- 1 Towards a phylogenetic taxonomy of sturgeons (Acipenseriformes: Acipenseridae)
- 2 Chase D. Brownstein,^{1,2} and Thomas J. Near^{1,3*}
- ³ ¹Department of Ecology and Evolutionary Biology, Yale University, New Haven CT,
- 4 USA
- 5 ²Stamford Museum and Nature Center, Stamford CT, USA
- ⁶ ³Yale Peabody Museum, New Haven CT, USA
- 7 *Corresponding author, <u>thomas.near@yale.edu</u>
- 8

9 Abstract.

10 Acipenseriformes, comprising sturgeons and paddlefishes, is one of the three ancient and 11 species-poor living lineages of non-teleost Actinopterygii. Here, we use DNA sequence 12 and morphological data to investigate the phylogenetic relationships of sturgeons and 13 produce a phylogenetic basis for the taxonomy of Acipenseridae. We resolve five major 14 clades within sturgeons. As in previous studies, species of *Scaphirhynchus* and 15 *Pseudoscaphirhynchus* each resolve as monophyletic groups, whereas *Huso* and 16 Acipenser are paraphyletic. To render all acipenserid genera monophyletic, we confine 17 Acipenser to A. sturio Linnaeus 1758, A. oxyrincus Mitchill 1815, and A. desotoi 18 Vladykov 1955, and resurrect the genus name Sinosturio Jaekel 1929 for a well-19 supported clade consisting of Sinosturio dabryanus (Duméril 1869), S. sinensis (Gray 20 1835), S. transmontanus (Richardson 1836), S. schrenckii (Brandt 1869), S. medirostris 21 (Ayres 1854), S. mikadoi (Hilgendorf 1892), and S. dauricus (Georgi 1775). Phylogenies 22 that we infer using concatenated nuclear genes and concatenated nuclear and 23 mitochondrial DNA sequences resolve Huso huso (Linnaeus 1758) and ten species 24 traditionally classified as Acipenser as a monophyletic group. We suggest applying the 25 genus name *Huso* to this lineage. Our analyses provide a robust framework for a 26 phylogenetic taxonomy of sturgeons and a foundation for future studies of the 27 relationships and ages of acipenserid clades. 28 **Keywords**: *PhyloCode*; *Acipenseriformes*; *Acipenseridae*; sturgeon; taxonomy; 29 systematics; phylogenetics

30

32 In the 21st century, molecular phylogenies have produced a broad consensus 33 surrounding the evolutionary relationships of ray-finned fishes, the *Actinopterygii* 34 (Dornburg and Near 2021). This emerging phylogeny has formed the basis of taxonomies 35 of ray-finned fishes using both traditional ranked (i.e., Linnaean) and rank-free (i.e., 36 *PhyloCode*) strategies (Betancur-R et al. 2017; Dornburg and Near 2021; Near and 37 Thacker 2024). A phylogeny-based rank-free taxonomy of *Actinopterygii* is enabled by a 38 set of phylogenetic analyses that consistently resolve a fairly congruent ray-finned fish 39 tree of life (Near et al. 2012; Miya and Nishida 2015; Hughes et al. 2018; Dornburg and 40 Near 2021; Near and Thacker 2024). Although the relationships among the major 41 lineages of Actinopterygii and Teleostei are largely resolved, the phylogenies of a few 42 deeply divergent lineages of ray-finned fishes remain unclear (Dornburg and Near 2021; 43 Near and Thacker 2024).

