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Erika Pavlovičová, Jozef Vargan, Peter Bakaráč,
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Abstract: The VESNA smart greenhouse system aims for sustainable, ecological, and organic
food production. This study explores an offset-free model predictive controller (MPC) for
temperature tracking. The MPC proves effective in maintaining temperature within constraints.
Extensive experiments assess different MPC setups, focusing on environmental factors, including
energy use and carbon footprint. Additionally, a novel software toolbox simplifies analysis and
remote control, enhancing user-friendliness. Together, the designed offset-free reference tracking
MPC controllers and the toolbox offer a comprehensive solution for smart greenhouse control.
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1. INTRODUCTION

Climate change and resource limitations are pushing sus-
tainable production forward. Integrating advanced control
technologies, such as smart greenhouses, efficiently ad-
dresses these challenges. Applying optimal control meth-
ods minimizes the adverse effects on climate (Bersani
et al., 2020) and intensifies crop production (Villagran
et al., 2020).

Temperature control is crucial in maintaining optimal
growing conditions for various crops in greenhouses. Tradi-
tional control methods like PID controllers often struggle
to achieve precise and efficient temperature performance.
Optimization-based control strategies, such as well-known
model predictive control (MPC) (Qin and Badgwell, 2003),
provide a matured control strategy addressing these limi-
tations and enabling efficient reference tracking tempera-
ture control in greenhouse environments. MPC has gained
increasing attention as a robust, versatile control method
for greenhouse environments. Several studies have investi-
gated the application of MPC in greenhouse temperature
control, demonstrating its ability to control temperature
effectively while dynamically adapting to changing envi-
ronmental conditions. An analysis of the control perfor-
mance of MPC and reinforcement learning for managing a
lettuce greenhouse was presented in Morcego et al. (2023).
They showed better results using MPC considering energy
and economic efficiency. Hu and You (2022) proposed a
data-driven robust MPC to control the inner environ-
mental conditions of the greenhouse in the presence of
uncertainty.

While the papers above primarily focused on simulated re-
sults and theoretical guarantees, the presented paper intro-
duces a comprehensive solution for laboratory greenhouse
control, including a user-friendly toolbox for data ex-

change between the laboratory smart greenhouse VESNA
(Versatile Simulator for Near-zero Emissions Agricul-
ture) 1 and the autonomous control unit. Smart green-
house VESNA and its goals in control and education were
introduced in detail in Oravec et al. (2023). This paper
investigates the problem of designing and implementing
a constrained offset-free MPC for reference tracking of
temperature in a smart greenhouse VESNA.

A user-friendly communication toolbox in modern agri-
culture is indispensable for seamlessly integrating IoT
technology with greenhouse devices (Prakash et al., 2023).
As part of the paper, a newly developed toolbox VESNA
CODE 2 is introduced as a user-friendly software for com-
munication with the VESNA greenhouse. The toolbox
developed in MATLAB programming environment allows the
user to easily download and upload data to the greenhouse,
allowing the user to stay focused on controller design and
fine-tuning of the controller parameters.

2. SMART ECO GREENHOUSE VESNA

VESNA, depicted in Figure 1, is a smart ecological green-
house developed by young researchers and students from
the Institute of Informatics, Automation, and Mathemat-
ics at FCHPT STU in Bratislava (Oravec et al., 2023).
VESNA integrates these two directions into a unique
ecosystem, including the greenhouse itself, various sensors,
actuators, and a communication interface for data trans-
mission. The sensors collect data on temperature, humid-
ity, light intensity, carbon dioxide concentration, volatile
organic compound concentration, and door-opening sta-
tus. VESNA is also equipped with a heater, an air humid-
ifier, fans, and growth LED strips. The communication
1 VESNA homepage: https://vesna.uiam.sk
2 VESNA CODE homepage: https://github.com/oravec-juraj/ves
na/wiki/How-to-use-VESNA-CODE



Fig. 1. The smart greenhouse at Slovak University of
Technology in Bratislava.

is ensured by a microcontroller, which uses a WiFi mod-
ule to communicate with Arduino IoT Cloud 3 service.
A scheme illustrating the closed-loop feedback setup is
depicted in Figure 2.

3. VESNA CODE

This section introduces the VESNA CODE toolbox serving as
an advanced human-machine interface (HMI) for building
an autonomous control for smart greenhouse VESNA. The
VESNA CODE interface is developed in the MATLAB (MAT-
LAB, 2023) programming environment using a modular
and user-friendly object-oriented framework.

3.1 VESNA object

The VESNA CODE is built above the object of vesna-class,
which is created by calling the intuitive vesna command:

Vesna = vesna

An object Vesna is created using the constructor and
includes a data field with a specific structure. The task of
this constructor is to build the default environment of the
object, including the initialization of its basic properties:

• config,
• communication,
• data,
• mail.

