrest,
Support Vector Machine; then the training process is decided,
e.g., data parallelization or model partition [57], and the model
is evaluated, e.g., using cross-validation [58]. Lastly, the model
is deployed and the performance is evaluated within applica-
tions. In classical architectures, models require re-training and
re-deploying as new data contributions are obtained. In newer
paradigms, such as federated learning, the model is updated

3



Fig. 2: Evolving system architectures, highlighting the concerns that arise in each architecture as functionality is augmented;
a) Basic client-server architecture [55]; b) Machine learning architecture [55] and c) Distributed machine learning architecture
(Federated learning).

by a global aggregator, which combines contributions from
clients, such that the later resulting model is propagated back
to all the contributors.
AI regulations: AI models are trained from data contributions
collected over time, each contribution helping to tune their
probabilistic nature. AI regulations thus define the properties
for verifying and validating the correct development and
usage of AI models. The General Data Protection Regulations
(GDPR) stipulates the guidelines for dealing with personal
data within the European Union (EU), putting forward fair-
ness, security, privacy, trust, transparency, and explanation
considerations during software and AI-based solution devel-
opment. These principles are also described in the US AI
Act, and other countries have also considered similar regu-
lations, for instance, China, Japan, Brazil, and Canada. Given
these considerations, modern applications have to implement
mechanisms or tools that allow individuals to understand the
inference capabilities of AI. This, however, requires to inspect
the whole construction of AI models.

IV. THE SPATIAL ARCHITECTURE

We next describe how modern applications are augmented
with SPATIAL, such that it is possible to gauge and monitor
the trustworthiness of its AI components. To do this, first,
we analyze how sensitive AI pipelines are to vulnerabilities
that can change the inference logic of AI models during
their construction. After this, we introduce the concepts of AI
dashboards and sensors, which encapsulate complexity of the
trustworthy analysis. With this information, we then provide
an overview of the SPATIAL system.
AI vulnerabilities: Machine learning vulnerabilities exist
throughout the AI pipeline and these can be exploited to
change the AI inference logic. We enumerate the most com-
mon and critical vulnerabilities by relying on the CIA (confi-
dentiality, integrity, and availability) approach. CIA provides
a qualitative analysis to model the impact of vulnerabilities

on AI models. Confidentiality depicts the level of access
to AI models. Confidentiality is not limited to preventing
access to a machine learning model but also to ensuring
that its output predictions do not leak information that can
be used to understand and reproduce its decision making
or reconstruct its training data . Similarly, integrity relates
to preserving expected behavior, level of performance, and
quality of predictions under any conditions, including at-
tack. Likewise, availability refers to the idea that accurate
predictions are produced, that reflect those seen in testing,
and in a timely manner. Models are vulnerable throughout
their construction life cycle pipeline. Figure 3 summarizes
these vulnerabilities together with associated security attributes
that can lead to compromise. This suggests that metrics that
quantify trustworthiness are required to be instrumented in
different steps of the AI pipelines.

Fig. 3: Vulnerabilities against machine learning systems.

The SPATIAL architecture: SPATIAL augments the latest
architectures by building upon the standard machine learning

4



pipeline that constructs and updates AI models. Figure 5 shows
the overall concept. Applications are instrumented with AI
sensors (for each trustworthy property), and these sensors
gauge and monitor the inference capabilities of AI models.
At the architecture level, Figure 4(c) shows the system com-
ponents augmented in modern applications. Notice that the
architecture is easily integrated into any application as the
trustworthy analysis is applied over the model and data. In
practice, the trustworthy properties have to be monitored over
time as these can change as the AI model gets updated. Besides
this, it has been demonstrated that trustworthy properties can
be considered as trade-offs within applications [59], suggesting
that modifying one property can impact others, e.g., robustness
vs privacy, accuracy vs fairness, transparency vs security.
Moreover, different types of applications have different pre-
dominant characteristics, influencing the extraction of a trust
score and thus obstructing the adoption of a generic certifi-
cation scale [60]. By using AI sensors, it is possible then to
quantify the compliance of AI against available requirements.
The main reason for abstracting trustworthy properties into
sensors is that a sensor enables continuous monitoring of ap-
plications during runtime. AI sensors are software-based (aka
virtual sensors) and are instrumented within the source code of
an application to monitor specific parts of its code execution
or can be instrumented as a concurrent process to monitor
the behaviour of the overall application. Thus, AI sensors
can be considered APIs. Another reason for instrumenting
and abstracting modern applications with AI sensors is to
foster a correct-by-construction approach, such that standard
trustworthy properties are considered from the early design
and development phases of AI. Measurements obtained by
the AI sensors are shown to human operators using the AI
dashboard, such that human operators can aid in overseeing
the development of AI models. Human feedback to change
AI behavior is applied directly to the AI pipeline. Figure 4(b)
shows the additional steps that are introduced. As any step can
be easily hampered to change the model inference process, AI
sensors are required to be instrumented across the pipeline. AI
sensors are built using specific metrics to extract trustworthy
properties, e.g., XAI methods, fairness metrics, and accuracy,
among others.