44 One of the most ancient clades of ray-finned fishes is *Acipenseriformes* (sturgeons 45 and paddlefishes), which, along with *Polypteridae* (bichirs and Reedfish) and *Holostei* 46 (gars and bowfins), form a grade leading to the hyper-diverse *Teleostei* (Near et al. 2012; 47 Betancur-R et al. 2017; Hughes et al. 2018; Dornburg and Near 2021; Near and Thacker 48 2024). Sturgeons and paddlefishes are characterized by a mouth positioned ventrally, a 49 developed rostrum composed of a high number of ossifications, a poorly ossified 50 skeleton, and a heterocercal tail (Bemis et al. 1997; Hilton et al. 2011). The fossil record 51 of Acipenseriformes stretches back to the early Mesozoic and includes representatives of 52 both living clades known from complete skeletons (Grande and Bemis 1991; Bemis et al. 53 1997; Bemis and Kynard 1997; Hilton et al. 2011; Sato et al. 2018; Murray et al. 2020; 54 Hilton et al. 2021; Brownstein 2023; Hilton et al. 2023; Hilton and Grande 2023; Martill 55 2023; Murray et al. 2023). The body plans of the 27 living species of sturgeons and the 56 single surviving extant paddlefish *Polyodon spathula* closely resemble those of extinct 57 forms dating to the Late Cretaceous (Grande and Bemis 1991; Hilton et al. 2011; Sato et 58 al. 2018; Murray et al. 2020; Hilton et al. 2023; Hilton and Grande 2023; Murray et al. 59 2023), and the conserved morphology and low molecular evolutionary rates of sturgeons 60 and paddlefishes has led to them being labeled living fossils (Gardiner 1984; Grande and 61 Bemis 1991; Bemis et al. 1997; Hilton et al. 2011; Brownstein et al. 2024).

62 The phylogeny of Acipenseriformes has been investigated using morphological 63 characters (Grande and Bemis 1996; Mayden and Kuhajda 1996; Findeis 1997; 64 Artyukhin 2006; Hilton and Forey 2009; Hilton et al. 2011) and DNA sequence data 65 (Birstein and DeSalle 1998; Doukakis 2000; Birstein et al. 2002; Dillman et al. 2007; Peng et al. 2007; Krieger et al. 2008; Luo et al. 2019; Nedoluzhko et al. 2020; Shen et al. 66 67 2020; Cheng et al. 2021). Yet, the systematics of the Acipenseriformes, particularly 68 lineages within Acipenseridae (sturgeons), remains controversial. This is chiefly because 69 both Acipenser Linnaeus 1758 and Huso Linnaeus 1758 are paraphyletic in phylogenies 70 inferred from both morphological and molecular data (Birstein and DeSalle 1998; 71 Birstein et al. 2002; Dillman et al. 2007; Peng et al. 2007; Krieger et al. 2008; Hilton et 72 al. 2011; Luo et al. 2019; Shen et al. 2020; Shedko 2022; Dadkhah et al. 2023). Because 73 of the massive sizes of acipenserid genomes, orthologous nuclear gene sets are difficult to 74 assemble across sturgeon diversity; this has led to a reliance on mitochondrial DNA 75 (mtDNA) for inferring the phylogeny of *Acipenseridae* (Ludwig et al. 2001; Du et al. 76 2020). Together, these issues hamper the reconciliation of acipenserid taxonomy with the 77 phylogeny of this clade.

78 Sturgeons rank among the most globally endangered vertebrate groups (White et 79 al. 2023; [IUCN] International Union for Conservation of Nature 2024). The 20th century 80 saw a rapid expansion of the global sturgeon fishery, driven by increasing demand for 81 caviar and sturgeon meat (Bronzi et al. 2019). This expansion led to a severe decline in 82 sustainable sturgeon populations worldwide (Raymakers and Hoover 2002; White et al. 83 2023). The potential existence of cryptic species within already endangered sturgeon 84 lineages (e.g., Birstein et al. 2005) highlights the critical need for a taxonomy that 85 accurately reflects the phylogenetic relationships within this clade. Such a taxonomy is 86 essential for conservation efforts and management strategies that effectively conserve 87 both species diversity and unique evolutionary history (Gumbs et al. 2024).

Here, we use a combination of mtDNA, nuclear DNA, and morphological
characters to assess the phylogenetic relationships of sturgeons and produce a revised
rank-free classification of *Acipenseridae*. Our revision includes the resurrection of *Sinosturio* Jaekel in Weigelt (1929) for the genus group name of clade of species
distributed primarily in Pacific regions of Asia and North America (Birstein et al. 2002;

```
93 Dillman et al. 2007; Peng et al. 2007; Krieger et al. 2008; Luo et al. 2019; Shen et al.
```

- 94 2020; Shedko 2022) and the expansion of *Huso* to comprise a clade of sturgeons
- 95 distributed in primarily the Atlantic, Siberian Sea, Black Sea, Caspian Sea, Adriatic Sea,

and Aral Sea (Table 1).