The task of the config object property is to store the
user-specified configuration data to create a URL request.
This request is used to download and upload the data into
the remote database. The currently used data storage is
the Arduino IoT Cloud — an online platform enabling
a wide range of data processing (Arduino, 2023). The
credentials for accessing this cloud service are stored by
the communication property. The data property stores
downloaded data from the Arduino IoT Cloud. Settings
related to one-way communication between the object and
the physical user are contained in the mail property. This
includes configuration data for sending notifications using
some e-mail service.
3 Arduino Cloud: https://docs.arduino.cc/arduino-cloud

3.2 Connecting to the cloud

It is necessary to establish a connection to the server to
start the communication of the vesna object with the
Arduino IoT Cloud. The user connects to the remote
cloud service by invoking connect method

Vesna.connect(url , login , password)

this notation is based on the so-called dot-syntax. Note,
the function-syntax is also possible, e.g., in the form of:
connect(Vesna, url, login, secret).

The connect method accepts 3 required input parameters
— url, login, and password. The url parameter is the
public URL address of Arduino IoT Cloud, login and
password are private credentials. These data are of type
string stored in the object property communication.

The object vesna communicates with the cloud based on
API requests, including Bearer authorization containing
the Bearer token.

3.3 Download data

Once the connection to the Arduino IoT Cloud is estab-
lished, it is possible to access the data on the cloud. The
download function is used to download data by calling

downloaded_data = Vesna.download(
variable1 , variable2 , ... )

The arguments variable1, variable2 are the predefined
names of input variables whose data the user wants to
access. They are entered in the form of strings, e.g.,

downloaded_data = Vesna.download( ...
"temperature", "humidity ")

From the point of view of the data type, for each variable,
the last measured value is downloaded from the cloud by
default. Moreover, the corresponding time footprint of the
recording is downloaded to prevent handling misleading
data.

Reflecting the policy of Arduino IoT Cloud, the download
method allows downloading

• last n data samples,
• arbitrary m data samples, depending on the range of

the specified time interval.

3.4 Upload data

Analogous to the data download, the vesna object allows
uploading user-defined data for actuators (heater, fans,
etc.) to the Arduino IoT Cloud. The upload method is
defined for this operation

Vesna.upload(variable1 ,value1 ,
variable2 ,value2 , ... )

where the upload function requires entering a pair of data
in the form of the variable name (variable) and variable
value (value).



Fig. 2. Scheme of the closed-loop control setup.

4. EXPERIMENTAL ANALYSIS

This section presents an extensive analysis of the results
of the offset-free MPC control of the inner temperature
in the smart greenhouse VESNA. The MPC control was
implemented using the early-stage VESNA CODE toolbox,
providing a user-friendly way of communicating with the
device having the potential to supervise advanced control
strategies.

4.1 Offset-free MPC design

An experimental analysis aims to control the internal
temperature by manipulating the power of the heater,
which is located in the lower part of the greenhouse,
using MPC. First, to achieve offset-free reference tracking,
the discrete-time state-space model for the temperature
control in the greenhouse is augmented by an integral
action member. Analogous to the well-known LQR with
an integral action-based approach, the augmented state-
space model can be written in the form

x̃(k + 1) = Ãx̃(k) + B̃u(k),

y(k) = C̃x̃(k).
(1)

where the augmented vector of the system states denoted

as x̃ ∈ Rnx̃ , is x̃(k) = [x(k), xi(k)]
⊤
, where x(k) ∈ Rnx is

a vector of state variables and xi(k) ∈ Rni is an integral
action member defined as an integral of a control error.
Taking into consideration the augmented vector of the
system states x̃, the matrices of the augmented state-space
model are defined as follows

Ã =

[
A 0

−TsC I

]
=

[
0.7942 0
−60 1

]
, B̃ =

[
B
0

]
=

[
0.0026

0

]
,

(2)

and C̃ = [C 0] = [1 0] . The matrices A, B, and C
in (2) are obtained based on the results of an experimental
identification. The sampling time Ts = 60 s is chosen,
considering the practical aspects of the current implemen-
tation of the communication with the greenhouse device
through the cloud services.

Next, the MPC problem is formulated as the problem of
quadratic programming (QP) having the form:

min
u,x̃

N−1∑
k=0

(∥∥x̃(k + 1)
∥∥2
Q
+

∥∥u(k)∥∥2
R

)
s.t. ∀k ∈ {0, . . . , N − 1},

x̃(k + 1) = Ãx̃(k) + B̃u(k),

u(k) ∈ U,
x̃(0) = x̃t,

(3)

where N stands for the length of a prediction horizon
and set U, is a box constraint of control inputs. The
matrix R ∈ Rnu×nu is a penalty matrix of the control
inputs u(k) ∈ Rnu , and Q ∈ Rnx̃×nx̃ is a penalty matrix
of the system states x̃(k). The system states penalty
matrix consists of 2 main parts, i.e., the partial matrices
Qx ∈ Rnx×nx and Qi ∈ Rni×ni penalizing the x(k) and

xi(k)), respectively: Q =

[
Qx 0
0 Qi

]
.

