
Privacy–Preserving Online Content Moderation: A Federated
Learning Use Case

Pantelitsa Leonidou Nicolas Kourtellis Nikos Salamanos Michael Sirivianos
Cyprus University of Telefonica Research Cyprus University of Cyprus University of

Technology Barcelona, Spain Technology Technology
Limassol, Cyprus nicolas.kourtellis@telefonica.com Limassol, Cyprus Limassol, Cyprus

pl.leonidou@edu.cut.ac.cy nik.salaman@cut.ac.cy michael.sirivianos@cut.ac.cy

ABSTRACT
Users are exposed to a large volume of harmful content that appears
daily on various social network platforms. One solution to users’
protection is developing online moderation tools using Machine
Learning (ML) techniques for automatic detection or content flter-
ing. On the other hand, the processing of user data requires compli-
ance with privacy policies. In this paper, we propose a framework
for developing content moderation tools in a privacy-preserving
manner where sensitive information stays on the users’ device. For
this purpose, we apply Diferentially Private Federated Learning
(DP–FL), where the training of ML models is performed locally
on the users’ devices, and only the model updates are shared with
a central entity. To demonstrate the utility of our approach, we
simulate harmful text classifcation on Twitter data in a distributed
FL fashion– but the overall concept can be generalized to other
types of misbehavior, data, and platforms. We show that the perfor-
mance of the proposed FL framework can be close to the centralized
approach – for both the DP–FL and non–DP FL. Moreover, it has
a high performance even if a small number of clients (each with
a small number of tweets) are available for the FL training. When
reducing the number of clients (from ffty to ten) or the tweets
per client (from 1K to 100), the classifer can still achieve ∼81%
AUC. Furthermore, we extend the evaluation to four other Twit-
ter datasets that capture diferent types of user misbehavior and
still obtain a promising performance (61% – 80% AUC). Finally, we
explore the overhead on the users’ devices during the FL training
phase and show that the local training does not introduce excessive
CPU utilization and memory consumption overhead.

CCS CONCEPTS
• Security and privacy → Privacy protections.

KEYWORDS
content moderation, federated learning, privacy

ACM Reference Format:
Pantelitsa Leonidou, Nicolas Kourtellis, Nikos Salamanos, and Michael Siri-
vianos. 2023. Privacy–Preserving Online Content Moderation: A Federated
Learning Use Case. In Companion Proceedings of the ACM Web Conference

This work is licensed under a Creative Commons Attribution International
4.0 License.

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9419-2/23/04.
https://doi.org/10.1145/3543873.3587604

2023 (WWW ’23 Companion), April 30–May 04, 2023, Austin, TX, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3543873.3587604

1 INTRODUCTION
Users of all ages are exposed to a large volume of information
from various Online Social Networks (OSNs). The content is often
questionable or even harmful regardless of age, expressing abusive
behavior, extreme sarcasm, cyberbullying, racism, and ofensive
or hate speech. Although mainstream OSN platforms claim they
do their best to protect the users, harmful content is still present.
The platforms’ business model often dictates the applied rules and
policies and, consequently, to what extent they monitor and control
the content. Misbehavior can be proftable. Allowing users to be
impulsive increases their engagement with the platform and the
freshness of the available content, even if it is borderline harmful.
Moreover, some platforms perform minimum content moderation
to attract a specifc audience (see 4chan).

Researchers and developers have made a great efort to develop
automated content moderation tools mainly based on Machine
Learning (ML) algorithms [5, 7, 11, 25, 31]. These state-of-the-art
methods collect data, annotate them, and then train and test the
models in a centralized approach. It is challenging to collect, pro-
cess, and annotate large datasets suitable for deep learning training.
The data come from millions of users, are multi-modal (text, video,
and images or a combination of those), and change dynamically.
The users’ online data can be private and sensitive, so the EU has
imposed strict policies to protect users’ privacy (GDPR and accom-
panying national legislation).

In this paper, we propose a privacy–preserving Federated Learn-
ing (FL) framework for detecting harmful online content. We en-
vision a system that gives power to the users to (i) control the
moderation done in the system in a personalized fashion and (ii)
protect their privacy. Specifcally: (a) The platform may not be
trusted to moderate inappropriate content. Some mainstream plat-
forms, such as Twitter, provide some content moderation, whereas
other more fringe, do not provide any moderation. (b) The way
the platform does online moderation using its own labels – based
on its defnition of misbehavior – may not satisfy the users’ needs.
Therefore, we expect the users to label content they consider as
“harmful”. At the same time, they might not want to share these
labels since they will reveal the type of content they read or receive.
We readily admit the personalization inherent in the FL scheme
possibly exacerbates the echo chambers efect in online social net-
work platforms. On the other hand, the side beneft of personalized
moderation is that it is tailored to the sensitivity of the users, and
this makes moderation more acceptable and adoptable by the users.

280

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543873.3587604
https://doi.org/10.1145/3543873.3587604
mailto:michael.sirivianos@cut.ac.cy
mailto:nik.salaman@cut.ac.cy
mailto:pl.leonidou@edu.cut.ac.cy
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543873.3587604&domain=pdf&date_stamp=2023-04-30

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA Leonidou et al.

(c) Even if some OSN data are publicly available, not all may be
truly public. These data can be private posts, messages, or results
of recommendation algorithms. Often the true users’ identities can
be actually hidden – they do not match their account usernames.

Our framework is on-purpose generic as it can be used for sev-
eral types of content, such as text, audio, video, or images. However,
in this paper, we focus on “harmful” text classifcation on Twitter –
as a proof of concept demonstrating the utility of our approach. Al-
though the FL paradigm complies, in theory, with the GDPR policies
(since the raw data never leave the users’ devices), privacy leakages
can still occur. Prior studies have shown that FL is vulnerable to
privacy attacks [17]. A proposed solution is Central Diferential
Privacy (CDP) – an adaptation of Diferential Privacy (DP) [8, 10]
for the FL framework. CDP provides privacy guarantees (at the
user–level) against membership inference attacks [3, 13, 19]. This
has been empirically verifed in [21].

To answer our central research question, we bootstrap the ML
text classifer presented in [12], and then incorporate the CDP model
proposed in [3]. We evaluate it when trained in an FL fashion (with
and without DP) on diferent text datasets from fve studies of
Twitter user misbehavior by generalizing the classifcation problem
as detecting harmful or normal behavior. We compare the classifer’s
FL performance with the centralized version with access to all data.
The implementation and the experiments serve as proof of concept,
demonstrating that the proposed framework is feasible. Finally, we
assess a typical user device’s overhead while training the classifer
locally to examine whether the FL approach slows down the device.
This work makes the following contributions:

• We are the frst to propose a framework where we apply
privacy–preserving FL in the context of harmful content
detection applicable in diferent OSN platforms. For this pur-
pose, we instantiate this framework for the case of Twitter
and provide a simulation process that utilizes existing Twit-
ter datasets to test the performance of an FL framework.

• We show that the performance of the proposed FL frame-
work can be close to the centralized approach – for both the
DP and non–DP FL versions. The FL classifcation perfor-
mance on a total of 50K tweets has only a 10% diference in
AUC compared to the centralized approach. For instance, by
training the classifer (without DP) for only 20 FL rounds on
50 clients, we achieve ∼83% AUC. Moreover, when reducing
the number of clients (from 50 to 10) or the tweets per client
(from 1K to 100), the classifer can still achieve ∼81% AUC.
In other words, we can achieve high performance even if
few clients (with few data points locally) are available.

