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ABSTRACT 
Users are exposed to a large volume of harmful content that appears 
daily on various social network platforms. One solution to users’ 
protection is developing online moderation tools using Machine 
Learning (ML) techniques for automatic detection or content flter-
ing. On the other hand, the processing of user data requires compli-
ance with privacy policies. In this paper, we propose a framework 
for developing content moderation tools in a privacy-preserving 
manner where sensitive information stays on the users’ device. For 
this purpose, we apply Diferentially Private Federated Learning 
(DP–FL), where the training of ML models is performed locally 
on the users’ devices, and only the model updates are shared with 
a central entity. To demonstrate the utility of our approach, we 
simulate harmful text classifcation on Twitter data in a distributed 
FL fashion– but the overall concept can be generalized to other 
types of misbehavior, data, and platforms. We show that the perfor-
mance of the proposed FL framework can be close to the centralized 
approach – for both the DP–FL and non–DP FL. Moreover, it has 
a high performance even if a small number of clients (each with 
a small number of tweets) are available for the FL training. When 
reducing the number of clients (from ffty to ten) or the tweets 
per client (from 1K to 100), the classifer can still achieve ∼81% 
AUC. Furthermore, we extend the evaluation to four other Twit-
ter datasets that capture diferent types of user misbehavior and 
still obtain a promising performance (61% – 80% AUC). Finally, we 
explore the overhead on the users’ devices during the FL training 
phase and show that the local training does not introduce excessive 
CPU utilization and memory consumption overhead. 

CCS CONCEPTS 
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1 INTRODUCTION 
Users of all ages are exposed to a large volume of information 
from various Online Social Networks (OSNs). The content is often 
questionable or even harmful regardless of age, expressing abusive 
behavior, extreme sarcasm, cyberbullying, racism, and ofensive 
or hate speech. Although mainstream OSN platforms claim they 
do their best to protect the users, harmful content is still present. 
The platforms’ business model often dictates the applied rules and 
policies and, consequently, to what extent they monitor and control 
the content. Misbehavior can be proftable. Allowing users to be 
impulsive increases their engagement with the platform and the 
freshness of the available content, even if it is borderline harmful. 
Moreover, some platforms perform minimum content moderation 
to attract a specifc audience (see 4chan). 

Researchers and developers have made a great efort to develop 
automated content moderation tools mainly based on Machine 
Learning (ML) algorithms [5, 7, 11, 25, 31]. These state-of-the-art 
methods collect data, annotate them, and then train and test the 
models in a centralized approach. It is challenging to collect, pro-
cess, and annotate large datasets suitable for deep learning training. 
The data come from millions of users, are multi-modal (text, video, 
and images or a combination of those), and change dynamically. 
The users’ online data can be private and sensitive, so the EU has 
imposed strict policies to protect users’ privacy (GDPR and accom-
panying national legislation). 

In this paper, we propose a privacy–preserving Federated Learn-
ing (FL) framework for detecting harmful online content. We en-
vision a system that gives power to the users to (i) control the 
moderation done in the system in a personalized fashion and (ii) 
protect their privacy. Specifcally: (a) The platform may not be 
trusted to moderate inappropriate content. Some mainstream plat-
forms, such as Twitter, provide some content moderation, whereas 
other more fringe, do not provide any moderation. (b) The way 
the platform does online moderation using its own labels – based 
on its defnition of misbehavior – may not satisfy the users’ needs. 
Therefore, we expect the users to label content they consider as 
“harmful”. At the same time, they might not want to share these 
labels since they will reveal the type of content they read or receive. 
We readily admit the personalization inherent in the FL scheme 
possibly exacerbates the echo chambers efect in online social net-
work platforms. On the other hand, the side beneft of personalized 
moderation is that it is tailored to the sensitivity of the users, and 
this makes moderation more acceptable and adoptable by the users. 
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(c) Even if some OSN data are publicly available, not all may be 
truly public. These data can be private posts, messages, or results 
of recommendation algorithms. Often the true users’ identities can 
be actually hidden – they do not match their account usernames. 

Our framework is on-purpose generic as it can be used for sev-
eral types of content, such as text, audio, video, or images. However, 
in this paper, we focus on “harmful” text classifcation on Twitter – 
as a proof of concept demonstrating the utility of our approach. Al-
though the FL paradigm complies, in theory, with the GDPR policies 
(since the raw data never leave the users’ devices), privacy leakages 
can still occur. Prior studies have shown that FL is vulnerable to 
privacy attacks [17]. A proposed solution is Central Diferential 
Privacy (CDP) – an adaptation of Diferential Privacy (DP) [8, 10] 
for the FL framework. CDP provides privacy guarantees (at the 
user–level) against membership inference attacks [3, 13, 19]. This 
has been empirically verifed in [21]. 

To answer our central research question, we bootstrap the ML 
text classifer presented in [12], and then incorporate the CDP model 
proposed in [3]. We evaluate it when trained in an FL fashion (with 
and without DP) on diferent text datasets from fve studies of 
Twitter user misbehavior by generalizing the classifcation problem 
as detecting harmful or normal behavior. We compare the classifer’s 
FL performance with the centralized version with access to all data. 
The implementation and the experiments serve as proof of concept, 
demonstrating that the proposed framework is feasible. Finally, we 
assess a typical user device’s overhead while training the classifer 
locally to examine whether the FL approach slows down the device. 
This work makes the following contributions: 

• We are the frst to propose a framework where we apply 
privacy–preserving FL in the context of harmful content 
detection applicable in diferent OSN platforms. For this pur-
pose, we instantiate this framework for the case of Twitter 
and provide a simulation process that utilizes existing Twit-
ter datasets to test the performance of an FL framework. 