V. IMPLEMENTATION AND DEPLOYMENT

System implementation: To demonstrate how modern appli-
cations can be augmented to gauge and monitor trustworthy
properties from AI models. We design, develop and deploy
a proof-of-concept system architecture. Our SPATIAL thus
consists of a back-end and a front-end implementation. The
back-end deployment uses a micro-service API gateway to
support various micro-services. These micro-services imple-
ment different metrics to analyze specific trustworthy prop-
erties. AI sensors are instrumented within applications and
request the functionality of a specific metric in an input/output
manner. This means that AI sensors are treated as APIs, whose
monitoring consists in requesting micro-service functionality

periodically. For instance, every time an AI model is updated
or there is a change in any step of the construction of the
model. The main reason for using micro-services architecture
is to add and replace metrics with ease. Indeed, currently,
there is a misalignment between legal regulatory and technical
trustworthiness. Thus, technical metrics that fulfil and comply
with regulatory requirements are meant to evolve over time.
Another reason to rely on micro-service patterns is to augment
dynamically the capacity of each individual metric to handle
the workload. The source of this workload considers 1) several
different applications requesting the metric and 2) workload
caused by continuous monitoring of the metric. To implement
our API gateway, we rely on the open-source Kong technology.
Kong can be easily extended through OpenAPI and configured
to support continuous integration, facilitating re-deployment
and managing versioning of our prototype. The API Gateway
manages the communication flow, ensuring that each micro-
service receives the necessary input, processes it, and returns
the appropriate response. Micro-services connected to the
API gateway rely on docker containerization to encapsulate
each metric. In parallel to this, the front-end implementation
facilitates the analysis of AI models through SPATIAL using
an AI dashboard. Humans can rely on the AI dashboard to
obtain quantifiable trustworthy characteristics of the AI model.
SPATIAL front-end is implemented using React, providing
users with an intuitive interface to seamlessly integrate with
SPATIAL features. Node.js serves as the required runtime en-
vironment for React’s development tools, including Babel and
Webpack. The Bootstrap 5 framework is utilized for respon-
sive design, while Tailwind CSS is employed for customized
styling, resulting in visually appealing UI components. For
dataset management and responsive chart visualization, we
utilize D3.js, Chart.js, and Papaparse for parsing CSV data.
Technical configurations are in subsection VI-B. The overall
system is deployed in the computing infrastructure provided
by the supercomputer LUMI at UT HPC data-centre [61].

Trustworthy metrics for AI sensors: Micro-services imple-
ment different metrics to quantify specific trustworthy proper-
ties. Applications are instrumented with AI sensors requesting
each metric functionality. Current micro-services implement
metrics that can be used to support the resilience and ac-
countability of AI models. Accountability metrics support the
ability to explain the source causes that led to a decision. Thus,
accountability is supported by implementing the XAI SHAP
method. SHAP fosters transparency of inference capabilities
of AI by highlighting the most important part of the data
used for learning. Likewise, resilience metrics quantify the
ability of models to resist and recover from an exploited
machine learning vulnerability. Resilience insights are thus
estimated by calculating complexity and impact metrics on
model and data [47]. Complexity quantifies the effort required
by an attacker to achieve a successful attack. The higher
the complexity, the more difficult it is for the attack to
hamper the model. Similarly, impact quantifies the extent of
the attack’s effect on the AI models within a system. The
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Fig. 4: AI model construction; a) standard pipeline to construct machine learning models; b) Augmented pipeline to analyze
trustworthy trade-offs; and c) Conceptual modern system architecture equipped with methods to monitor trustworthiness.

higher the impact, the more vulnerable the AI model becomes
in that system. Besides this, our architecture also implements
a machine learning component, where several AI algorithms
can be passed a dataset to create an AI model. This component
also allows us to provide performance metrics about the AI
model, e.g., accuracy and precision.