• Our further evaluation of the classifer on four smaller Twit-
ter datasets of other types of misbehavior shows promising
performance, ranging from 61% to 80% AUC. This means
that the classifer can generalize and detect diferent types
of misbehavior.

• Finally, we show that the FL training process does not intro-
duce excessive system overhead – in terms of CPU utilization
and memory consumption - on the users’ devices.

• The results, together with the experimental–evaluation code
is publicly available1.

1https://github.com/pleonidou01/FL-Online-content-moderation.git

2 RELATED WORK

2.1 Automatic Detection and Filtering of
Harmful Content

Harmful content can be found in a text, visual (image, video), audio
(songs, recordings) format, or a combination of those. We defne
any violent, abusive, sexual, disrespectful, hateful, illegal content,
or any content that may harm the user as “harmful”. One solution
to protect users from such content is adopting automatic detection
or fltering using ML techniques in online moderation tools.

Several studies have investigated misbehavior on Twitter. [5]
proposes a deep-learning architecture to classify various types of
abusive behavior (bullying and aggression) on Twitter. Then, they
applied the methodology to a large dataset of 1.6M tweets. [12]
presents a unifed deep learning classifer to detect abusive texts
on Twitter. The authors tested the unifed classifer with several
abusive Twitter datasets and achieved high performance. One of
the evaluation datasets was the one presented in [11] with 100K
tweets labeled as “Abusive”, “Hate”, “Normal”, and “Spam” using
crowdsourcing annotation techniques. The unifed classifer con-
sists of two diferent classifers whose results are combined to give
the fnal result. One classifer is a text classifcation model, and the
other treats domain-specifc metadata (i.e., user’s friend network,
number of retweets, etc.). In this work, we adopt a simplifed ver-
sion of the proposed classifer by replicating the model for the text
classifcation task – since we use no meta-data as training input
but only text stored on a user’s device.

Yenala et al. proposed a deep learning architecture for detect-
ing inappropriate language in query completion suggestions in
search engines and users’ conversations in messengers [34]. They
prove that the suggested architecture outperforms pattern-based
and hand-crafted feature-based architectures. The authors in [2]
collected a dataset of ∼4� records to assess the exposure of kids
and adolescents to inappropriate comments on YouTube. They built
a model consisting of fve high-accuracy classifers to classify the
comments obtained into fve age-inappropriate classes (Toxic, Ob-
scene, Insult, Threat, Identity hate). The model acts as a binary
classifer that classifes input as inappropriate if it falls into at least
one of the fve classes. Papadamou et al. built a deep learning classi-
fer to detect videos with inappropriate content that targets toddlers
on YouTube with high accuracy (84.3%) [22]. The authors in [27]
created a dataset with three diferent categories of videos: “Original
Videos”, “Explicit Fake Videos”, and “Violent Fake Videos”. They
trained a deep learning classifer to detect videos with content
inappropriate for kids with an accuracy of more than 90%. Addi-
tionally, Papadamou et al. collected ∼7� YouTube videos related to
pseudoscientifc content and used the resulting dataset to train a
deep learning classifer to detect misinformation videos on YouTube
and achieved an accuracy of 79% [23]. These studies used video
processing techniques to extract information from the videos but
also collected other related information (e.g., video title, comments,
caption, etc.).

2.2 Federated Learning and Diferential Privacy
McMahan et al. introduced Federated Learning (FL) as a distributed
approach for training machine learning models without sharing an

281

https://github.com/pleonidou01/FL-Online-content-moderation.git

Privacy–Preserving Online Content Moderation: A Federated Learning Use Case WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

Client Device

Browser

Add-on

Local Database

DOM Tree Analysis

Auto
Labeling

User
Feedback

FL module

FL Scheduler

Cloud Server

Scheduler

Model Aggregator (with DP)

Data properties Computing Client Selection Mechanism

(A1)

(A2)

(A3)

(B1)

(B2)

(B3) (B4)

(B5)

(B6) (B7)

(B8)

(B9)

(B10)

FL task

Local Training (with DP)
(B12)

FL Task Config

(B13)

Labeling Module

(A4)

(A5)

...

(B11)

...

Figure 1: Framework for privacy-preserving online content moderation using diferentially private Federated Learning – A1 to
A5: The Client Device accesses an OSN application, it flters specifc user’s activity to store locally the data with a label defned
after the aggregation of the automatically set and the user-provided label. B1 to B13: To initiate an FL learning task, the FL
Task Confg module sends the task description (i.e., the baseline model, criteria for participation, etc.) to the Scheduler that
communicates with the available FL clients. The Data properties Computing module computes the metadata of the user’s local
dataset and device. The Client Selection Mechanism tells if the client will participate in the training or not based on the set of
criteria defned in the task description. For the participating clients, the FL Task module executes the local training. By the end
of the local training, the model’s update is sent to the Model Aggregator which aggregates all the clients’updates, and applies
the aggregated update to the global model. For more details see Appendix A.

individual’s data with a central unit [18]. The idea is to train local
models on clients’ devices with their on-device available data and
only share locally-computed updates with the central server. The
server will collect the locally computed updates from the clients
and aggregate them to update the global model. A client device in
an FL setting can scale from a mobile device, a laptop, a desktop, or
an IoT device to a company’s data server.

Since the FL appearance, many studies have described FL appli-
cations in real settings. Gboard [33] uses FL for training, evaluating,
and deploying a model for giving optimized web, GIFs, and Stickers
query suggestions. Gboard also used FL to train a model for next-
word prediction[14]. Next word prediction is used on the keyboard
to suggest words for the user to type next based on the text al-
ready typed. In [6], the authors applied FL to train a neural network
to learn out-of-vocabulary (OOV) words to minimize annoying
users by auto-correcting the OOV words considering them as mis-
spellings. FL is also used to train an image-classifcation model to
decide whether a patient has the COVID-19 virus or not using x-
ray images from several hospitals to preserve the patients’ privacy
in [32]. The performance obtained when training the models using
FL was slightly worse than training using a centralized approach.

Several studies have shown that maintaining the raw data locally
does not sufciently protect the users’ privacy in the FL frame-
work [17]. An adversary with access to the FL-trained model’s
parameters can reveal private user information. The adversary can
be (i) one of the other clients – or even the central aggregator –

during the training phase and (ii) an external attacker who has
access to the fnal trained model.

One solution to providing privacy guarantees to ML model’s
training tasks is the concept of Diferential Privacy (DP). The DP
was frst introduced by [8–10] as a privacy–preserving technique
for learning tasks on statistical databases. It can limit privacy leak-
ages regarding the data records used for the learning phase. This
means that an adversary, who has access to the model’s parameters,
cannot decide whether a data record is part of the model’s training
dataset. These privacy guarantees –at the record level– are achieved
by adding noise to the learning process to limit the data records’
infuence on the algorithm’s fnal output.

In the FL settings, a user’s dataset may contain sensitive informa-
tion. Therefore, it is important to provide privacy guarantees at the
user level. This can be achieved by adapting the defnition of DP
with the notion of user-adjacent datasets, instead of record-adjacent
datasets as proposed in [13, 19]. An FL training task with user-level
DP guarantees ensures that an adversary cannot tell whether an
individual’s data is part of the total data used for training the model,
i.e., limit a user dataset’s infuence on the output of the training
task.