• We show that the performance of the proposed FL frame-
work can be close to the centralized approach – for both the 
DP and non–DP FL versions. The FL classifcation perfor-
mance on a total of 50K tweets has only a 10% diference in 
AUC compared to the centralized approach. For instance, by 
training the classifer (without DP) for only 20 FL rounds on 
50 clients, we achieve ∼83% AUC. Moreover, when reducing 
the number of clients (from 50 to 10) or the tweets per client 
(from 1K to 100), the classifer can still achieve ∼81% AUC. 
In other words, we can achieve high performance even if 
few clients (with few data points locally) are available. 

• Our further evaluation of the classifer on four smaller Twit-
ter datasets of other types of misbehavior shows promising 
performance, ranging from 61% to 80% AUC. This means 
that the classifer can generalize and detect diferent types 
of misbehavior. 

• Finally, we show that the FL training process does not intro-
duce excessive system overhead – in terms of CPU utilization 
and memory consumption - on the users’ devices. 

• The results, together with the experimental–evaluation code 
is publicly available1. 

1https://github.com/pleonidou01/FL-Online-content-moderation.git 

2 RELATED WORK 

2.1 Automatic Detection and Filtering of 
Harmful Content 

Harmful content can be found in a text, visual (image, video), audio 
(songs, recordings) format, or a combination of those. We defne 
any violent, abusive, sexual, disrespectful, hateful, illegal content, 
or any content that may harm the user as “harmful”. One solution 
to protect users from such content is adopting automatic detection 
or fltering using ML techniques in online moderation tools. 

Several studies have investigated misbehavior on Twitter. [5] 
proposes a deep-learning architecture to classify various types of 
abusive behavior (bullying and aggression) on Twitter. Then, they 
applied the methodology to a large dataset of 1.6M tweets. [12] 
presents a unifed deep learning classifer to detect abusive texts 
on Twitter. The authors tested the unifed classifer with several 
abusive Twitter datasets and achieved high performance. One of 
the evaluation datasets was the one presented in [11] with 100K 
tweets labeled as “Abusive”, “Hate”, “Normal”, and “Spam” using 
crowdsourcing annotation techniques. The unifed classifer con-
sists of two diferent classifers whose results are combined to give 
the fnal result. One classifer is a text classifcation model, and the 
other treats domain-specifc metadata (i.e., user’s friend network, 
number of retweets, etc.). In this work, we adopt a simplifed ver-
sion of the proposed classifer by replicating the model for the text 
classifcation task – since we use no meta-data as training input 
but only text stored on a user’s device. 

Yenala et al. proposed a deep learning architecture for detect-
ing inappropriate language in query completion suggestions in 
search engines and users’ conversations in messengers [34]. They 
prove that the suggested architecture outperforms pattern-based 
and hand-crafted feature-based architectures. The authors in [2] 
collected a dataset of ∼4� records to assess the exposure of kids 
and adolescents to inappropriate comments on YouTube. They built 
a model consisting of fve high-accuracy classifers to classify the 
comments obtained into fve age-inappropriate classes (Toxic, Ob-
scene, Insult, Threat, Identity hate). The model acts as a binary 
classifer that classifes input as inappropriate if it falls into at least 
one of the fve classes. Papadamou et al. built a deep learning classi-
fer to detect videos with inappropriate content that targets toddlers 
on YouTube with high accuracy (84.3%) [22]. The authors in [27] 
created a dataset with three diferent categories of videos: “Original 
Videos”, “Explicit Fake Videos”, and “Violent Fake Videos”. They 
trained a deep learning classifer to detect videos with content 
inappropriate for kids with an accuracy of more than 90%. Addi-
tionally, Papadamou et al. collected ∼7� YouTube videos related to 
pseudoscientifc content and used the resulting dataset to train a 
deep learning classifer to detect misinformation videos on YouTube 
and achieved an accuracy of 79% [23]. These studies used video 
processing techniques to extract information from the videos but 
also collected other related information (e.g., video title, comments, 
caption, etc.). 

2.2 Federated Learning and Diferential Privacy 
McMahan et al. introduced Federated Learning (FL) as a distributed 
approach for training machine learning models without sharing an 
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Figure 1: Framework for privacy-preserving online content moderation using diferentially private Federated Learning – A1 to 
A5: The Client Device accesses an OSN application, it flters specifc user’s activity to store locally the data with a label defned 
after the aggregation of the automatically set and the user-provided label. B1 to B13: To initiate an FL learning task, the FL 
Task Confg module sends the task description (i.e., the baseline model, criteria for participation, etc.) to the Scheduler that 
communicates with the available FL clients. The Data properties Computing module computes the metadata of the user’s local 
dataset and device. The Client Selection Mechanism tells if the client will participate in the training or not based on the set of 
criteria defned in the task description. For the participating clients, the FL Task module executes the local training. By the end 
of the local training, the model’s update is sent to the Model Aggregator which aggregates all the clients’updates, and applies 
the aggregated update to the global model. For more details see Appendix A. 

individual’s data with a central unit [18]. The idea is to train local 
models on clients’ devices with their on-device available data and 
only share locally-computed updates with the central server. The 
server will collect the locally computed updates from the clients 
and aggregate them to update the global model. A client device in 
an FL setting can scale from a mobile device, a laptop, a desktop, or 
an IoT device to a company’s data server. 

Since the FL appearance, many studies have described FL appli-
cations in real settings. Gboard [33] uses FL for training, evaluating, 
and deploying a model for giving optimized web, GIFs, and Stickers 
query suggestions. Gboard also used FL to train a model for next-
word prediction[14]. Next word prediction is used on the keyboard 
to suggest words for the user to type next based on the text al-
ready typed. In [6], the authors applied FL to train a neural network 
to learn out-of-vocabulary (OOV) words to minimize annoying 
users by auto-correcting the OOV words considering them as mis-
spellings. FL is also used to train an image-classifcation model to 
decide whether a patient has the COVID-19 virus or not using x-
ray images from several hospitals to preserve the patients’ privacy 
in [32]. The performance obtained when training the models using 
FL was slightly worse than training using a centralized approach. 