VI. THE EXPERIMENTS

We conduct experiments to analyze the performance and
scalability of SPATIAL as industrial modern applications are
augmented with it. Two sets of experiments are conducted.
The first focuses on gauging the trustworthiness properties of
AI components of applications, whereas the second focuses on
analyzing the capacity of the system to monitor applications
and handle workload of concurrent requests. In the following,
we provide a detail description of the experimental setup.

A. Monitoring performance.

We next evaluate how SPATIAL can gauge and monitor
the inference capabilities of AI. To do this, we analyze how
changes in AI models can be quantified and monitored over
time. Monitoring the inference process is important to identify
when models have been compromised. The first use case
focuses on analyzing sensor data to trigger medical emergency
support whereas, the second application depicts a network
activity classification system, where network data is poisoned
to disguise the classification model.

Fig. 5: SPATIAL concept overview.

Use case 1: Medical e-calling application: It is a mobile ap-
plication, part of an e-calling system, that uses accelerometer
data to detect the falling of an elderly person. As the falling
event is detected, the application triggers an emergency call
to request medical assistance.

Dataset and model: The UniMiB SHAR dataset [62] was
employed in training five different ML models, Logistic Re-
gression (LR), Random Forest (RF), Multilayer Perceptron
(MP), Deep Neural Network (DNN), and Decision Tree (DT).
The UniMiB dataset is a benchmark dataset for human activity
and fall detection comprising 11771 acceleration samples from
30 subjects, 9 classes representing activities of daily living
(ADL), and 8 classes representing falls.

Adversary model and assumptions: We assume a black-
box attacker model where the attacker has only access to
the training data but has no knowledge about the underlying
structure of the utilized model. Furthermore, we expect the
attacker to be capable of randomly poisoning the data up to
a poisoning rate of p. Thereby, we expect that the attacker
poisons the data by performing a random label-flipping attack.
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Setup and procedure: The label flipping attack is performed
systematically to different subsets of the dataset. Precisely, the
attack is executed at varying poisoning rates p of 0% (base-
line), 1%, 5%,10%, 20%, 30%, 40%, and 50%, respectively.
Baseline results without data poisoning are also collected for
reference purposes. Afterwards, the respective ML model (e.g.,
DNN, DT, RF, LR, or MLP) is trained on the poisoned training
data set and then evaluated with the retained clean test data
set based on the accuracy, precision, and recall evaluation
metrics. In addition, we explore the impact of the attack to the
model explainability. More specifically, we also calculate the
similarity of SHAP explanations of the DNN model for each
of the varying poisoning rates. To realize this, we determine
the five nearest neighbours regarding the Euclidean distance
for each fall instance in the retained clean test set. We then
measure the average distance of the corresponding SHAP
explanations. Finally, we average the average distances of
explanations, resulting in an average distance of explanations
of similar instances across the test set w.r.t. the class “fall”.

Use case 2: Network activity classification application:
The second use case is a network monitoring application that
examines IP and TCP/UDP data headers. The application is
able to identify the type of activity an online user is perform-
ing. Three common types of online activities are considered:
Web browsing, Web interactions and video streaming. Network
monitoring is important to design security policies, safeguard
user privacy and efficient dynamic allocation of resources,
particularly in 4G/5G networks.

Dataset and model: We setup a testbed to collect network
data of user activities using our application. Network data
depicts real online activities of users at [Annon. Vendor], a
network data monitoring provider. We rely on Wireshark to
create pcap files with a size of 2.15 GB that contain the
activities of users captured through the network traffic. Our
datasets comprise multiple network traces, linked to different
users. The network traffic traces contain essential information
such as the source and destination IP addresses, protocols, port
numbers, packet timestamps, packet size, to mention some. We
clean the dataset using standard methods and select relevant
features to identify the previous described activities. After
applying filtering methods, the final dataset consists of 382
labelled traces across three traffic classes: Web, Interactive,
and Video activities, with 304, 34, and 44 traces respectively.
The processed CSV files derived from this dataset are used
for the analysis and evaluation of our AI-based classification
model. Feature extraction reveals 21 features categorized into
five main categories: duration, protocol, uplink, downlink,
and speed. We employ various machine learning classifica-
tion algorithms, including Neural Networks (NN), LightGBM
(LGBM), and XGBoost.