Two main variations of DP methodology have been incorporated
into the FL framework toward privacy–preserving FL: the Cen-
tral Diferential Privacy (CDP) and the Local Diferential Privacy
(LDP) [21]; other hybrid approaches have also lately proposed [4].
In CDP, the agents send the model updates to the central server,
which will perform the DP noise addition [3]. This implies that the

282

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA Leonidou et al.

central server is a trusted system entity; it will not perform mali-
cious inferences on the clients’ data. In LDP, the DP noise addition
is performed locally by the clients – before sending the updates to
the central server [28]. In this context, no trusted entity is required.
Our contribution: In this paper, we propose a methodology of
content moderation in a privacy-preserving fashion (using diferen-
tially private FL). We evaluate our approach on fve Twitter datasets
(with harmful content) using a variation of the text classifer pro-
posed in [12]. The overall framework is easily applicable in other
social media platforms (i.e., YouTube, Reddit, 4chan) and for difer-
ent types of misbehavior. This can be achieved by incorporating
ML algorithms from existing works [2, 5, 12, 22, 23, 27, 34].

3 CONCEPTUAL FRAMEWORK
To further explain the idea of applying the diferentially private
FL paradigm to online moderation tools, we present our proposed
framework in Figure 1. Regarding the threat model we assume
that the only trusted entity is the central aggregator. Under the
Central Diferential Private protocol [3] – that we use in this study
– the central aggregator is responsible for adding the noise before
aggregating the model updates that receives from the clients in an
FL round to achieve user-level DP guarantees. This implies that the
aggregator is a trusted entity, but the other participants may not be.
Hence, possible adversaries are either some clients or an external
entity that tries to reveal private user’s information by performing
membership inference attacks either during the training phase or
through the fnal global model. In Appendix A there is a detailed
description of the system components and the data-fow of our
proposed framework.

4 FL SIMULATION PIPELINE

4.1 General Assumptions
Since we do not have access to the raw Twitter data from millions of
users, the true distribution of harmful tweets to users is unknown.
Thus, we have to simulate the users’ browsing history somehow. For
this purpose, we construct artifcial clients by splitting a centralized
Twitter dataset containing harmful tweets into a number of disjoint
sets. Moreover, we study a homogeneous population of clients
(with either IID or non–IID data), namely, all clients have the same
number of total tweets with the same ratio harmful to normal (i.e.,
that same class ratio). Additionally, we assume that clients selected
for FL training remain available during the whole FL process.

4.2 FL Training Simulation
We used TensorFlow Federated (TFF), an open–source framework
for computations on decentralized data2, to simulate the FL training
process for our experiments. The FL algorithm we used for aggre-
gating the client’s model updates is the Federated Averaging [18].
TFF provides the implementation3 of Central Diferential Privacy
that we use in our simulation to adopt a variation of the Federated
Averaging algorithm that achieves user-level DP guarantees. Fig-
ure 2 presents our pipeline to simulate the FL training. We describe
next the FL simulation pipeline’s steps and main components.

2https://www.tensorfow.org/federated
3https://github.com/tensorfow/privacy

Split

 data

 to clients

Embedding Layer

RNN Layer

Classification Layer

Evaluate
performance

Text Classifier
centralized

dataset

training

 set

Clients' datasets

DP

FL training

test set

Figure 2: Federated Learning Simulation Pipeline

4.3 Text classifer
We use a simplifed version of the unifed classifcation model de-
scribed in [12], where only the text-classifcation path is enabled.
We used this classifer since it showed a high performance (∼80%
to ∼93% AUC) across many harmful tweet datasets. We used this
simplifed version to give a lighter computational task to the user’s
device, and to use features readily available from the tweets (i.e.,
not relying on ofine-computed features based on social network
properties of users as in [12]). The input of the classifer is the
tweets’ text. We used TensorFlow Keras for the implementation of
the classifer. The sequential ML pipeline starts with an Embedding
layer, we use the GloVe embedding [24] with the highest dimension
(200). A Recurrent Neural Network Layer follows with gated recur-
rent unit (GRU), 128 units, and a dropout of p=0.5. The output layer
is a classifcation dense layer, with one neuron with the sigmoid
activation function. TFF framework ofers a function that wraps a
Keras model4 for its use in the federated training simulation.

4.4 Creating artifcial clients for FL
We need a decentralized dataset with a sufcient number of harmful
and normal texts to simulate the FL training of the text classifer.
Since there is no such dataset fulflling our criteria, we convert
existing centralized datasets from past studies into artifcial feder-
ated datasets. For this purpose, given a dataset with two classes of
tweets (harmful and normal) and a sufcient number of harmful
tweets, we do the following:

First, we create a test set with a size the 10% of the dataset, with
the condition that 8% of the tweets in the test set are harmful. In
other words, the class ratio harmful:normal in the test set is 8:92.
We apply this percentage (8%) based on the results of previous
studies [5, 11] that showed that the percentage of harmful content
on Twitter is around ∼8%. Then, we create the clients using the
remaining 90% of the dataset. In our simulation, the clients are
represented by sets of tweets (the clients’ local data). To evaluate
the FL on diferent populations of clients, we control the class ratio
in clients’ data, i.e., harmful:normal. In this way, we experiment
on IID data (i.e., 50:50 ratio –balanced datasets) as well as emulate
scenarios of non-IIDness (see Section 5.4.1) by having unbalanced
datasets on FL clients devices (e.g., 10:90). We also set the total
number of tweets per client. Finally, given the clients’ class ratio
and clients’ data size, we compute the maximum number of clients
we can construct.
4https://www.tensorfow.org/federated/api_docs/python/tf/learning/from_keras_
model

283

https://www.tensorflow.org/federated
https://github.com/tensorflow/privacy
https://www.tensorflow.org/federated/api_docs/python/tff/learning/from_keras_model
https://www.tensorflow.org/federated/api_docs/python/tff/learning/from_keras_model

Privacy–Preserving Online Content Moderation: A Federated Learning Use Case WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

5 EXPERIMENTAL EVALUATION

5.1 Training Setup
To address the research questions of this work, we conducted ex-
periments having the following training setups:
FL training: For the FL training setup, we are following the method
described in Section 4.4 – given the parameters (clients’ data size,
percentage of harmful tweets) – to construct the federated dataset.
Then, we set the FL rounds and the number of participating clients
in each round. Finally, we use the TFF framework to simulate the
FL training. We refer to Local training as the training of the model
on the client’s device, using the client’s whole dataset as the local
training set.
Centralized training: This is the traditional ML training setup
where the text classifer is trained with a single train set: this is
the best-case scenario in which an OSN platform decides to apply
content moderation. Regarding the train–test split, we construct
the test set following the same procedure described in Section 4.4.
That is, we initially split the dataset into a test set of 10% size with
class ratio 8:92 (i.e., 8% harmful tweets). Then, from the remaining
90% of the dataset, we construct the train set. We set a class ratio
and a training–set size, and then we randomly select a subset of
tweets that satisfes these properties.

In both setups, we train the text classifer described in Section 4.3,
and we compute the weighted classifcation metrics5. We set the
parameters (epochs=7, batch size=10, Adams optimizer, learning
rate=0.001) after experimenting with diferent values for tuning
and applying early stopping. We run all the experiments on a server
with Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz, and a 62GiB RAM
except for the “overhead on client’s device” (Section 5.7) which we
run on a Dell laptop device with Intel(R) Core(TM) i7-6500U CPU
@ 2.50 GHz and 8GB RAM.