Several studies have shown that maintaining the raw data locally 
does not sufciently protect the users’ privacy in the FL frame-
work [17]. An adversary with access to the FL-trained model’s 
parameters can reveal private user information. The adversary can 
be (i) one of the other clients – or even the central aggregator – 

during the training phase and (ii) an external attacker who has 
access to the fnal trained model. 

One solution to providing privacy guarantees to ML model’s 
training tasks is the concept of Diferential Privacy (DP). The DP 
was frst introduced by [8–10] as a privacy–preserving technique 
for learning tasks on statistical databases. It can limit privacy leak-
ages regarding the data records used for the learning phase. This 
means that an adversary, who has access to the model’s parameters, 
cannot decide whether a data record is part of the model’s training 
dataset. These privacy guarantees –at the record level– are achieved 
by adding noise to the learning process to limit the data records’ 
infuence on the algorithm’s fnal output. 

In the FL settings, a user’s dataset may contain sensitive informa-
tion. Therefore, it is important to provide privacy guarantees at the 
user level. This can be achieved by adapting the defnition of DP 
with the notion of user-adjacent datasets, instead of record-adjacent 
datasets as proposed in [13, 19]. An FL training task with user-level 
DP guarantees ensures that an adversary cannot tell whether an 
individual’s data is part of the total data used for training the model, 
i.e., limit a user dataset’s infuence on the output of the training 
task. 

Two main variations of DP methodology have been incorporated 
into the FL framework toward privacy–preserving FL: the Cen-
tral Diferential Privacy (CDP) and the Local Diferential Privacy 
(LDP) [21]; other hybrid approaches have also lately proposed [4]. 
In CDP, the agents send the model updates to the central server, 
which will perform the DP noise addition [3]. This implies that the 
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central server is a trusted system entity; it will not perform mali-
cious inferences on the clients’ data. In LDP, the DP noise addition 
is performed locally by the clients – before sending the updates to 
the central server [28]. In this context, no trusted entity is required. 
Our contribution: In this paper, we propose a methodology of
content moderation in a privacy-preserving fashion (using diferen-
tially private FL). We evaluate our approach on fve Twitter datasets 
(with harmful content) using a variation of the text classifer pro-
posed in [12]. The overall framework is easily applicable in other 
social media platforms (i.e., YouTube, Reddit, 4chan) and for difer-
ent types of misbehavior. This can be achieved by incorporating 
ML algorithms from existing works [2, 5, 12, 22, 23, 27, 34]. 

3 CONCEPTUAL FRAMEWORK 
To further explain the idea of applying the diferentially private 
FL paradigm to online moderation tools, we present our proposed 
framework in Figure 1. Regarding the threat model we assume
that the only trusted entity is the central aggregator. Under the 
Central Diferential Private protocol [3] – that we use in this study 
– the central aggregator is responsible for adding the noise before
aggregating the model updates that receives from the clients in an
FL round to achieve user-level DP guarantees. This implies that the
aggregator is a trusted entity, but the other participants may not be.
Hence, possible adversaries are either some clients or an external
entity that tries to reveal private user’s information by performing
membership inference attacks either during the training phase or
through the fnal global model. In Appendix A there is a detailed
description of the system components and the data-fow of our
proposed framework.

4 FL SIMULATION PIPELINE 

4.1 General Assumptions 
Since we do not have access to the raw Twitter data from millions of 
users, the true distribution of harmful tweets to users is unknown. 
Thus, we have to simulate the users’ browsing history somehow. For 
this purpose, we construct artifcial clients by splitting a centralized 
Twitter dataset containing harmful tweets into a number of disjoint 
sets. Moreover, we study a homogeneous population of clients 
(with either IID or non–IID data), namely, all clients have the same 
number of total tweets with the same ratio harmful to normal (i.e., 
that same class ratio). Additionally, we assume that clients selected 
for FL training remain available during the whole FL process. 

4.2 FL Training Simulation 
We used TensorFlow Federated (TFF), an open–source framework 
for computations on decentralized data2, to simulate the FL training
process for our experiments. The FL algorithm we used for aggre-
gating the client’s model updates is the Federated Averaging [18]. 
TFF provides the implementation3 of Central Diferential Privacy
that we use in our simulation to adopt a variation of the Federated 
Averaging algorithm that achieves user-level DP guarantees. Fig-
ure 2 presents our pipeline to simulate the FL training. We describe 
next the FL simulation pipeline’s steps and main components. 

2https://www.tensorfow.org/federated
3https://github.com/tensorfow/privacy
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Figure 2: Federated Learning Simulation Pipeline 

4.3 Text classifer 
We use a simplifed version of the unifed classifcation model de-
scribed in [12], where only the text-classifcation path is enabled. 
We used this classifer since it showed a high performance (∼80% 
to ∼93% AUC) across many harmful tweet datasets. We used this 
simplifed version to give a lighter computational task to the user’s 
device, and to use features readily available from the tweets (i.e., 
not relying on ofine-computed features based on social network 
properties of users as in [12]). The input of the classifer is the 
tweets’ text. We used TensorFlow Keras for the implementation of 
the classifer. The sequential ML pipeline starts with an Embedding 
layer, we use the GloVe embedding [24] with the highest dimension 
(200). A Recurrent Neural Network Layer follows with gated recur-
rent unit (GRU), 128 units, and a dropout of p=0.5. The output layer 
is a classifcation dense layer, with one neuron with the sigmoid 
activation function. TFF framework ofers a function that wraps a 
Keras model4 for its use in the federated training simulation.