Adversary model and assumptions: We assume a white-box
attack model, where the attacker has a complete knowledge
about the AI model structure. This type of attack depicts a
common situation where the AI models are hampered from
inside an organization. By injecting commonly used poisoning

and evasion attacks, the attacker’s objective is to compromise
the integrity of our models leading to a significant degradation
in the model’s accuracy. Fast Gradient Sign Method (FGSM)
is a technique used in adversarial ML to generate adversarial
examples by adding a small amount in the direction of
the gradient of the loss function with respect to the input.
Resilience of models against an evasion attack is quantified
based on impact and complexity metrics. Here, complexity
is measured by characterizing the processing power required
to generated evasion data points. Impact on the other hand,
it is measured by counting each successful misclassification
gained through those evasion data points. In parallel to this,
GAN-based poisoning attack is also performed and the goal
is to generate synthetic data that looks very similar to the real
data. Random swapping labels attack chooses randomly two
samples of the training dataset and swaps their labels. Target
label flipping attack flips the labels of some samples from one
class to the target class (e.g., Video class). Here, complexity
and impact are also estimated based on different observations.
Complexity is measured by quantifying the percentage of data
that is poisoned out of all the data used for training the
model. Similarly, impact is measured by using the drifts in any
performance metric of the model, e.g., accuracy, F1-score.

Setup and procedure: We generated 103 adversarial samples
from the 103 test data samples that were initially obtained.
After this, the white-box FGSM evasion attack is launched.
For GAN-based attack, we use CTGAN [63] for modelling
tabular data to generate 5000 synthetic samples. For other
poisoining attacks, such as label flipping and random swapping
labels attacks, the poisoning rates are 0% (baseline), 10%,
20%, 30%, 40%, 50%. Subsequently, the corresponding ML
models (e.g., NN, LightGBM and XGBoost) are retrained
using the manipulated training dataset and compared against
the baseline to identify performance degradation based on
accuracy, precision, and recall metrics.

B. Capacity-load performance

Experimental setup: To verify the performance and scalabil-
ity of SPATIAL, we deployed SPATIAL following the setup
shown in Figure 8(a). The system consists of six (6) different
machines, one acting as the integration/API gateway, and oth-
ers as back-end micro-services. The machine running the Kong
Gateway consists of 32 vCPUs and 64 GB of RAM running
Linux. The remaining machines host a specific service to
extract a metric. Micro-services include, a LIME micro-service
(4 vCPUs and 4 GB RAM); a SHAP micro-service (4 vCPUs
and 4 GB RAM), an Occlusion-sensitivity micro-service (4
vCPUs and 8 GB RAM), an impact resilience micro-service
(computing instance with NVIDIA A4000 GPU, Intel Xeon
2.10 GB CPU, and 128 GB RAM running Ubuntu 20.04),
and an AI pipeline micro-service that provides performance
indicators (8 vCPUs and 8 GB RAM)/. All micro-services are
accessible through the API gateway, and requests to micro-
services are specified by the clients. The system is deployed
in the computing infrastructure provided by LUMI.
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Tools and metrics: Once the system is deployed and running,
capacity-based testing is performed to evaluate the perfor-
mance of individual requests and concurrent requests, handled
by the system as its usage increases, depicting an in production
environment. To generate stress capacity load, we rely on
JMeter, deployed in a different machine, but running in the
same network as the SPATIAL deployment. JMeter is installed
in a Windows machine with an 11th Gen Intel(R) Core(TM)
i5-1135G7 @ 2.40GHz CPU and 16 GB RAM.

Experiment 1: We evaluate perturbations in the AI model
and derive the impact poisoning attacks have on resilience.
We also evaluate the analysis of SHAP and LIME values over
model predictions. In the configuration process for the JMeter
script, we create a test plan encompassing an ultimate thread
group with a thread count set to 100 to simulate concurrent
requests to the micro-services. To examine the performance of
specific micro-services, an HTTP request sampler was added,
specifying the server name, port, protocol, endpoint path.
Parameters or file uploads were configured as necessary. To
gauge response times, the Response Times Over Active threads
or the Summary Report listener was incorporated into the
test plan. These listeners provided detailed metrics, including
average response time, throughput, and error rate for each
micro-service.