5.2 Experimental questions
We experiment with diferent values of the simulation parameters
to explore how they afect the FL classifcation performance. These
will also give us insights into the efective client selection and FL–
training strategy for online content moderation. For this purpose,
we investigate the following research questions:
Q1: How many harmful tweets per client are needed for
training–efcient FL?
We address this question by controlling the size of the harmful class
on each client’s dataset. We consider a homogeneous population
with the same class ratio (harmful:normal). Generally, as studies
showed, ∼8% of Twitter’s online content is harmful [5, 11]. That said,
there are often controversial topics where the users’ behavior is
highly polarized. For instance, COVID-19 vaccination, the Russian
invasion of Ukraine, and several conspiracy theories. We expect
that the browsing history of users interested in these topics will
contain a higher number of harmful content.
Q2: How many data points per client are needed?
We address this question by controlling the client dataset size (i.e.,
the number of tweets on a client device). These tweets can represent
either the user’s browsing history or tweets posted, retweeted, etc.,
by the user.

5https://scikit-learn.org/

Q3: How many clients are needed?
We address this question by controlling the number of FL clients
(i.e., the number of clients available for the FL training.

5.3 Datasets
We select the following datasets for the experimental evaluation
based on past studies of misbehavior on Twitter. For all datasets, in
order to keep the FL task lighter for the user device, we binarize
the classifcation problem by merging the several harmful classes
into a single “harmful” class. We report below the original classes
together with the fnal binary ones.
Abusive Dataset [11] initially contains ∼100� tweets, labeled as
“Abusive”, “Hate”, “Normal”, and “Spam”. We remove 14,030 tweets
labeled as “Spam” – following the same methodology of [12] be-
cause there are more sophisticated techniques to handle spam pro-
fles. The resulting dataset consists of ∼86� tweets with 31.6% “Abu-
sive”, 5.8% “Hate”, and 62.6% “Normal” classes. Final binary classes:
37.4% “Harmful” and 62.6% “Normal”. Sarcastic Dataset [25] con-
tains ∼61� tweets text classifed in two classes labeled as “Sarcas-
tic”(10.5%), and “None”(89.5%). Final binary classes: 10.5% “Harmful”
and 89.5% “Normal”. Hateful Dataset [31] is a ∼16� tweets dataset.
The tweets are categorized in “Racism”(12%), “Sexism”(20%), and
“Normal”(68%) classes. Final binary classes: 32% “Harmful” and
68% “Normal”. Ofensive Dataset [7] consists of ∼25� tweets
categorized in three classes: “Hate”(6%), “Ofensive”(77%), and “Nor-
mal”(17%). Final binary classes: 83% “Harmful” and 17% “Normal”.
Cyberbully Dataset [5] is a smaller dataset, with ∼6� tweets dis-
tinguished the “Bully”(8.5%), “Aggressive”(5.5%), and “Normal”(86%)
classes. Final binary classes: 14% “Harmful” and 86% “Normal”.

We preprocess the tweet texts by removing tags, URLs, num-
bers, punctuation characters, non-ASCII characters, etc. Moreover,
we convert the text to lowercase, all the white spaces into a single
one. We also remove English stop words and words that appear
only once in the dataset (in the case of misspelled words).

5.4 Non-DP FL online content moderation
In the following experiments, we only evaluate the non–DP FL
framework on the “Abusive” dataset. We chose this dataset because
its size allowed experimentation with various FL simulation param-
eters.
5.4.1 How many harmful tweets per client are needed?

Here, we evaluate the FL classifcation when we vary the percent
of “harmful” data in the clients’ datasets using the values 10%, 20%,
30%, and 50%. For a given “%harmful” value, frst, we randomly
select 50 clients and then we train the classifer in these clients
for 20 FL rounds. Each client dataset consists of 1K data. Finally,
we repeat the experiment fve times to acquire and report average
scores and standard deviations.

We also ran experiments with the Centralized training setup by
varying the percent of “harmful” text in the training set. Then, we
randomly select 50K tweets as the training set. We chose the 50K
samples to compare the centralized classifcation performance with
the previously mentioned FL training. We repeated the training
three times for each “%harmful” value.
Results Discussion: In Figure 3a, we present the average AUC
values (test evaluation). We note that by increasing the examples

284

https://scikit-learn.org/

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA Leonidou et al.

10 20 30 50
% of 'harmful' class in client

0.65

0.70

0.75

0.80

0.85

0.90

0.95

AU
C

FL
Centralized

100 500 1K
Client Dataset Size

0.60

0.65

0.70

0.75

0.80

0.85

0.90

AU
C

FL

10 20 30 40 50
Number of clients

0.60

0.65

0.70

0.75

0.80

0.85

0.90

AU
C

FL

(a) Harmful Class Ratio (b) Client Dataset Size (c) Number of Clients

Figure 3: Evaluation of non-DP FL. (a) 50 clients, 1K data points per client; centralized –50K data points (b) 50 clients, balanced
data per client (i.e., 50% harmful data); (c) 1K data points and balanced data per client

of the “harmful” class by fve times (i.e., from 10% to 50%), we have
∼9% increase in AUC (from 74% to 83%). These results show that
balancing the data at the client side enabled the classifer to learn
better both classes. In the case with a 10% harmful class size, we got
a 95% score in precision, recall, and F1-score. Interestingly, in the
case of 50% of harmful class size, we obtained precision (93%), recall
(89%), F1–score (90%), which shows a decrease by ∼1%, 6%, and 4%
respectively. The training dataset is imbalanced when only 10% of
clients’ data is harmful. To understand this reduction in the model’s
performance, we calculated the metrics only on the harmful class
(i.e., the minority class), where we observed a ∼30% increase in
recall but also a 40% negative impact on precision (with 10% of
harmful class size we got a recall of 50%, and precision of 82%, with
50% we got a 77%, and a 40% respectively). This means having a
balanced dataset (with 50% of harmful class size) impacts the recall
of the harmful class: i.e., it helps the model learn the harmful class
better. This is what drives AUC up as well (in the weighted metrics
as well as in the harmful–only case).

In the centralized approach, the classifer shows high perfor-
mance, with only a 3% AUC diference between the 10% and 50% of
harmful class size (90%, and 93% AUC, respectively). Finally, we get
the best FL classifcation performance for balanced clients datasets
(only ∼10% AUC diference with the centralized training).
5.4.2 How many data points per client are needed?

We assumed a homogeneous setting where all clients have the
same dataset size. We evaluate the classifer performance for the
client’s dataset size of 100, 500, and 1K. We run the FL training setup
for twenty FL rounds by using the same randomly selected ffty
clients. Each client has a balanced dataset 50:50. We repeat the FL
training twenty times for the training with 100 and 500 data, and
fve times for the 1K data. We present the average AUC metric in
Figure 3b, with standard deviation as error bars.
Results discussion: Increasing client dataset size by ten times
(from 100 to 1K data points) can lead to the overall improvement of
performance metrics by ∼3% in the AUC (from ∼81% to 83%). We
observed also a ∼2% improvement in F1 score (from 88% to 90%),
∼4% in accuracy (from 85% to 89%), recall (from 85% to 89%), and
∼1% in precision (from 92% to 93%). The results show that increasing
the data by fve times did not signifcantly improve the performance,
but the model performs similarly with the 100 data points per client.

