De-Noising Document Classification Benchmarks via Prompt-based Rank Pruning: A Case Study
Description
This is a dataset of fan fiction works, labeled with any of 4 corresponding triggers warnings and judgements about the reliability of that label.
Please finde details in the corresponding publication: https://webis.de/publications.html#wiegmann_2024c
Please use the following citation key:
@InProceedings{wiegmann:2024c,
address = {Berlin Heidelberg New York},
author = {Matti Wiegmann and Benno Stein and Martin Potthast},
booktitle = {Experimental IR Meets Multilinguality, Multimodality, and Interaction. 15th International Conference of the CLEF Association (CLEF 2024)},
editor = {Lorraine Goeuriot and Philippe Mulhem and Georges Qu{\'e}not and Didier Schwab and Giorgio Maria Di Nunzio and Laure Soulier and Petra Galuscakova and Alba Garcia Seco Herrera and Guglielmo Faggioli and Nicola Ferro},
month = sep,
publisher = {Springer},
series = {Lecture Notes in Computer Science},
site = {Grenoble, France},
title = {{De-Noising Document Classification Benchmarks via Prompt-based Rank Pruning: A Case Study}},
year = 2024
}
Files
tw-llm-denoising.json.zip
Files
(29.8 MB)
Name | Size | Download all |
---|---|---|
md5:672fbd67276789715f34eb14a86b1189
|
29.8 MB | Preview Download |