Experiment 2: We next evaluate the performance of the
system when handling heavier load induced by image inputs.
In this case, when analyzing image-based samples, the analysis
of methods, such as LIME, SHAP and Occlussion sensitivity
increases. As a result, we analyze to what extent these services
impact the overall response time. Notice that configuration
presented in experiment 1 cannot be handled by these services
when considering input images. As a result, with this setup,
a different capacity load is generated. We select incremental
concurrent load from 5 to 25 requests. Requests are also set
to be sent to services with a ramp-up period of 1s in parallel.

VII. RESULTS

Monitoring results on use case 1: Prior to poisoning the
models, reference baselines of the models is established to
measure performance deviation. Our performance evaluation
indices, LR (73%), DNN (97%), RF (97%), DT (90%), and
MLP (97%), respectively. Moreover, our results indicate that
DNN, MLP and RF models are best suited for fall detection
when compared to others. It is also possible to observe from
the results that DNN, MLP, and RF are able to attain 97%
accuracy and precision in performing the binary classification
task but at slightly different recall rates, respectively. After
this, models are poisoned, Figure 6 shows the results. From
the figure, it is possible to observe that label flipping has a
significant impact on model performance, with most metrics
decreasing as the attack rate increased (Figure 6(a)-i shows
accuracy, 6(a)-ii shows precision and 6(a)-iii shows recall).
In line with this result, the average performance of all the
models in accurately detecting falls before the data poisoning
attack was 90%. However, this average performance starts

Fig. 6: Use case 1 results (Medical application); Effect of label
flipping based on (i) accuracy, (ii) precision, (iii) recall; and
(iv) poisoning quantification using SHAP dissimilarity

to decline down to 75% as the data is gradually poisoned
from 1% to 50%. We calculated a metric based on SHAP
values which addresses the similarity of SHAP explanations of
similar data points. Figure 6(a)-iv illustrates the results of this
metric relative to the poisoning rate of the model. As can be
seen from this figure, the metric is higher at higher poisoning
rates, suggesting its capability of indicating poisoning of the
data set. This result alone provides insights for detecting
possible attacks on the model, requiring to monitor further
the model to apply corrective actions, e.g., Label sanitization
methods. Besides this, analysis of the result indicated that
the high-performing models (DNN, MLP, and RF) showed
relatively small performance losses at low attack rates (1%
and 5%), indicating some degree of robustness in maintaining
their capabilities to detect fall up to 5% poisoning rate, but
this is lost when the intensity exceeded 5%. Interestingly, the
random forest (RF) model showed better resilience against
the poisoning attack. Even at a 30% poisoning rate, the RF
model maintained an accuracy of 93%, close to its baseline
performance. Only at a poisoning rate of 40% did a significant
performance decrease occur, rendering the model unusable.
The RF recall and precision metrics were also relatively stable,
up to a 30% poisoning rate, further highlighting its robustness.
Monitoring results on use case 2: A reference baseline about
the performance of our models for user activity classification
is estimated to be NN (96%), LightGBM (94%) and XGBoost
(94%). After this, the (FGSM) evasion attack is performed
over the models, degrading their performance to NN (71%),
LightGBM (72%) and XGBoost (54%). We then use SHAP to
observe differences as models get hampered. Figure 7(a) and
(b) shows the results of SHAP when applied to NN, before
and after the evasion attack. From the result, it is possible to
observe that shapley values for web activities have decreased
around 16% for the udp protocol, causing the feature to drop
to the second place in ranking, while the importance of the
tcp protocol has almost doubled. This means that attacks on
the model can easily induce misclassification of user activities.
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At the same time, it is possible to detect these changes with
SHAP, however, the detection alone is insufficient to identify
concrete causes nor overall performance degradation of the
model, requiring additional information to be computed. Thus,
complexity and impact metrics are calculated from the models
using the methods presented in [64].

For each model, impact and complexity are estimated, NN
(Impact 29%, Complexity 37.86 µs), LightGBM (Impact 28%,
Complexity 37.86 µs) and XGBoost (Impact 45%, Complexity
37.86 µs). The results of the metrics indicate that XGBoost is
(17%) more vulnerable for the FGSM attack when compared
with the other two models. Moreover, since the FGSM gener-
ation was done with only the NN model, the complexity of the
attack was always constant at around 37 µs. In parallel to this,
in the case of poisoning attacks, SHAP can provide valuable
insights to detect changes in performance. For instance, after
label flipping and GAN-based poisoning are performed in
our models, it is possible to observe shapley values for
web activities have also changed significantly (tcp protocol
increases by 10% while udp protocol decreased to half of it’s
initial importance). To reinforce this detection further, we then
calculate impact and complexity metrics to analyze further
the impact of poisoning in our NN model. Figure 7 shows
the results estimated by impact and complexity metrics. From
the results, we can observe how metrics changed based on
the level of poisoning applied. We can observe that there is
an increasing relative trend between increased poisoning and
drift in impact and complexity.