Dataset Accuracy AUC F1 Score
FLAbusive Centr.

(0.85, 0.01)
(0.92, 0.01)

(0.81, 0.01)
(0.92, <1e-3)

(0.88, 0.01)
(0.94, 0.01)

FLSarcastic Centr.
(0.73, 0.01)
(0.76, 0.05)

(0.66, 0.01)
(0.75, 0.03)

(0.79, 0.01)
(0.83, 0.03)

FLHateful Centr.
(0.85, 0.02)
(0.79, 0.02)

(0.61, 0.01)
(0.79, 0.01)

(0.87, 0.01)
(0.85, 0.01)

FLOfensive Centr.
(0.78, 0.02)
(0.92, 0.01)

(0.78, 0.01)
(0.92, <1e-3)

(0.83, 0.02)
(0.94, 0.01)

Cyberbully
FL
Centr.

(0.94, <1e-3)
(0.91, 0.03)

(0.80, 0.01)
(0.91, 0.02)

(0.94, <1e-3)
(0.93, 0.02)

Table 1: Comparing FL and centralized approach. Average
values (metric, std) over fve repetitions for fve diferent
datasets. Each client has 100 data points and balanced data
(i.e., 50% harmful class).

Therefore, the experiment shows that the FL training can build an
efective model (∼81% AUC) even with 100 data points per client.
5.4.3 How many clients are needed for a good FL model?

In this experiment, we run the FL training setup by varying the
number of available clients, i.e., 10, 20, 30, 40, 50. Each client has a
1K balanced dataset, and the FL training runs for twenty rounds
with the same randomly selected clients. We run the FL training
fve times for each value of the number of clients property, and we
present the average test AUC in Figure 3c.
Results Discussion: Increasing the number of clients participating
in FL training by fve times (i.e., from 10 to 50) results in increasing
the AUC by ∼2% (from 81% to 83%). Additionally, the accuracy,
precision, recall, and f1-score, increase by ∼3%, 1%, 3%, and 2%
respectively (from 86%, 92%, 86%, 88% to 89%, 93%, 89%, 90%). How-
ever, the interesting point is that even with ten users/clients, the
system can build an efcient model. The model performs similarly
well when varying the number of clients participating in the FL
training.

5.5 Generalization on other Twitter datasets
Bootstrapping from the frst round of experiments, we test the
FL training setup with four other datasets (see datasets details in

285

Privacy–Preserving Online Content Moderation: A Federated Learning Use Case WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

1.5 3 5 10
epsilon

0.45

0.55

0.65

0.75

0.85

0.95

AU
C

23 25 66 37
sampling size

non-private
centralized ML

0 20 40 60 80 100
FL rounds

0.4

0.5

0.6

0.7

0.8

0.9

AU
C

=3, noise=0.875, sampling_size=25

non-private
private

0 25 50 75 100
FL rounds

0.4

0.5

0.6

0.7

0.8

0.9

AU
C

=5, noise=1.1, sampling_size=66

non-private
private

(a) (b) (c)

Figure 4: Comparing DP FL, non-DP FL, and centralized ML. Evaluation of (�, �)-DP FL for diferent � values and � = 10−3 .
Experiments with 628 total clients; 100 data points per client; 50% harmful-class (balanced data). For the non-DP FL, we perform
client selection (per FL round) with the same sampling values used for the DP FL. Centralized ML on a balanced dataset with
50k data points.

Section 5.3) to explore the generalization of the classifer’s utility.
For each dataset, we run both the FL, and centralized training for
fve repetitions each, and then compare the average performances.

We run the FL training for 20 rounds, with the same clients partic-
ipating in each round. Each client had a 100 tweets balanced dataset.
We set the data size to 100 due to the datasets’ size limitations and
based on the previous experiments that 100 data points per client
are sufcient for efective FL training. We randomly select 50 clients
when the dataset size allowed us to do so. For small datasets, we
build the maximum number of clients i.e., 37 and 16 clients for Of-
fensive and Cyberbully datasets, respectively. For the Centralized
training, we used a training set size= #������� × 100 to ft the total
data used in the FL training for the corresponding dataset. We did
not perform hyperparameter tuning to train the model with the
diferent datasets. We present the average evaluation metrics (test
phase) for both setups in Table 1.
Results Discussion: Across all fve datasets, we observe an AUC
performance >61%. We get the best AUC while training with the
Abusive dataset (81%), and with the smallest, Cyberbully dataset,
we achieved an AUC of 80%. Training with the Ofensive, Sarcastic,
and Hateful, we got an AUC performance of 78%, 66%, and 61%,
respectively. Additionally, we can observe that the model’s perfor-
mance decreases by ∼9% (the minimum) to ∼18% (the maximum)
when trained with the FL approach compared to the centralized one.
However, the results show that the classifer can be generalized and
achieve acceptable performance on diferent types of misbehavior,
even without hyperparameter tuning.

5.6 DP FL online content moderation
We use the well-accepted concept of DP that has been shown in
the literature, especially in the context of FL[3, 13, 19], as a way
to provide user-level privacy guarantees against unwanted user’s
private information leakage.

We apply the concept of CDP to our FL training setup. Our imple-
mentation is based on the TensorFlow privacy library6. TensorFlow

6https://github.com/tensorfow/privacy

modifes the Federated Averaging algorithm to provide user-level
DP guarantees, based on [3]. The variation of the algorithm imple-
ments the following: (i) each client clips the model’s updates before
transmitting them to the server adaptively and privately. Clipping
bounds the infuence of each client on the global model update in
each FL round. (ii) the server, during the aggregation of the client’s
updates, adds Gaussian noise to the sum of the updates before av-
eraging. TensorFlow privacy library provides an implementation
that returns the necessary DP parameters (i.e., noise multiplier,
sampling size) to achieve a specifc (�, �)-DP for the FL training
setup. This implementation is based on the Moment Accountant
method [1, 20, 30], which assesses the (�, �)-DP of the model. Lower
� values indicates higher level of privacy i.e., we ofer higher privacy
to the clients participating in the FL training. The noise multiplier
property defnes the addition of noise to the sum of the model’s
updates, and the sampling size refers to randomly selecting a subset
of the available clients to participate in each round. The sampling
adds to the privacy guarantee of the training since we do not set a
fxed number of clients participating in every round.

We run an experiment to assess the privacy guarantee and utility
trade-of. For this experiment, we use the “Abusive” dataset, split
and distribute the data to clients as described in Section 4.4. We
run the FL training setup for 100 rounds, and each client has a 100-
balanced dataset. These FL parameters give the maximum available
number of clients, i.e, 628 clients. We use Poisson sampling, which
gives a diferent number of clients to participate in each round,
with a mean set to sampling size value.

We evaluate the DP-classifer with diferent � values, while set-
ting � = 1�−3. We defne � = 1/|total samples| using the suggested
formula in [1, 19]. For each � value, we get the DP-parameters –
necessary for achieving the given (�, �)-DP – using the TensorFlow
privacy library mentioned before. So for � value of 1.5, 3, 5, and
10, we get the following DP-parameters, i.e., (sampling size, noise
multiplier) – (23, 1.15), (25, 0.875), (66, 1.1), and (37, 0.612) respec-
tively. We repeated the simulations ten times for � = 1.5 and � = 3,
and fve times for � = 5 and � = 10. We present the average AUC

286

https://github.com/tensorflow/privacy

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA Leonidou et al.

achieved in Figure 4a (the green line shows the mean, and the red
line the median AUC of all the repetitions).