97

98 Materials and Methods

99

100 Molecular Sequence Dataset and Morphological Dataset Assembly. The molecular 101 datasets used in this study were constructed from NCBI and the morphological data is 102 reanalyzed from scientific publications. Because the data we use is compiled from several 103 studies from different research groups, DNA sequences representing individual species do not necessarily come from the same individual specimens. We compiled *cytochrome b* 104 105 (cytb) sequence data from the mitochondrial genomes of every species of sturgeon and 106 paddlefish. We combined these data with DNA sequences from the 30 nuclear genes 107 (Luo et al. 2019). All molecular data used in this study were extracted from the NCBI 108 database GenBank. NCBI accession numbers for each sequence are provided in Tables 109 S1 and S2. Given that all the genes used in this study are protein coding and there were a 110 limited number of insertions and deletions in the gene sequences among the sampled 111 species, sequences of *cvtb* and each of the nuclear genes were aligned manually by eye. 112 We expanded a morphological dataset used in a previous phylogenetic analysis of 113 Acipenseriformes (Hilton et al. 2011) to include the species *†*Acipenser praeparatorum 114 Hilton and Grande 2023 from the Maastrichtian Hell Creek Formation (Hilton and 115 Grande 2023). Several recently described extinct species of sturgeons were not included 116 owing to the highly incomplete nature of known fossils (Murray et al. 2020; Hilton and 117 Grande 2023; Murray et al. 2023). 118 119 **Maximum Likelihood Analyses.** We inferred the phylogenetic relationships of

120 sturgeons using maximum likelihood analyses of the alignments of the *cytb* gene, the

121 combined 30 nuclear genes, and a concatenated dataset of the *cytb* and 30 nuclear genes

122 using IQ-TREE (Nguyen et al. 2015). In analyses of each dataset, we allowed for free-

123 rate heterogeneity and assessed nodal support using 1000 ultrafast bootstraps

124 and 1000 replicates of the Shimodaira–Hasegawa approximate likelihood ratio (SH-r)

125 test. We selected optimal models of nucleotide evolution using ModelFinder Plus

- 126 (Nguyen et al. 2015; Kalyaanamoorthy et al. 2017).
- 127

128 Bayesian Tip-Dating Analyses. Using the modified morphological dataset of Hilton et 129 al. (2011) and input ages from Shedko (2022), we conducted a Bayesian tip-dating 130 analysis in BEAST 2.6.6 (Bouckaert et al. 2019) using the Fossilized Birth-Death Model 131 (Gavryushkina et al. 2017). We partitioned the morphological characters by state count 132 and used the Markov-variable model of discrete morphological character evolution 133 (Lewis 2001). We used a relaxed log-normal clock model and set the origin prior to 254.1 134 Ma, which is the lower boundary of the Wuchiapingian Stage of the Permian Period and 135 approximates the oldest fossils attributable to total clade Acipenseriformes (Liu and Wei 136 1988), assuming resolution of *†Saurichthyiformes* as the sister lineage of *Chondrostei* 137 total group (Argyriou et al. 2022). We set the lower bound as the base of the Triassic, 138 251.9 Ma, which approximates the median bound found for pan-acipenseriforms (Shedko 139 2022), and the upper bound to 358.9 Ma, the Carboniferous-Devonian Boundary, which 140 is the approximate upper bound for the split between Acipenseriformes and Neopterygii 141 estimated in relaxed molecular clock analyses (Near et al. 2012; Hughes et al. 2018; Bi et 142 al. 2021). We set the diversification rate parameter to 0.11, which is the number of living 143 species in the dataset divided by the median origin time, and rho, the proportion of living 144 species sampled, to 1.0. We constrained *†Chondrosteus acipenseroides* Egerton 1858 as 145 the outgroup and performed two independent analyses using BEAST 2.6.6 with 5.0×10^7 146 generations augmented by a pre-burnin of 1.0×10^7 generations. We checked ESS values 147 and conversion of the posteriors using Tracer 1.7.1 (Rambaut et al. 2018). Posterior tree 148 files were combined and summarized into a maximum clade credibility tree with median 149 node heights using LogCombiner v. 2.6.7 and TreeAnnotator v. 2.6.6 (Bouckaert et al. 150 2019).