4.4 Creating artifcial clients for FL 
We need a decentralized dataset with a sufcient number of harmful 
and normal texts to simulate the FL training of the text classifer. 
Since there is no such dataset fulflling our criteria, we convert 
existing centralized datasets from past studies into artifcial feder-
ated datasets. For this purpose, given a dataset with two classes of 
tweets (harmful and normal) and a sufcient number of harmful 
tweets, we do the following: 

First, we create a test set with a size the 10% of the dataset, with 
the condition that 8% of the tweets in the test set are harmful. In 
other words, the class ratio harmful:normal in the test set is 8:92. 
We apply this percentage (8%) based on the results of previous 
studies [5, 11] that showed that the percentage of harmful content 
on Twitter is around ∼8%. Then, we create the clients using the 
remaining 90% of the dataset. In our simulation, the clients are 
represented by sets of tweets (the clients’ local data). To evaluate 
the FL on diferent populations of clients, we control the class ratio 
in clients’ data, i.e., harmful:normal. In this way, we experiment 
on IID data (i.e., 50:50 ratio –balanced datasets) as well as emulate 
scenarios of non-IIDness (see Section 5.4.1) by having unbalanced 
datasets on FL clients devices (e.g., 10:90). We also set the total 
number of tweets per client. Finally, given the clients’ class ratio 
and clients’ data size, we compute the maximum number of clients 
we can construct. 
4https://www.tensorfow.org/federated/api_docs/python/tf/learning/from_keras_
model 

283

https://www.tensorflow.org/federated
https://github.com/tensorflow/privacy
https://www.tensorflow.org/federated/api_docs/python/tff/learning/from_keras_model
https://www.tensorflow.org/federated/api_docs/python/tff/learning/from_keras_model


Privacy–Preserving Online Content Moderation: A Federated Learning Use Case WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA 

5 EXPERIMENTAL EVALUATION 

5.1 Training Setup 
To address the research questions of this work, we conducted ex-
periments having the following training setups: 
FL training: For the FL training setup, we are following the method 
described in Section 4.4 – given the parameters (clients’ data size, 
percentage of harmful tweets) – to construct the federated dataset. 
Then, we set the FL rounds and the number of participating clients 
in each round. Finally, we use the TFF framework to simulate the 
FL training. We refer to Local training as the training of the model 
on the client’s device, using the client’s whole dataset as the local 
training set. 
Centralized training: This is the traditional ML training setup 
where the text classifer is trained with a single train set: this is 
the best-case scenario in which an OSN platform decides to apply 
content moderation. Regarding the train–test split, we construct 
the test set following the same procedure described in Section 4.4. 
That is, we initially split the dataset into a test set of 10% size with 
class ratio 8:92 (i.e., 8% harmful tweets). Then, from the remaining 
90% of the dataset, we construct the train set. We set a class ratio 
and a training–set size, and then we randomly select a subset of 
tweets that satisfes these properties. 

In both setups, we train the text classifer described in Section 4.3, 
and we compute the weighted classifcation metrics5. We set the 
parameters (epochs=7, batch size=10, Adams optimizer, learning 
rate=0.001) after experimenting with diferent values for tuning 
and applying early stopping. We run all the experiments on a server 
with Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz, and a 62GiB RAM 
except for the “overhead on client’s device” (Section 5.7) which we 
run on a Dell laptop device with Intel(R) Core(TM) i7-6500U CPU 
@ 2.50 GHz and 8GB RAM. 

5.2 Experimental questions 
We experiment with diferent values of the simulation parameters 
to explore how they afect the FL classifcation performance. These 
will also give us insights into the efective client selection and FL– 
training strategy for online content moderation. For this purpose, 
we investigate the following research questions: 
Q1: How many harmful tweets per client are needed for 
training–efcient FL? 
We address this question by controlling the size of the harmful class 
on each client’s dataset. We consider a homogeneous population 
with the same class ratio (harmful:normal). Generally, as studies 
showed, ∼8% of Twitter’s online content is harmful [5, 11]. That said, 
there are often controversial topics where the users’ behavior is 
highly polarized. For instance, COVID-19 vaccination, the Russian 
invasion of Ukraine, and several conspiracy theories. We expect 
that the browsing history of users interested in these topics will 
contain a higher number of harmful content. 
Q2: How many data points per client are needed? 
We address this question by controlling the client dataset size (i.e., 
the number of tweets on a client device). These tweets can represent 
either the user’s browsing history or tweets posted, retweeted, etc., 
by the user. 

5https://scikit-learn.org/ 

Q3: How many clients are needed? 
We address this question by controlling the number of FL clients 
(i.e., the number of clients available for the FL training. 