To investigate the trade-of between utility and privacy, we run
a set of experiments with the FL training setup using the same
parameters mentioned before (i.e., clients dataset, sampling size,
number of FL rounds) but without adding DP. In Figure 4a, we
present the average AUC values (over fve repetitions) for the non-
DP model. We also depict in the same fgure the AUC achieved by
the model trained with the centralized approach with 50K data as
the baseline AUC. We evaluated the model’s performance every
ten rounds of the FL training for both the non-DP model and DP
model for � = 3 (medium) and � = 5 (medium-high). We present the
average AUC values in Figure 4b, and 4c respectively.
Results Discussion: Figure 4a shows that adding DP with a strict
privacy guarantee (i.e., � = 1.5) causes a 20% decrease in AUC when
compared to the non-DP model performance. Experimenting with
lower � values, we observed that we do not get a robust model
with stable behavior (i.e., four out of ten repetitions gave a 10% to
30% AUC). We observed that the classifer could tolerate a noise
multiplier near the value 1; adding more noise does not allow the
classifer to learn during the training. With a medium DP level,
(� = 3) and (� = 5), we get an average AUC of 75%, and 80%, ap-
proaching the non-DP model’s performance. Figures 4b, 4c show
that a DP-model training requires more FL rounds to converge (i.e.,
100 rounds) while the non-DP model’s performance shows a rapid
increase, and reaches an acceptable AUC (i.e., 20-30 rounds). Addi-
tionally, the performance of the non-private model confrms our
previous observations that altering the number of FL participants
(i.e., sampling size) does not afect the model’s performance. Finally,
by training the model for 100 FL rounds, we get 85% AUC. In other
words, the performance is improved by 4% from the case we present
in Figure 3b — i.e., 50 clients with 100 balanced dataset each. In
conclusion, we get 5% (� = 5) to 10% (� = 3) loss in AUC between
private and non-private FL. We leave for future work the empirical
investigation of the actual attack mitigation. Emiliano et al. have
shown that CDP can quite efectively defend against membership
attacks without signifcant loss in utility – for more details, see in
[21] the Table 1, CDP and passive/active local attacker.

5.7 Overhead on Client’s Device
We experiment to measure the extra overhead caused to the client’s
device when participating in the FL training. Specifcally, we assess
the overhead during the local training, which happens in one FL
round on the client’s device. Indeed, there is an extra user device
overhead due to the communication between the client and the
central aggregator [16, 26, 29]. Since we simulate the FL training,
we don’t have the information on the communication cost in real-
world settings – we assume this overhead is constant.

We run the Local training on a laptop (see laptop properties
in Section 5.1), using a client’s dataset as the training set. Since
the results of the experiments with 100 data per client showed
that we can have a well–performing classifer, we set the client’s
dataset size to 100. While training the model locally, we monitor
the machine resource utilization (memory consumption and CPU
utilization) and collect the logs after every two seconds. We repeated
the training ten times. We kept the CPU “idle” during the training

by not running other applications. Figure 6 shows the device’s CPU
utilization (in %) and the memory consumption (in MB) during the
local training after averaging the results of the experiment.
Results discussion: The average CPU utilization during the train-
ing across all repetitions is ∼25.5%. The memory consumption
varies between ∼2300 to ∼2600MB during the training, with an
average of ∼2560MB. See more details of the device resource con-
sumption results in Appendix B. Overall, the results show that the
local training, with a mean of the CPU utilization around ∼64% and
at a maximum of ∼85%, occupies the device for a short time of ∼14
seconds thus, it does not introduce a severe overhead for the client
device.

6 CONCLUSION
In this work, we propose a framework that gives power to the users
to contribute to the development of online content moderation tools.
By applying Federated Learning (FL) with Diferential Privacy (DP)
guarantees, we provide user–level privacy guarantees that can
be easily adapted to several social media platforms and types of
misbehavior. Our experimental results – over fve Twitter datasets
– show that (i) for both the DP and non-DP FL variants, the text
classifcation performance is close to the centralized approach; (ii) it
has a high performance even if only a small number of clients (with
small datasets) are available for the FL training; (iii) it does not afect
the performance of user’s device – in terms of CPU and memory
consumption – during the FL training. Although we investigate the
feasibility of our approach considering several factors, there are
several directions for future research. We will conduct an empirical
investigation of the efectiveness of CDP as a defense mechanism
against membership inference attacks. Moreover, we will evaluate
the model on the multiclass classifcation problem – classifcation
of diferent types of misbehavior. Finally, several concerns need to
be addressed, such as user incentivization, model bias and fairness
issues, and potential data poisoning attacks by malicious clients.

ETHICAL CONSIDERATIONS
This work followed the principles and guidelines on executing ethi-
cal information research and using shared data [15]. The suggested
methodology complies with the GDPR and ePrivacy regulations.
We have not collected data from Twitter. We use existing Twitter
datasets – that have already been published by other academic stud-
ies by requesting access from their publishers. For this reason, we
will not publicly release any dataset used in this study. We did not
use or present any identifable user information from the datasets
(e.g., Twitter user IDs). We applied text preprocessing to clean the
tweets from any information that could identify specifc Twitter
accounts (see Section 5.3). Hence, the train data of the text classifer
did not contain Twitter usernames. Finally, we implemented and
executed the experiments locally – on our devices – without using
any cloud computation services, so we did not upload any of the
datasets to the cloud.

ACKNOWLEDGMENTS
This work has been funded by the EU H2020 projects CONCORDIA
(Grant Agreement No. 830927), SPATIAL (Grant Agreement No.
101021808), and AERAS (Grant Agreement No. 872735).

287

Privacy–Preserving Online Content Moderation: A Federated Learning Use Case WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Diferential Privacy. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Vienna, Austria) (CCS ’16). New York, NY, USA, 308–318.

[2] Sultan Alshamrani, Ahmed Abusnaina, Mohammed Abuhamad, Daehun Nyang,
and David Mohaisen. 2021. Hate, Obscenity, and Insults: Measuring the Exposure
of Children to Inappropriate Comments in YouTube. In Companion Proceedings
of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Association for
Computing Machinery, New York, NY, USA, 508–515. https://doi.org/10.1145/
3442442.3452314

[3] Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy. 2021.
Diferentially Private Learning with Adaptive Clipping. In Advances in Neural
Information Processing Systems, Vol. 34. 17455–17466.

[4] Varun Chandrasekaran, Suman Banerjee, Diego Perino, and Nicolas Kourtellis.
2022. Hierarchical Federated Learning with Privacy. (2022). Available at
https://arxiv.org/abs/2206.05209.

[5] Despoina Chatzakou, Nicolas Kourtellis, Jeremy Blackburn, Emiliano De Cristo-
faro, Gianluca Stringhini, and Athena Vakali. 2017. Mean Birds: Detecting Ag-
gression and Bullying on Twitter. In Proceedings of the 2017 ACM on Web Science
Conference (Troy, New York, USA) (WebSci ’17). New York, NY, USA, 13–22.