For each of the six fossil calibrations we justify the phylogenetic placement, provide information on the stratigraphy, and give the age used in the fossil tip-dated relaxed clock analyses:

155	†Chondrosteus acipenseroides Egerton 1858
156	Phylogenetic placement : <i>†Chondrosteus acipenseroides</i> is placed as the sister to
157	crown Acipenseriformes based on the results of previous phylogenetic analyses
158	and results of Bayesian tip-dated phylogenetic analysis of morphological
159	characters conducted in this study (Hilton and Forey 2009; Hilton et al. 2011;
160	Shedko 2022).
161	Stratigraphy: Triassic-Jurassic of Dorset, England (Egerton 1858; Hilton and
162	Forey 2009).
163	Fossil tip age: 201.3 Ma (Shedko 2022).
164	
165	†Peipiaosteus pani Liu and Zhou 1965
166	Phylogenetic placement: †Peipiaosteus pani is the sister lineage of all other pan-
167	polyodontids in Acipenseriformes in our Bayesian tip-dated phylogenetic analysis
168	of morphological characters.
169	Stratigraphy: Yixian Formation, Liaoning, China; Barremian Stage of the Early
170	Cretaceous (Liu and Zhou 1965; Jin 1999).
171	Fossil tip age: 125.0 Ma (Shedko 2022)
172	
173	†Protopsephurus liui Lu 1994
174	Phylogenetic placement: <i>†Protopsephurus liui</i> is placed as the sister to
175	Polyodontidae in Acipenseriformes based on previous phylogenetic analyses and
176	the results of Bayesian tip-dated phylogenetic analysis of morphological
177	characters conducted in this study (Grande et al. 2002; Hilton and Forey 2009;
178	Hilton et al. 2011; Shedko 2022).
179	Stratigraphy: Yixian Formation, Liaoning, China; Barremian Stage of the Early
180	Cretaceous (Lu 1994; Jin 1999; Grande et al. 2002).
181	Fossil tip age: 125.0 Ma (Shedko 2022).
182	
183	†Priscosturion longipinnis (Grande and Hilton 2006)
184	Phylogenetic placement: †Priscosturion longipinnis is placed as the sister
185	lineage of all other pan-acipenserids in Acipenseriformes based on the results of

186	Bayesian tip-dated phylogenetic analysis of morphological characters conducted		
187	in this study, as well as previous phylogenetic analyses (Grande and Hilton 2006;		
188	Hilton and Forey 2009; Hilton et al. 2011; Shedko 2022).		
189	Stratigraphy: Judith River Formation, Alberta, Canada; early Campanian Stage		
190	of the Late Cretaceous (Grande and Hilton 2006).		
191	Fossil tip age: 79.6 Ma (Shedko 2022).		
192			
193	†Anchiacipenser acanthaspis Sato, Murray, Vernygora, and Currie 2018		
194	Node calibrated: †Anchiacipenser acanthaspis is placed as the sister lineage of		
195	Acipenseridae in Acipenseriformes based on the results of Bayesian tip-dated		
196	phylogenetic analysis of morphological characters conducted in this study.		
197	Stratigraphy: Dinosaur Park Formation, Alberta, Canada; late Campanian Stage		
198	of the Late Cretaceous (Sato et al. 2018).		
199	Fossil tip age: 75.5 Ma (Shedko 2022).		
200			
201	†Acipenser praeparatorum Hilton and Grande 2023		
202	Node calibrated: † <i>Acipenser praeparatorum</i> is placed as the sister lineage of a		
203	clade containing species of Huso and Pseudoscaphirhynchus in Acipenseridae		
204	based on the results of Bayesian tip-dated phylogenetic analysis of morphological		
205	characters conducted in this study.		
206	Stratigraphy: Hell Creek Formation, North Dakota, USA; late Maastrichtian		
207	Stage of the Late Cretaceous (Hilton and Grande 2023).		
208	Fossil tip age: 66.0 Ma (Gale et al. 2020; Gradstein and Ogg 2020).		
209			
210	For the tip-dated Bayesian analysis of the concatenated molecular dataset, we		
211	inserted the six fossils with 'NNN' strings and fixed their positions based on the tip-dated		
212	Bayesian phylogeny generated using the morphological character matrix. We used the		
213	Fossilized Birth-Death Model with the Lognormal Relaxed Clock prior, a JC69 model of		
214	nucleotide evolution, and among-site rate variation with a gamma distribution. The origin		
215	prior and its bounds were the same as in the analysis of the morphological character		
216	matrix. We set the diversification rate parameter to 0.14, which is the number of species		