5.3 Datasets 
We select the following datasets for the experimental evaluation 
based on past studies of misbehavior on Twitter. For all datasets, in 
order to keep the FL task lighter for the user device, we binarize 
the classifcation problem by merging the several harmful classes 
into a single “harmful” class. We report below the original classes 
together with the fnal binary ones. 
Abusive Dataset [11] initially contains ∼100� tweets, labeled as 
“Abusive”, “Hate”, “Normal”, and “Spam”. We remove 14,030 tweets 
labeled as “Spam” – following the same methodology of [12] be-
cause there are more sophisticated techniques to handle spam pro-
fles. The resulting dataset consists of ∼86� tweets with 31.6% “Abu-
sive”, 5.8% “Hate”, and 62.6% “Normal” classes. Final binary classes: 
37.4% “Harmful” and 62.6% “Normal”. Sarcastic Dataset [25] con-
tains ∼61� tweets text classifed in two classes labeled as “Sarcas-
tic”(10.5%), and “None”(89.5%). Final binary classes: 10.5% “Harmful” 
and 89.5% “Normal”. Hateful Dataset [31] is a ∼16� tweets dataset. 
The tweets are categorized in “Racism”(12%), “Sexism”(20%), and 
“Normal”(68%) classes. Final binary classes: 32% “Harmful” and 
68% “Normal”. Ofensive Dataset [7] consists of ∼25� tweets 
categorized in three classes: “Hate”(6%), “Ofensive”(77%), and “Nor-
mal”(17%). Final binary classes: 83% “Harmful” and 17% “Normal”. 
Cyberbully Dataset [5] is a smaller dataset, with ∼6� tweets dis-
tinguished the “Bully”(8.5%), “Aggressive”(5.5%), and “Normal”(86%) 
classes. Final binary classes: 14% “Harmful” and 86% “Normal”. 

We preprocess the tweet texts by removing tags, URLs, num-
bers, punctuation characters, non-ASCII characters, etc. Moreover, 
we convert the text to lowercase, all the white spaces into a single 
one. We also remove English stop words and words that appear 
only once in the dataset (in the case of misspelled words). 

5.4 Non-DP FL online content moderation 
In the following experiments, we only evaluate the non–DP FL 
framework on the “Abusive” dataset. We chose this dataset because 
its size allowed experimentation with various FL simulation param-
eters. 
5.4.1 How many harmful tweets per client are needed? 

Here, we evaluate the FL classifcation when we vary the percent 
of “harmful” data in the clients’ datasets using the values 10%, 20%, 
30%, and 50%. For a given “%harmful” value, frst, we randomly 
select 50 clients and then we train the classifer in these clients 
for 20 FL rounds. Each client dataset consists of 1K data. Finally, 
we repeat the experiment fve times to acquire and report average 
scores and standard deviations. 

We also ran experiments with the Centralized training setup by 
varying the percent of “harmful” text in the training set. Then, we 
randomly select 50K tweets as the training set. We chose the 50K 
samples to compare the centralized classifcation performance with 
the previously mentioned FL training. We repeated the training 
three times for each “%harmful” value. 
Results Discussion: In Figure 3a, we present the average AUC 
values (test evaluation). We note that by increasing the examples 
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Figure 3: Evaluation of non-DP FL. (a) 50 clients, 1K data points per client; centralized –50K data points (b) 50 clients, balanced 
data per client (i.e., 50% harmful data); (c) 1K data points and balanced data per client 

of the “harmful” class by fve times (i.e., from 10% to 50%), we have 
∼9% increase in AUC (from 74% to 83%). These results show that 
balancing the data at the client side enabled the classifer to learn 
better both classes. In the case with a 10% harmful class size, we got 
a 95% score in precision, recall, and F1-score. Interestingly, in the 
case of 50% of harmful class size, we obtained precision (93%), recall 
(89%), F1–score (90%), which shows a decrease by ∼1%, 6%, and 4% 
respectively. The training dataset is imbalanced when only 10% of 
clients’ data is harmful. To understand this reduction in the model’s 
performance, we calculated the metrics only on the harmful class 
(i.e., the minority class), where we observed a ∼30% increase in 
recall but also a 40% negative impact on precision (with 10% of 
harmful class size we got a recall of 50%, and precision of 82%, with 
50% we got a 77%, and a 40% respectively). This means having a 
balanced dataset (with 50% of harmful class size) impacts the recall 
of the harmful class: i.e., it helps the model learn the harmful class 
better. This is what drives AUC up as well (in the weighted metrics 
as well as in the harmful–only case). 

In the centralized approach, the classifer shows high perfor-
mance, with only a 3% AUC diference between the 10% and 50% of 
harmful class size (90%, and 93% AUC, respectively). Finally, we get 
the best FL classifcation performance for balanced clients datasets 
(only ∼10% AUC diference with the centralized training). 
5.4.2 How many data points per client are needed? 

We assumed a homogeneous setting where all clients have the 
same dataset size. We evaluate the classifer performance for the 
client’s dataset size of 100, 500, and 1K. We run the FL training setup 
for twenty FL rounds by using the same randomly selected ffty 
clients. Each client has a balanced dataset 50:50. We repeat the FL 
training twenty times for the training with 100 and 500 data, and 
fve times for the 1K data. We present the average AUC metric in 
Figure 3b, with standard deviation as error bars. 
Results discussion: Increasing client dataset size by ten times 
(from 100 to 1K data points) can lead to the overall improvement of 
performance metrics by ∼3% in the AUC (from ∼81% to 83%). We 
observed also a ∼2% improvement in F1 score (from 88% to 90%), 
∼4% in accuracy (from 85% to 89%), recall (from 85% to 89%), and 
∼1% in precision (from 92% to 93%). The results show that increasing 
the data by fve times did not signifcantly improve the performance, 
but the model performs similarly with the 100 data points per client. 

Dataset Accuracy AUC F1 Score 
FLAbusive Centr. 

(0.85, 0.01) 
(0.92, 0.01) 

(0.81, 0.01) 
(0.92, <1e-3) 

(0.88, 0.01) 
(0.94, 0.01) 

FLSarcastic Centr. 
(0.73, 0.01) 
(0.76, 0.05) 

(0.66, 0.01) 
(0.75, 0.03) 

(0.79, 0.01) 
(0.83, 0.03) 

FLHateful Centr. 
(0.85, 0.02) 
(0.79, 0.02) 

(0.61, 0.01) 
(0.79, 0.01) 

(0.87, 0.01) 
(0.85, 0.01) 

FLOfensive Centr. 
(0.78, 0.02) 
(0.92, 0.01) 

(0.78, 0.01) 
(0.92, <1e-3) 

(0.83, 0.02) 
(0.94, 0.01) 

Cyberbully 
FL 
Centr. 