Capacity-load results: Experiment 1 results are shown in
Figure 8(b) and Figure 8(c). The figures show capacity results
when handling concurrent requests by the impact resilience
micro-service and LIME/SHAP micro-services, respectively.
From the results, it is possible to observe a lower response
time for the evasion impact metric. Even with nearly 100
parallel requests, the numerical metric converges to an average
of around 1600ms across the ramp-up time. Similarly, SHAP’s
and LIME’s APIs under 100 requests are also presented in Fig-
ure 8(b). From this result, it possible to observe that SHAP’s
and LIME’s explanations require an average processing times
of 228.6 and 243.4 milliseconds, respectively. In both cases,
the response times depict latencies that are tolerable by end-
users and also can be used for continious monitoring. Notice
however that XAI methods can also be used to analyze images,
such that it is possible to obtain a representation regarding
which parts of the images the model used to learn. Thus,
we also evaluate LIME to handle resource intensive workload
(Experiment 2). Figure 8(d) shows the results of experiment 2.
From the figure, it is possible to observe that LIME methods
require considerable amount for computation. As a result,
when facing resource intensive processing, XAI are not able
to handle concurrent workload below 1s. In fact, we can
observe a steady increase in response time that depends on
the number of concurrent users accessing the service. This has
direct implications in the types of models/datasets that can be

analyzed with available XAI methods.

VIII. CHALLENGES OUTLOOK AND EXPERIENCES

While all regulatory frameworks agree on the strategic im-
portance of AI trustworthiness, the development of trustworthy
AI is an on-going process. While principles, tools, guidelines
and methods are available to aid in this matter, there is still
a gap between regulations and technical requirements. Thus,
there are several challenges that remain open for augment-
ing modern applications with AI trustworthiness capabilities.
Based on our experiences, we next highlight technical chal-
lenges that require further attention for complying robustly
with the trustworthy AI requirements.

AI trust score and AI sensors: AI trustworthiness involves
the characterization of several properties [12], including tech-
nical (e.g., validity, accuracy, reliability, robustness, resilience,
or security) as well as the socio-technical characteristics (ex-
plainability, interpretability, managing bias, privacy enhanced,
safety). Each property can be obtained through specialized
metrics, based on the nature of the area of application at hand.
For instance, in a loan application, fairness can be applied to
identify data biases in individual or specific groups (equitable),
whereas fairness can be also calculated to estimate whether the
decision process was fair to all the involved loaners (procedu-
ral). Similarly, in a object detection application, explainability
can be generated using occlusion sensitivity to identify the
most relevant area on an image contributing with the object de-
tection. In turn, LIME divides the image into multiple section
areas and ranks each accordingly to measure their contribution
to the overall model prediction. Encapsulating all different
properties into AI sensors is a key challenge to foster the easy
integration of trustworthiness in current software development
practices. AI sensors can provide general procedures and
guidelines to instrument applications with trustworthy mech-
anisms. Another important challenge is to produce a coherent
and comparable trust score from measurements obtained by
AI sensors, such that trustworthiness can be understood as
an overall feature of applications. While the development
of a trust score has been explored by previous work [65],
these solutions simplify the extraction of trustworthiness by
considering all homogeneous properties and not considering
its different inherent characteristics.

Human oversight and AI tuning: As part of the EU AI Act,
humans play a critical role in overseeing the behavior of AI.
AI dashboards can provide critical information about the AI
inference capabilities to stakeholders. For example, level of
fairness, robustness and resilience to mention some. Through
the dashboard inspection, individuals relying on AI models
can be aware about the limitations and scope of the decision
support provided by AI models. Ultimately, dashboards can
support humans to decide whether or not to use AI for aiding
with a particular task. Moreover, as the trustworthy properties
are considered trade-offs that can be adjusted depending on the
requirements of different stakeholders using the applications,
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Fig. 7: Use case 2 results (Network activity monitoring); SHAP analysis for evasion attacks; a) Benign (NN) model, b) Attacked
(NN) model; Poisoning attacks quantified by Impact and complexity metrics; c) Impact vs Poison%, d) Complexity vs Poison%.