217 sampled in the dataset divided by the origin prior. We set rho to 1.0 as all living species 218 were sampled. As with the Bayesian analysis of the morphological dataset, we performed 219 two independent analyses using BEAST 2.6.6 with 5.0 x 10^7 generations augmented by a 220 pre-burnin of $1.0 \ge 10^7$ generations. We used a 50% burnin and validated that all runs 221 converged and that all ESS values were greater than 200 using Tracer 1.7.1 (Rambaut et 222 al. 2018), and combined and summarized posterior tree sets into a maximum clade 223 credibility tree with median node heights using LogCombiner v. 2.6.7 and TreeAnnotator 224 v. 2.6.6 (Bouckaert et al. 2014; 2019).

225

226 Taxonomy. We developed a phylogenetic taxonomy of Acipenseridae following the 227 principles of phylogenetic nomenclature outlined in the *PhyloCode* (de Queiroz and 228 Gauthier 1990, 1992, 1994; Cantino and de Queiroz 2020). Following Recommendation 229 6.1A in the International Code of Phylogenetic Nomenclature (*PhyloCode*) ver. 6 230 (Cantino and de Queiroz 2020), we italicize all formal clade names. Following Articles 231 9.5 and 9.9, the clades we name and review here are defined as minimum-crown-clades 232 that have at minimum two internal specifiers that are both extant (Cantino and de Queiroz 233 2020).

234

235 Results

236

237 **Phylogenetic Relationships of** *Acipenseridae*. Apart from the tip-dated Bayesian 238 analysis of the morphological dataset, our analyses of different datasets resulted in 239 largely congruent phylogenetic relationships of Acipenseridae. These results are also 240 consistent with previous studies using the same molecular datasets (Luo et al. 2019; 241 Shedko 2022; Birstein, Doukakis, and DeSalle 2002; Krieger et al. 2008; Shen et al. 242 2020; Peng et al. 2007). The maximum likelihood phylogenies that we inferred using *cytb* 243 (Figure 1), DNA sequences from 30 nuclear gene presented in Luo et al. (2019) (Figure 244 2), and concatenated nuclear and mitochondrial sequences (Figure 3) resolve four major 245 clades of Acipenseridae. The morphological dataset does not include any species of 246 Acipenser sensu stricto (Figure 4). In all inferences of molecular datasets and analysis of 247 the combined molecular and morphology dataset (Figures 1–3, 5), Acipenser Linnaeus

248 1758 sensu stricto is resolved as the sister to all other living species of Acipenseridae and 249 includes the type species of Acipenser, A. sturio Linnaeus 1758, as well as the species A. 250 oxyrinchus Mitchill 1815 and A. desotoi Vladykov 1955. A clade of Pacific species that 251 were traditionally classified in Acipenser and Huso includes Sinosturio dabryanus 252 (Duméril 1869), Sinosturio medirostris (Ayers 1854), Sinosturio mikadoi (Hilgendorf 253 1892), Sinosturio transmontanus (Richardson 1836), Sinosturio sinensis (Gray 1835), 254 Sinosturio schrenckii (Brandt 1869), and Sinosturio dauricus (Georgi 1775) and is 255 resolved in the phylogenetic analyses of the nuclear genes (Figure 2), the analysis of the 256 concatenated *cytb* and nuclear genes (Figure 3), and the fossil tip-dated relaxed clock 257 analysis (Figure 5). The shovelnose sturgeons *Scaphirhynchus* Heckel 1836 and 258 *Pseudoscaphirhynchus* Nikolskii 1900, each resolved as monophyletic, either form a 259 grade leading to a clade of Atlantic species with uncertain phylogenetic relationships that 260 are traditionally classified in Acipenser and Huso (Figures 2, 3, and 5) or bracket this 261 clade such that *Pseudoscaphirhynchus* is nested within the Atlantic clade as sister to 262 Huso stellatus (Pallas 1771) (Figure 1, Figure 4).