(0.94, <1e-3) 
(0.91, 0.03) 

(0.80, 0.01) 
(0.91, 0.02) 

(0.94, <1e-3) 
(0.93, 0.02) 

Table 1: Comparing FL and centralized approach. Average 
values (metric, std) over fve repetitions for fve diferent 
datasets. Each client has 100 data points and balanced data 
(i.e., 50% harmful class). 

Therefore, the experiment shows that the FL training can build an 
efective model (∼81% AUC) even with 100 data points per client. 
5.4.3 How many clients are needed for a good FL model? 

In this experiment, we run the FL training setup by varying the 
number of available clients, i.e., 10, 20, 30, 40, 50. Each client has a 
1K balanced dataset, and the FL training runs for twenty rounds 
with the same randomly selected clients. We run the FL training 
fve times for each value of the number of clients property, and we 
present the average test AUC in Figure 3c. 
Results Discussion: Increasing the number of clients participating 
in FL training by fve times (i.e., from 10 to 50) results in increasing 
the AUC by ∼2% (from 81% to 83%). Additionally, the accuracy, 
precision, recall, and f1-score, increase by ∼3%, 1%, 3%, and 2% 
respectively (from 86%, 92%, 86%, 88% to 89%, 93%, 89%, 90%). How-
ever, the interesting point is that even with ten users/clients, the 
system can build an efcient model. The model performs similarly 
well when varying the number of clients participating in the FL 
training. 

5.5 Generalization on other Twitter datasets 
Bootstrapping from the frst round of experiments, we test the 
FL training setup with four other datasets (see datasets details in 
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Figure 4: Comparing DP FL, non-DP FL, and centralized ML. Evaluation of (�, �)-DP FL for diferent � values and � = 10−3 . 
Experiments with 628 total clients; 100 data points per client; 50% harmful-class (balanced data). For the non-DP FL, we perform 
client selection (per FL round) with the same sampling values used for the DP FL. Centralized ML on a balanced dataset with 
50k data points. 

Section 5.3) to explore the generalization of the classifer’s utility. 
For each dataset, we run both the FL, and centralized training for 
fve repetitions each, and then compare the average performances. 

We run the FL training for 20 rounds, with the same clients partic-
ipating in each round. Each client had a 100 tweets balanced dataset. 
We set the data size to 100 due to the datasets’ size limitations and 
based on the previous experiments that 100 data points per client 
are sufcient for efective FL training. We randomly select 50 clients 
when the dataset size allowed us to do so. For small datasets, we 
build the maximum number of clients i.e., 37 and 16 clients for Of-
fensive and Cyberbully datasets, respectively. For the Centralized 
training, we used a training set size= #������� × 100 to ft the total 
data used in the FL training for the corresponding dataset. We did 
not perform hyperparameter tuning to train the model with the 
diferent datasets. We present the average evaluation metrics (test 
phase) for both setups in Table 1. 
Results Discussion: Across all fve datasets, we observe an AUC 
performance >61%. We get the best AUC while training with the 
Abusive dataset (81%), and with the smallest, Cyberbully dataset, 
we achieved an AUC of 80%. Training with the Ofensive, Sarcastic, 
and Hateful, we got an AUC performance of 78%, 66%, and 61%, 
respectively. Additionally, we can observe that the model’s perfor-
mance decreases by ∼9% (the minimum) to ∼18% (the maximum) 
when trained with the FL approach compared to the centralized one. 
However, the results show that the classifer can be generalized and 
achieve acceptable performance on diferent types of misbehavior, 
even without hyperparameter tuning. 

5.6 DP FL online content moderation 
We use the well-accepted concept of DP that has been shown in 
the literature, especially in the context of FL[3, 13, 19], as a way 
to provide user-level privacy guarantees against unwanted user’s 
private information leakage. 

We apply the concept of CDP to our FL training setup. Our imple-
mentation is based on the TensorFlow privacy library6. TensorFlow 

6https://github.com/tensorfow/privacy 

modifes the Federated Averaging algorithm to provide user-level 
DP guarantees, based on [3]. The variation of the algorithm imple-
ments the following: (i) each client clips the model’s updates before 
transmitting them to the server adaptively and privately. Clipping 
bounds the infuence of each client on the global model update in 
each FL round. (ii) the server, during the aggregation of the client’s 
updates, adds Gaussian noise to the sum of the updates before av-
eraging. TensorFlow privacy library provides an implementation 
that returns the necessary DP parameters (i.e., noise multiplier, 
sampling size) to achieve a specifc (�, �)-DP for the FL training 
setup. This implementation is based on the Moment Accountant 
method [1, 20, 30], which assesses the (�, �)-DP of the model. Lower 
� values indicates higher level of privacy i.e., we ofer higher privacy 
to the clients participating in the FL training. The noise multiplier 
property defnes the addition of noise to the sum of the model’s 
updates, and the sampling size refers to randomly selecting a subset 
of the available clients to participate in each round. The sampling 
adds to the privacy guarantee of the training since we do not set a 
fxed number of clients participating in every round. 

We run an experiment to assess the privacy guarantee and utility 
trade-of. For this experiment, we use the “Abusive” dataset, split 
and distribute the data to clients as described in Section 4.4. We 
run the FL training setup for 100 rounds, and each client has a 100-
balanced dataset. These FL parameters give the maximum available 
number of clients, i.e, 628 clients. We use Poisson sampling, which 
gives a diferent number of clients to participate in each round, 
with a mean set to sampling size value. 