[6] Mingqing Chen, Rajiv Mathews, Tom Ouyang, and Françoise Beaufays. 2019.
Federated Learning Of Out-Of-Vocabulary Words. (2019). published by Google
Research.

[7] Thomas Davidson, Dana Warmsley, Michael W. Macy, and Ingmar Weber. 2017.
Automated Hate Speech Detection and the Problem of Ofensive Language. In
Proceedings of the Eleventh International Conference on Web and Social Media,
ICWSM 2017, Montréal, Québec, Canada, May 15-18, 2017. AAAI Press, 512–515.

[8] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. 2006. Our Data, Ourselves: Privacy Via Distributed Noise Generation.
In Advances in Cryptology (EUROCRYPT 2006) (advances in cryptology (eurocrypt
2006) ed.) (Lecture Notes in Computer Science, Vol. 4004). 486–503.

[9] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography,
Shai Halevi and Tal Rabin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
265–284.

[10] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Diferen-
tial Privacy. Found. Trends Theor. Comput. Sci. 9, 3–4 (aug 2014), 211–407.

[11] Antigoni Founta, Constantinos Djouvas, Despoina Chatzakou, Ilias Leontiadis,
Jeremy Blackburn, Gianluca Stringhini, Athena Vakali, Michael Sirivianos, and
Nicolas Kourtellis. 2018. Large Scale Crowdsourcing and Characterization of
Twitter Abusive Behavior. Proceedings of the International AAAI Conference on
Web and Social Media 12, 1 (Jun. 2018).

[12] Antigoni Maria Founta, Despoina Chatzakou, Nicolas Kourtellis, Jeremy Black-
burn, Athena Vakali, and Ilias Leontiadis. 2019. A Unifed Deep Learning Archi-
tecture for Abuse Detection. In Proceedings of the 10th ACM Conference on Web
Science (WebSci ’19). New York, NY, USA, 105–114.

[13] Robin C. Geyer, Tassilo Klein, and Moin Nabi. 2017. Diferentially Private Feder-
ated Learning: A Client Level Perspective. https://doi.org/10.48550/ARXIV.1712.
07557

[14] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-
age. 2018. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604 (2018).

[15] Erin Kenneally and David Dittrich. 2012. The menlo report: Ethical principles
guiding information and communication technology research. (2012). Available
at SSRN 2445102.

[16] Nicolas Kourtellis, Kleomenis Katevas, and Diego Perino. 2020. FLaaS: Federated
Learning as a Service. In Proceedings of the 1st Workshop on Distributed Ma-
chine Learning (Barcelona, Spain) (DistributedML’20). Association for Computing
Machinery, New York, NY, USA, 7–13. https://doi.org/10.1145/3426745.3431337

[17] Lingjuan Lyu, Han Yu, Xingjun Ma, Chen Chen, Lichao Sun, Jun Zhao, Qiang
Yang, and Philip S. Yu. 2022. Privacy and Robustness in Federated Learning:
Attacks and Defenses. IEEE Transactions on Neural Networks and Learning Systems
(2022), 1–21. https://doi.org/10.1109/TNNLS.2022.3216981

[18] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. 2017. Communication-Efcient Learning of Deep Net-
works from Decentralized Data. In Proceedings of the 20th International Conference
on Artifcial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Laud-
erdale, FL, USA (Proceedings of Machine Learning Research, Vol. 54), Aarti Singh
and Xiaojin (Jerry) Zhu (Eds.). PMLR, 1273–1282.

[19] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2018. Learn-
ing Diferentially Private Recurrent Language Models. In 6th International Con-
ference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings.

[20] Ilya Mironov, Kunal Talwar, and Li Zhang. 2019. Rényi diferential privacy of the
sampled gaussian mechanism. arXiv preprint arXiv:1908.10530 (2019).

[21] Mohammad Naseri, Jamie Hayes, and Emiliano De Cristofaro. 2022. Local and
Central Diferential Privacy for Robustness and Privacy in Federated Learning.
In Proceedings of the 29th Network and Distributed System Security Symposium
(NDSS 2022).

[22] Kostantinos Papadamou, Antonis Papasavva, Savvas Zannettou, Jeremy Black-
burn, Nicolas Kourtellis, Ilias Leontiadis, Gianluca Stringhini, and Michael Siriv-
ianos. 2020. Disturbed YouTube for Kids: Characterizing and Detecting Inappro-
priate Videos Targeting Young Children. Proceedings of the International AAAI
Conference on Web and Social Media 14, 1 (May 2020), 522–533.

[23] Kostantinos Papadamou, Savvas Zannettou, Jeremy Blackburn, Emiliano De
Cristofaro, Gianluca Stringhini, and Michael Sirivianos. 2022. “It Is Just a Flu”:
Assessing the Efect of Watch History on YouTube’s Pseudoscientifc Video
Recommendations. Proceedings of the International AAAI Conference on Web and
Social Media 16, 1 (May 2022), 723–734.

[24] Jefrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532–1543.

[25] Ashwin Rajadesingan, Reza Zafarani, and Huan Liu. 2015. Sarcasm Detection on
Twitter: A Behavioral Modeling Approach. In Proceedings of the Eighth ACM In-
ternational Conference on Web Search and Data Mining (Shanghai, China) (WSDM
’15). New York, NY, USA, 97–106.

[26] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. 2019.
Robust and communication-efcient federated learning from non-iid data. IEEE
transactions on neural networks and learning systems 31, 9 (2019), 3400–3413.

[27] Rashid Tahir, Faizan Ahmed, Hammas Saeed, Shiza Ali, Fareed Zafar, and Christo
Wilson. 2019. Bringing the Kid Back into YouTube Kids: Detecting Inappropriate
Content on Video Streaming Platforms. In Proceedings of the 2019 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(Vancouver, British Columbia, Canada) (ASONAM ’19). New York, NY, USA,
464–469.

[28] Stacey Truex, Ling Liu, Ka-Ho Chow, Mehmet Emre Gursoy, and Wenqi Wei. 2020.
LDP-Fed: Federated Learning with Local Diferential Privacy. In Proceedings of
the Third ACM International Workshop on Edge Systems, Analytics and Networking
(EdgeSys ’20). New York, NY, USA, 61–66.

[29] Luping WANG, Wei WANG, and Bo LI. 2019. CMFL: Mitigating Communication
Overhead for Federated Learning. In 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS). 954–964.

[30] Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. 2019. Sub-
sampled Renyi Diferential Privacy and Analytical Moments Accountant. In
Proceedings of the Twenty-Second International Conference on Artifcial Intelli-
gence and Statistics (Proceedings of Machine Learning Research, Vol. 89), Kamalika
Chaudhuri and Masashi Sugiyama (Eds.). 1226–1235.

[31] Zeerak Waseem and Dirk Hovy. 2016. Hateful Symbols or Hateful People?
Predictive Features for Hate Speech Detection on Twitter. In Proceedings of the
NAACL Student Research Workshop. Association for Computational Linguistics,
San Diego, California, 88–93.

[32] Bingjie Yan, Jun Wang, Jieren Cheng, Yize Zhou, Yixian Zhang, Yifan Yang, Li Liu,
Haojiang Zhao, Chunjuan Wang, and Boyi Liu. 2021. Experiments of Federated
Learning for COVID-19 Chest X-ray Images. In Advances in Artifcial Intelligence
and Security, Xingming Sun, Xiaorui Zhang, Zhihua Xia, and Elisa Bertino (Eds.).
Springer International Publishing, Cham, 41–53.