Within the experiment were investigated several tuning of
the penalty matrices, see Table 1. The primary objective in
configuring the penalty matrices is to attain optimal con-
trol performance, considering appropriate settling speed
and minimal energy consumption. The prediction horizon
length was constant for all control setups as N = 20.

Table 1. Tuning of the penalty matrices.

Control setup Qx Qi R

I 1 000 1 000 2.0
II 1 100 1 100 1.5
III 1 000 1 000 100.0
IV 1 500 1 000 1.5

To adhere to the physical limitations of the manipulated
variable, constraints on the control input u were incor-
porated in the deviation form −50 ≤ u(k) ≤ 50, corre-
sponding to the operating range of the heater power in
the interval 0%− 100%.

4.2 Results and discussion

Control trajectories obtained by evaluating the MPC 4 for
control setups of tuning parameters listed in Table 1 are
shown in Figure 3. The control profiles of the temperature
in the greenhouse are depicted in the upper figure, while
associated control inputs — the power of the heater, are
shown below. As can be seen, the constraints on control
inputs were active for all Control Setups (Table 1). In
contrast to the PID controller, implementing the MPC
controller enabled the optimization of the control actions
according to these physical limits. On the other hand,
implementing the PID controller would require additional
saturation of control actions and the necessity to introduce
the auxiliary anti-windup control setup. The oscillation
observable in the bottom figure related to the profiles of
the control actions aims to actively compensate for the
impact of the external disturbances on the controlled tem-
perature. As shown in the upper figure, these oscillations
are approximately 0.2 ◦C, hence negligible.

Finally, the achieved control performance was evaluated
using several criteria. The settling time refers to when the
4 Results were obtained using toolbox YALMIP R20210331 (Löfberg,
2004) and solver Gurobi 10.0: https://www.gurobi.com in MATLAB

2020b programming environment.



Fig. 3. Control performance ensured by MPC controllers
with different tuning of penalty matrices - Control
Setup #I (blue solid), Control Setup #II (purple
solid), Control Setup #III (orange solid), Control
Setup #IV (green solid), reference (black dotted).

controlled variable stabilizes permanently in the neighbor-
hood of the reference variable. The δ-neighborhood of the
reference is 0.5 ◦C, which results from the measurement
error of the temperature sensors. Additionally, the overall
energy consumption E of the actuator, the heater, was
evaluated as E = Ts

∑tend

t=0 Pu(t), where Ts is the sampling
period in seconds, u(t) is the normalized control input in
percent, and P is the power of the heater in Watts. By
the term Pu(t), the power in Watts for each control input
and in each control step is obtained. Here, the maximum
heater’s power was 40W. Analogous to the energy con-
sumption criterion E, the corresponding carbon footprint
calculated based on the carbon intensity in April 2023
equal to 215 g/kWh 5 , when the experimental data were
collected.

The MPC controller aimed to reach the reference value
fast, without oscillations and steady-state error. As the
model of the system was augmented by an integral ac-
tion, all of the control setups reached the reference value
without any steady-state error, except for the negligible
impact of the measurement noise (Figure 3). From the
point of view of a settling time, the best controller tuning
is the Control Setup #IV with increased penalty ma-
trix Qx, shown in the Figure 3 with green solid line as
it reached the δ-neighborhood in 6 min. In Figure 3, it
can also be seen that the increased penalty matrix Qi in
the Control Setup #II caused more oscillating behavior of
the control trajectories, resulting in longer settling time,
approximately 12 min. The slowest behavior was related
to the Control Setup #I (Figure 3, blue) with the settling
time 22 min. However, based on the control profiles of
the output variable, it can be assumed that a short-term
outage in communication occurred during the experiment.

From the environmental point of view, the highest infor-
mative value has the energy consumption of the actuator
and the related carbon footprint. The Control Setup #IV

5 Electricity Maps: https://app.electricitymaps.com/map

provided the minimum energy consumption E equal to
67 kJ as it reached the reference value the fastest, and the
control input decreased. Even though the control Control
Setup #II provided more conservative control actions,
after reaching the reference, the control action dropped
but settled around higher values than the previous ones
resulting in increased energy consumption 96 kJ. The
Control Setup #I with 104 kJ had the highest impact
on the environment. However, this may be caused by the
already mentioned outage in communication, as the energy
consumption and the carbon footprint were computed
based on the data obtained from the microcontroller.
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