(a) System deployment (b) (c) (d)

Fig. 8: Capacity-load experiments, a) System deployment; b) Load in impact metric; c) Load in LIME and SHAP; and c) Load
in LIME when handling requests requiring heavy computations.

it then becomes critical to tune these properties over time.
Existing methods can be used to perform hyperparametrization
on the way an AI algorithm learns and thus adjusting its
resulting decision process [16]. As the tuning of models is
an iterative process that involves a reinforced human-in-the-
loop feedback rather than a single shot, a key challenge is to
integrate such process in the construction of AI models. To
obtain significant feedback from stakeholders, it is important
that explanations describing the overall trustworthiness of a
model are tied to specific domain terminology of stakeholders,
e.g., tailored explanations for end users and software devel-
opers. An extra layer of transformation is thus required to
map understandable insights of a model to a specific target
audience. A potential solution is to rely on large language
models (ChatGPT-like preamble) or a meta-model that change
dynamically the explanations to a specific domain audience.
Besides this, another key challenge is to determine what
changes can be applied on the model by individuals. For
instance, removing personal data from the training dataset or
changing the machine learning algorithm. This is a critical
challenge to overcome as AI models have to support individual
needs of users, while preserving general values from groups
and society. Otherwise, conflicts on AI usage may arise,
halting everyday activities and human processes. Another
remaining challenge is to develop AI dashboards that motivate
users to be involved in the AI tuning process [66].

Adversarial threats over AI algorithms and data: As
demonstrated in our experiments, the decision process of AI

models can be changed abruptly. Induced changes (aka attacks)
are of particular interest as proactive counter measurements
have to be taken rapidly by human operators, otherwise, com-
promised applications can become source of harm for citizens
and urban infrastructure, e.g., attacks on drone delivery [23].
Other examples of this include adversarial generative patches
that confuse AI models and poisoned data that can make
devices drain energy at faster rates, e.g., sponge attacks in
IoT devices. As there is a large plethora of attacks that can
hamper AI functionality, a key challenge is to quantify the
level of the AI resilience to attacks by applying multiple
detection methods and suggesting those counter measurements
to human operators. Naturally, the level of resilience depends
on the available methods that attest whether model/data has
been compromised. Besides this, while some post defacto
verification methods could be applied to detect attacks over
AI functionality, other methods require re-playing the overall
training process, involving a more time consuming analysis.

Privacy-preserving data and computations: Data is a key
element in the machine and deep learning pipelines, building
AI models. Regulatory guidelines in the use of data, e.g.,
EU GDPR, forbid the inclusion of private and sensitive data
that can be used to identify specific individuals. Thus, data
is required to be obfuscated before it can be used within
the AI pipelines. Existing solutions to aid in this matter in-
clude differential privacy and data anonymity techniques [67].
However, data removal degrades the decision making process
performance, requiring new methods to obfuscate sensitive
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information without reducing model performance levels, e.g.,
sparse coding and compressive sensing compensation models.
At the same time, since direct access to model and data are
required to estimate different trustworthy properties, a key
challenge is to guarantee that the analysis of these properties
is conducted in a secure manner to avoid potential induced
attacks over AI. Existing methods based on multi-party com-
putation, homomorphic encryption and TEEs (Trusted Execu-
tion Environments) could be adopted in this matter. Integrating
these mechanisms within the architectures, however, require
managing extra computation overhead in the analysis as well
as to solve several technological limitations to achieve scalable
solutions. For instance, while TEEs are currently available
to aid in secure computation, they have several limitations
regarding the specific characteristics in software runtime exe-
cution, e.g., programming language, dependencies, and storage
to mention the most common.