[33] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas
Kong, Daniel Ramage, and Françoise Beaufays. 2018. Applied Federated Learning:
Improving Google Keyboard Query Suggestions.

[34] Harish Yenala, Ashish Jhanwar, Manoj K Chinnakotla, and Jay Goyal. 2018. Deep
learning for detecting inappropriate content in text. International Journal of Data
Science and Analytics 6, 4 (2018), 273–286.

A CONCEPTUAL FRAMEWORK

A.1 System Components
Description of the proposed framework’s components (Figure 5):
Client Device: The user’s device (i.e., laptop, mobile, etc.) that
accesses the OSN application (i.e., Twitter, Reddit, 4chan, etc.). We
assume that the user may not trust the platform’s content modera-
tion.
Browser Add-On: flters the user’s online activity, conducts DOM
tree analysis, and sends the selected data (i.e., posts, chat messages,
comments) to the Labeling Module.
Labeling Module: aggregates the labels obtained from the Auto-
Labeling and User Feedback modules. Auto-Labeling module can use
semi-supervised learning techniques to label the data automatically.

288

https://doi.org/10.1145/3442442.3452314
https://doi.org/10.1145/3442442.3452314
https://arxiv.org/abs/2206.05209
https://doi.org/10.48550/ARXIV.1712.07557
https://doi.org/10.48550/ARXIV.1712.07557
https://doi.org/10.1145/3426745.3431337
https://doi.org/10.1109/TNNLS.2022.3216981

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

Client Device

Browser

Add-on

Local Database

DOM Tree Analysis

Auto
Labeling

User
Feedback

FL module

FL Scheduler

Cloud Server

Scheduler

Model Aggregator (with DP)

Data properties Computing Client Selection Mechanism

(A1)

(A2)

(A3)

(B1)

(B2)

(B3) (B4)

(B5)

(B6) (B7)

(B8)

(B9)

(B10)

FL task

Local Training (with DP)
(B12)

FL Task Config

(B13)

Labeling Module

(A4)

(A5)

...

(B11)

...

Figure 5: Proposed FL framework

The User Feedback module asks the user to label the data. Note that
the labels the user gives can be considered sensitive information
the user wants to protect.
Local Database: stores the labeled data locally on the user’s device.
FL Module: schedules and executes FL tasks on the user device.
FL task defnes and executes the Local training.
Data properties computing: the module that computes the meta-
data of the user’s dataset (i.e., size of data, etc.), accompanied by
other device information (e.g., battery, internet connection type,
device capabilities, etc.).
Cloud Server: a unit owned by a trusted party that coordinates
the FL training.
FL Task Confguration: generates the FL Task description, which
contains the baseline model for training – based on the specifc
learning task – the criteria for the clients to participate in this task,
and the FL parameters (e.g., the number of FL rounds, the number
of clients to participate, etc.).
Scheduler: advertise the FL task to the available clients and manage
the communication with the clients.
Client Selection Mechanism: checks if the client’s device com-
plies with the criteria set by the FL Task Confg module.
Model Aggregator: aggregates the clients’ model updates and
applies the aggregated update to the global model.

A.2 Data-Flow
Figure 5 shows the data fow of the proposed framework. Specif-
ically: (A1) The user accesses the OSN application through the
device’s browser, (A2) and sends an HTTP request to it. (A3) The
Browser Add–On’s DOM Tree Analysis module receives the social
network’s trafc from the user’s interactions with the application,
analyses the page DOM tree, flters specifc user’s activity (related
to the learning task), and selects data for labeling. (A4) The Label-
ing module receives the data (e.g. a tweet text). The Auto Labeling
module automatically labels the data. The User Feedback module
asks the user to label it. (A5) Then, it aggregates the two {data,
label} pairs (output of the two labeling methods), defnes a fnal
label for the data, and stores the labeled data in the Local Database.

When there is a pending FL task at the server, (B1) the FL Task
Confg module sends the task description to the Scheduler. (B2) The
Scheduler sends the task description to the available clients. (B3)
The client’s FL Scheduler receives it, and forwards it to the Data
properties Computing module, (B4) which sends the device’s data

Leonidou et al.

properties back to it. (B5) The FL scheduler sends the properties
to the Scheduler, (B6) which forwards them to the Client Selection
Mechanism to tell if the client will participate in the training or not.
(B7) The selection mechanism module sends its positive or negative
decision to the Scheduler, (B8) which announces to the client’s FL
scheduler its participation in training with the global model to train
or closes the connection with it.

For participating clients, (B9) the FL Scheduler sends the global
model, and the task description to the FL Task module, and (B10)
requests the local dataset. (B11) The Local Database sends the
dataset, and starts the local ML training. Here, we apply the concept
of Diferential Privacy (DP) to achieve user-level privacy guarantees
using the Adaptive Clipping DP methodology proposed in [3]. By
the end of the local training, the local model’s update is clipped,
(B12) and sent to the Model Aggregator. The Model Aggregator adds
Gaussian noise to the updates’ sum, aggregates the updates, and
applies the aggregated update to the global model. Finally, (B13) it
sends the updated model to the FL Task Confg module for its use in
the next round of the FL training.

B CLIENT DEVICE OVERHEAD

0

20

40

60

80
CP

U
ut

iliz
at

ion
(%

)

0 2 4 6 8 10 12 14

2000

2500

3000

Me
m

or
y C

on
su

m
pt

ion
(M

B)

Seconds

Figure 6: CPU and memory consumption (every 2 seconds)
on client’s device due to the FL training.

In Figure 6, we see that the total duration of the training phase
is ∼14 seconds. From seconds 0 to 8, the CPU utilization increases
linearly from ∼10% to 20%. Then, there is a rapid increase (from
seconds 8 to 10) in which the CPU reaches ∼70%. At the end of the
training phase, there is a decrease to ∼60%, and CPU utilization
reaches a maximum of ∼80%. The average CPU utilization during
the training across all repetitions is ∼25.5%.

The memory consumption varies between ∼2300 to ∼2600MB
during the training, with an average of ∼2560MB. There is a warm-
up phase (from 0 to 10) (when the training phase begins) where the
memory consumption increases by ∼100MB. There is a decrease
in memory consumption at 12 seconds (as also happens with CPU
utilization), resulting from one of the repetitions completing the
training faster than the rest. Overall, the results show that the local
training, with a mean of the CPU utilization around ∼64% and at
a maximum of ∼85%, occupies the device for a short time of ∼14
seconds thus, it does not introduce a severe overhead for the client
device.

289

	Abstract
	1 Introduction
	2 Related Work
	2.1 Automatic Detection and Filtering of Harmful Content
	2.2 Federated Learning and Differential Privacy

	3 Conceptual Framework
	4 FL Simulation Pipeline
	4.1 General Assumptions
	4.2 FL Training Simulation
	4.3 Text classifier
	4.4 Creating artificial clients for FL

	5 Experimental Evaluation
	5.1 Training Setup
	5.2 Experimental questions
	5.3 Datasets
	5.4 Non-DP FL online content moderation
	5.5 Generalization on other Twitter datasets
	5.6 DP FL online content moderation
	5.7 Overhead on Client's Device

	6 Conclusion
	Acknowledgments
	References
	A Conceptual Framework
	A.1 System Components
	A.2 Data-Flow

	B Client Device Overhead