We evaluate the DP-classifer with diferent � values, while set-
ting � = 1�−3. We defne � = 1/|total samples| using the suggested 
formula in [1, 19]. For each � value, we get the DP-parameters – 
necessary for achieving the given (�, �)-DP – using the TensorFlow 
privacy library mentioned before. So for � value of 1.5, 3, 5, and 
10, we get the following DP-parameters, i.e., (sampling size, noise 
multiplier) – (23, 1.15), (25, 0.875), (66, 1.1), and (37, 0.612) respec-
tively. We repeated the simulations ten times for � = 1.5 and � = 3, 
and fve times for � = 5 and � = 10. We present the average AUC 
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achieved in Figure 4a (the green line shows the mean, and the red 
line the median AUC of all the repetitions). 

To investigate the trade-of between utility and privacy, we run 
a set of experiments with the FL training setup using the same 
parameters mentioned before (i.e., clients dataset, sampling size, 
number of FL rounds) but without adding DP. In Figure 4a, we 
present the average AUC values (over fve repetitions) for the non-
DP model. We also depict in the same fgure the AUC achieved by 
the model trained with the centralized approach with 50K data as 
the baseline AUC. We evaluated the model’s performance every 
ten rounds of the FL training for both the non-DP model and DP 
model for � = 3 (medium) and � = 5 (medium-high). We present the 
average AUC values in Figure 4b, and 4c respectively. 
Results Discussion: Figure 4a shows that adding DP with a strict 
privacy guarantee (i.e., � = 1.5) causes a 20% decrease in AUC when 
compared to the non-DP model performance. Experimenting with 
lower � values, we observed that we do not get a robust model 
with stable behavior (i.e., four out of ten repetitions gave a 10% to 
30% AUC). We observed that the classifer could tolerate a noise 
multiplier near the value 1; adding more noise does not allow the 
classifer to learn during the training. With a medium DP level, 
(� = 3) and (� = 5), we get an average AUC of 75%, and 80%, ap-
proaching the non-DP model’s performance. Figures 4b, 4c show 
that a DP-model training requires more FL rounds to converge (i.e., 
100 rounds) while the non-DP model’s performance shows a rapid 
increase, and reaches an acceptable AUC (i.e., 20-30 rounds). Addi-
tionally, the performance of the non-private model confrms our 
previous observations that altering the number of FL participants 
(i.e., sampling size) does not afect the model’s performance. Finally, 
by training the model for 100 FL rounds, we get 85% AUC. In other 
words, the performance is improved by 4% from the case we present 
in Figure 3b — i.e., 50 clients with 100 balanced dataset each. In 
conclusion, we get 5% (� = 5) to 10% (� = 3) loss in AUC between 
private and non-private FL. We leave for future work the empirical 
investigation of the actual attack mitigation. Emiliano et al. have 
shown that CDP can quite efectively defend against membership 
attacks without signifcant loss in utility – for more details, see in 
[21] the Table 1, CDP and passive/active local attacker. 

5.7 Overhead on Client’s Device 
We experiment to measure the extra overhead caused to the client’s 
device when participating in the FL training. Specifcally, we assess 
the overhead during the local training, which happens in one FL 
round on the client’s device. Indeed, there is an extra user device 
overhead due to the communication between the client and the 
central aggregator [16, 26, 29]. Since we simulate the FL training, 
we don’t have the information on the communication cost in real-
world settings – we assume this overhead is constant. 

We run the Local training on a laptop (see laptop properties 
in Section 5.1), using a client’s dataset as the training set. Since 
the results of the experiments with 100 data per client showed 
that we can have a well–performing classifer, we set the client’s 
dataset size to 100. While training the model locally, we monitor 
the machine resource utilization (memory consumption and CPU 
utilization) and collect the logs after every two seconds. We repeated 
the training ten times. We kept the CPU “idle” during the training 

by not running other applications. Figure 6 shows the device’s CPU 
utilization (in %) and the memory consumption (in MB) during the 
local training after averaging the results of the experiment. 
Results discussion: The average CPU utilization during the train-
ing across all repetitions is ∼25.5%. The memory consumption 
varies between ∼2300 to ∼2600MB during the training, with an 
average of ∼2560MB. See more details of the device resource con-
sumption results in Appendix B. Overall, the results show that the 
local training, with a mean of the CPU utilization around ∼64% and 
at a maximum of ∼85%, occupies the device for a short time of ∼14 
seconds thus, it does not introduce a severe overhead for the client 
device. 

6 CONCLUSION 
In this work, we propose a framework that gives power to the users 
to contribute to the development of online content moderation tools. 
By applying Federated Learning (FL) with Diferential Privacy (DP) 
guarantees, we provide user–level privacy guarantees that can 
be easily adapted to several social media platforms and types of 
misbehavior. Our experimental results – over fve Twitter datasets 
– show that (i) for both the DP and non-DP FL variants, the text 
classifcation performance is close to the centralized approach; (ii) it 
has a high performance even if only a small number of clients (with 
small datasets) are available for the FL training; (iii) it does not afect 
the performance of user’s device – in terms of CPU and memory 
consumption – during the FL training. Although we investigate the 
feasibility of our approach considering several factors, there are 
several directions for future research. We will conduct an empirical 
investigation of the efectiveness of CDP as a defense mechanism 
against membership inference attacks. Moreover, we will evaluate 
the model on the multiclass classifcation problem – classifcation 
of diferent types of misbehavior. Finally, several concerns need to 
be addressed, such as user incentivization, model bias and fairness 
issues, and potential data poisoning attacks by malicious clients. 