IX. IMPLICATIONS

Room for improvement: Our work presents SPATIAL, a
proof-of-concept system that can be used to augment mod-
ern system architectures with capabilities for analyzing the
trustworthiness of AI functionality. Currently, our results focus
on analyzing the performance of SPATIAL when quantifying
and monitoring trustworthy properties over time. Our current
back-end functionality just support the analysis of certain
trustworthy properties. This is because the analysis of trust-
worthiness is application dependent, requiring specific metrics
based on the type of application that is analyzed [59], [65].
As a result, our SPATIAL prototype is equipped only with the
metrics required to analyze our use case applications. We are
interesting in analyzing other type of applications, which inci-
dentally will also introduce new trustworthy metrics running
as micro-services is our solution. Besides this, currently our
front-end provides a basic AI dashboard to visualize the results
quantified through SPATIAL. Future implementations of the
AI dashboard will allow stakeholders to perform active tuning
over AI models [14]. We are also interested on evaluating the
perception of different stakeholders when tuning AI models
through the dashboard provided by SPATIAL. Furthermore,
we aim to integrate SPATIAL with Large Language Models
(LLMs) to enable customizable explanations based on the type
of stakeholder interacting through the AI dashboard.

Legal vs technical trustworthiness: Our work presents the
design and development experiences from augmenting mod-
ern applications with capabilities to gauge and monitor AI
trustworthiness. The selected metrics of our prototype are
considered from a technical point of view based on the most
common methods currently adopted to analyze AI black-box
characteristics. We are interested on replacing our metrics with
others that align better with regulatory trustworthiness. This
however requires to conduct a legal analysis that considers all
metrics available in the state-of-the-art to identify the most
suitable. This analysis out of the scope of this work.

Cost and complexity: SPATIAL not just augments modern
applications with new regulatory functionality, but it also aug-
ments the amount of components and enlarges the underlying
deployment of the overall system running the applications.
This increases the complexity of developing and maintaining
the applications. Moreover, the cost of the deployment also
increases as it is not possible to piggyback already existing
infrastructure due to increased load required for computation.
Indeed, as shown in our experiments, methods such as XAI
can induce heavy load in the overall system, requiring instead
to be deployed in their own dedicated machine.

Adaptive trustworthiness: In our work, we present the en-
capsulation of trustworthy properties into AI sensors. More
advanced AI sensors are envisioned to provide adaptive trust-
worthiness [14]. As these properties can be considered trade-
offs [59], it is possible to establish interactions and negoti-
ations between AI sensors to obtain a balance level of trust
(similar to AI-Chatbot negotiations). Achieving this level of
automation however requires to develop further autonomy in
AI sensors.

Other technological enablers for trustworthy AI: While
blockchain-based solutions have been proposed to achieve
trustworthy AI [68], it’s important to note that while
blockchain can enhance security and provide better track-
ing of operations, it does not address all the characteristics
necessary for developing trustworthy software. Additionally,
several technological enablers are currently available to aid in
realizing the vision of trustworthy AI. However, the choice of
a specific technology ultimately depends on factors such as
its rate of development, level of maturity, and its ability to
comply with regulatory requirements.

Development trustworthiness practices: Current practices
to analyze trustworthiness of AI inference capabilities rely
on post-defacto verification of the models. The use of AI
sensors can be foster the embedding of mechanisms to gauge
and monitor AI trustworthy properties from early development
and design phases (Verifying vs Embedding). This however
requires /standard procedures on how to create AI sensors
(like APIs) that encapsulate each trustworthiness property.
Moreover, guidelines and best practices on how to instrument
modern applications with AI sensors are also required to
facilitate their adoption in software development practices.

Towards standardization: While the development of a trust
score for applications have been investigated [65], it is difficult
to adopt it in practice. Trustworthy properties can be consid-
ered as trade-offs, and analyzing the whole trustworthiness of
an applications is not an agnostic process, instead it depends
on the characteristics of the application at hand. The existence
of this score as a standard would be useful to developers and
software architectures, such that it is possible to be aware
of the expected trustworthiness required before deploying an
application in a production environment. Our work provides
insights on the effort required to augment modern applications
with capabilities to gauge and monitor AI trustworthiness.
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X. SUMMARY AND CONCLUSIONS

In this paper, we presented the SPATIAL architecture, a
proof-of-concept system that augments modern applications
with capabilities to analyze trustworthy aspects of AI models.
SPATIAL diagnoses AI functionality by combining different
methods that characterize and quantify the inference process of
AI. Through rigorous benchmarks and analyses that consider
two real-world industrial applications, our results suggests that
SPATIAL can provide relevant insights about AI models, but
this analysis is time-consuming and very resource intensive,
making it unsuitable for critical applications. We also highlight
a roadmap of requirements and challenges that need to be
overcome, such that current issues that were found can be
addressed. Our work paves the way towards augmenting
modern applications with trustworthy AI mechanisms.
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