263 The phylogenetic resolution of *Pseudoscaphirhynchus* within Acipenseridae is the 264 most noteworthy incongruence among phylogenies of sturgeons inferred using 265 mitochondrial (Figure 1), nuclear (Figure 2), morphological (Figure 4), and concatenated 266 nuclear and mitochondrial datasets (Figure 3). The Bayesian tip-dated phylogeny of 267 Acipenseridae resolves Pseudoscaphirhynchus as the sister lineage of the Atlantic Clade, 268 delimited here as *Huso* Brandt & Ratzeburg 1833, but places *Scaphirhynchus* as the sister 269 lineage of a clade containing Huso, Pseudoscaphirhynchus, and the Pacific Clade 270 delimited here as *Sinosturio* Jaekel in Weigelt (1929). There is strong support (posterior = 271 1.0) for the placement of Acipenser stellatus in Huso (Figure 5) rather than as the sister 272 species of *Pseudoscaphirhynchus* (Figure 1, Figure 4).

273

Divergence Time Estimates. The time-calibrated phylogenies from our Bayesian
analyses of morphological and molecular characters produce different estimates of the
timescale of acipenserid evolutionary history, although both relaxed clock analyses place
the most recent common ancestor (MRCA) of *Acipenseridae* in the middle to Late

278 Cretaceous. The relaxed clock tip-dating analysis of morphological data result in a

posterior estimated age of the MIXCA of Acipenserijormes at 202.02 Ma (95% HFD.
148.89, 265.47 Ma), crown Acipenseridae originates at 84.3 Ma (95% HPD: 66.6, 108.77
Ma), and the clade consisting of all sturgeons to the exclusion of Scaphirhynchus
originates at 39.1 Ma (95% HPD: 13.92, 70.59 Ma). In the tip-dated relaxed clock
analysis using the concatenated mitochondrial and nuclear gene molecular data, the
estimated age of the MRCA of Acipenseriformes is 172.22 Ma (95% HPD: 128.88, 220.9
Ma). The age of the MRCA of Acipenseridae is 100.55 Ma (95% HPD: 71.34, 138.6
Ma). Acipenser sensu stricto (A. sturio, A. oxyrincus, and A. desotoi) originates during the
latest Paleogene, 24.69 Ma (95% HPD: 1.7, 55.14 Ma). The MRCA of Sinosturio is dated
to the Eocene (median = 57.72 Ma, 95% HPD: 23.73, 87.29 Ma), as is the MRCA of
<i>Huso</i> (median = 53.06 Ma, 95% HPD: 30.32, 75.81 Ma). The MRCAs of
Pseudoscaphirhynchus (median = 9.02 Ma, 95% HPD: 0.36, 32.73 Ma) and
Scaphirhynchus (median = 5.86 Ma, 95% HPD: 0.1, 40.98 Ma) are both estimated as
Late Miocene in age.
Taxonomy
Acipenseridae Bonaparte 1831 [C.D. Brownstein and T. J. Near], converted clade
name
Definition: The least inclusive crown clade that contains Acipenser sturio Linnaeus
1758, Huso huso (Linnaeus 1758), and Sinosturio dabryanus (Duméril 1869). This is a
minimum-crown-clade definition.
Registration number: 1079
Etymology: Acipenser is the Latin name for sturgeon, which is derived from the ancient
Greek ἀκκιπήσιος (Thompson 1947).
Reference Phylogeny: A phylogeny inferred from a concatenated DNA sequence dataset
= 120 = 12
containing a mitochondrial (<i>cyto</i>) gene and 30 nuclear genes (Figure 5). The extinct

310 poorly-preserved specimen, is not included in the reference phylogeny; this taxon

311 resolves as the sister species of *Scaphirhynchus* in phylogenies inferred from

morphological characters (Grande and Bemis 1996:fig. 11; Grande and Hilton 2006:fig.30).