ETHICAL CONSIDERATIONS 
This work followed the principles and guidelines on executing ethi-
cal information research and using shared data [15]. The suggested 
methodology complies with the GDPR and ePrivacy regulations. 
We have not collected data from Twitter. We use existing Twitter 
datasets – that have already been published by other academic stud-
ies by requesting access from their publishers. For this reason, we 
will not publicly release any dataset used in this study. We did not 
use or present any identifable user information from the datasets 
(e.g., Twitter user IDs). We applied text preprocessing to clean the 
tweets from any information that could identify specifc Twitter 
accounts (see Section 5.3). Hence, the train data of the text classifer 
did not contain Twitter usernames. Finally, we implemented and 
executed the experiments locally – on our devices – without using 
any cloud computation services, so we did not upload any of the 
datasets to the cloud. 
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A CONCEPTUAL FRAMEWORK 

A.1 System Components 
Description of the proposed framework’s components (Figure 5): 
Client Device: The user’s device (i.e., laptop, mobile, etc.) that 
accesses the OSN application (i.e., Twitter, Reddit, 4chan, etc.). We 
assume that the user may not trust the platform’s content modera-
tion. 
Browser Add-On: flters the user’s online activity, conducts DOM 
tree analysis, and sends the selected data (i.e., posts, chat messages, 
comments) to the Labeling Module. 
Labeling Module: aggregates the labels obtained from the Auto-
Labeling and User Feedback modules. Auto-Labeling module can use 
semi-supervised learning techniques to label the data automatically. 
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Figure 5: Proposed FL framework 

The User Feedback module asks the user to label the data. Note that 
the labels the user gives can be considered sensitive information 
the user wants to protect. 
Local Database: stores the labeled data locally on the user’s device. 
FL Module: schedules and executes FL tasks on the user device. 
FL task defnes and executes the Local training. 
Data properties computing: the module that computes the meta-
data of the user’s dataset (i.e., size of data, etc.), accompanied by 
other device information (e.g., battery, internet connection type, 
device capabilities, etc.). 
Cloud Server: a unit owned by a trusted party that coordinates 
the FL training. 
FL Task Confguration: generates the FL Task description, which 
contains the baseline model for training – based on the specifc 
learning task – the criteria for the clients to participate in this task, 
and the FL parameters (e.g., the number of FL rounds, the number 
of clients to participate, etc.). 
Scheduler: advertise the FL task to the available clients and manage 
the communication with the clients. 
Client Selection Mechanism: checks if the client’s device com-
plies with the criteria set by the FL Task Confg module. 
Model Aggregator: aggregates the clients’ model updates and 
applies the aggregated update to the global model. 

A.2 Data-Flow 
Figure 5 shows the data fow of the proposed framework. Specif-
ically: (A1) The user accesses the OSN application through the 
device’s browser, (A2) and sends an HTTP request to it. (A3) The 
Browser Add–On’s DOM Tree Analysis module receives the social 
network’s trafc from the user’s interactions with the application, 
analyses the page DOM tree, flters specifc user’s activity (related 
to the learning task), and selects data for labeling. (A4) The Label-
ing module receives the data (e.g. a tweet text). The Auto Labeling 
module automatically labels the data. The User Feedback module 
asks the user to label it. (A5) Then, it aggregates the two {data, 
label} pairs (output of the two labeling methods), defnes a fnal 
label for the data, and stores the labeled data in the Local Database. 

When there is a pending FL task at the server, (B1) the FL Task 
Confg module sends the task description to the Scheduler. (B2) The 
Scheduler sends the task description to the available clients. (B3) 
The client’s FL Scheduler receives it, and forwards it to the Data 
properties Computing module, (B4) which sends the device’s data 
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properties back to it. (B5) The FL scheduler sends the properties 
to the Scheduler, (B6) which forwards them to the Client Selection 
Mechanism to tell if the client will participate in the training or not. 
(B7) The selection mechanism module sends its positive or negative 
decision to the Scheduler, (B8) which announces to the client’s FL 
scheduler its participation in training with the global model to train 
or closes the connection with it. 

For participating clients, (B9) the FL Scheduler sends the global 
model, and the task description to the FL Task module, and (B10) 
requests the local dataset. (B11) The Local Database sends the 
dataset, and starts the local ML training. Here, we apply the concept 
of Diferential Privacy (DP) to achieve user-level privacy guarantees 
using the Adaptive Clipping DP methodology proposed in [3]. By 
the end of the local training, the local model’s update is clipped, 
(B12) and sent to the Model Aggregator. The Model Aggregator adds 
Gaussian noise to the updates’ sum, aggregates the updates, and 
applies the aggregated update to the global model. Finally, (B13) it 
sends the updated model to the FL Task Confg module for its use in 
the next round of the FL training. 

B CLIENT DEVICE OVERHEAD 
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Figure 6: CPU and memory consumption (every 2 seconds) 
on client’s device due to the FL training. 

In Figure 6, we see that the total duration of the training phase 
is ∼14 seconds. From seconds 0 to 8, the CPU utilization increases 
linearly from ∼10% to 20%. Then, there is a rapid increase (from 
seconds 8 to 10) in which the CPU reaches ∼70%. At the end of the 
training phase, there is a decrease to ∼60%, and CPU utilization 
reaches a maximum of ∼80%. The average CPU utilization during 
the training across all repetitions is ∼25.5%. 

The memory consumption varies between ∼2300 to ∼2600MB 
during the training, with an average of ∼2560MB. There is a warm-
up phase (from 0 to 10) (when the training phase begins) where the 
memory consumption increases by ∼100MB. There is a decrease 
in memory consumption at 12 seconds (as also happens with CPU 
utilization), resulting from one of the repetitions completing the 
training faster than the rest. Overall, the results show that the local 
training, with a mean of the CPU utilization around ∼64% and at 
a maximum of ∼85%, occupies the device for a short time of ∼14 
seconds thus, it does not introduce a severe overhead for the client 
device. 
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