314

315 **Composition**: Acipenseridae includes 27 living species (Table 1; Fricke et al. 2023) 316 classified in Acipenser Linnaeus 1758, Huso Brandt and Ratzeburg 1833, Scaphirhynchus 317 Heckel 1836, Pseudoscaphirhynchus Nikolskii 1900, and Sinosturio Jaekel in Weigelt 318 (1929). Fossil taxa of Acipenseridae include *†Protoscaphirhynchus squamosus*, 319 *†"Acipenser" praeparatorum* Hilton and Grande 2023, and potentially 320 *†Acipenser amnisinferos* Hilton and Grande 2023, though this lattermost species is only 321 known from a single partial skull and has not been included in phylogenetic analyses. No 322 new living species of Acipenseridae have been described in the past 10 years (Fricke et 323 al. 2023).

324

325 **Diagnostic Apomorphies:** Morphological synapomorphies of *Acipenseridae* include (1) 326 five rows of bony scutes or plates on trunk of body (Grande and Bemis 1991, 1996; 327 Bemis et al. 1997; Findeis 1997; Artyukhin 2006; Grande and Hilton 2006; Hilton et al. 328 2011), (2) mandibular sensory canal absent (Grande and Bemis 1991), (3) stout anterior 329 spine of pectoral fin composed of fused fin rays (Grande and Bemis 1991, 1996; Bemis et 330 al. 1997; Findeis 1997), (4) presence of a platelike supraorbital with a descending 331 preorbital process (Grande and Bemis 1996; Grande and Hilton 2006; Hilton et al. 2011), 332 (5) rostral canals arched, curving lateral to barbels (Grande and Bemis 1996; Bemis et al. 333 1997; Findeis 1997; Hilton et al. 2011), (6) posterior cleithral notch present (Grande and 334 Bemis 1996; Bemis et al. 1997; Findeis 1997; Grande and Hilton 2006; Hilton et al. 335 2011), (7) supracleithral cartilage present (Findeis 1997; Hilton et al. 2011), (8) 336 basipterygial process present (Findeis 1997), (9) palatal process present (Findeis 1997; 337 Hilton et al. 2011), (10) hypobranchial I with an anterior shelf (Findeis 1997; Hilton et al. 338 2011), (11) hypobranchial 3 makes a bicontact joint with basibranchial 1 (Findeis 1997), 339 (12) ascending process of parasphenoid extends anteriorly, (13) individual elements of

branchiostegals are distinctly shaped (Hilton et al. 2011), and (14) trunk lateral lineencased in large scutes (Hilton et al. 2011).

342

343 **Synonyms**: *Sturionidae* (Owen 1846:50) is a partial synonym of *Acipenseridae*.

344

345 **Comments**: The extinct species *†Anchiacipenser acanthaspis* from the Campanian in 346 Alberta, Canada (Sato et al. 2018), *†Priscosturion longipinnis* from the Campanian in 347 Montana, USA (Grande and Hilton 2006, 2009), †*Engdahlichthys milviaegis* from the 348 Danian in Montana, USA (Murray et al. 2020), and *Boreiosturion labyrinthicus* from 349 the Campanian in Alberta, Canada (Murray et al. 2023) have occasionally been classified 350 in Acipenseridae. Phylogenetic analyses of morphological characters consistently resolve 351 these fossil taxa outside of the crown Acipenseridae or in a polytomy along with several 352 lineages of Acipenseridae (Grande and Hilton 2006; Hilton and Forey 2009; Hilton et al. 353 2011; Sato et al. 2018; Shedko 2022; Murray et al. 2023). We treat these fossil taxa as 354 pan-acipenserids and they are not included in our delimitation of *Acipenseridae*. 355 Several morphological character states proposed as apomorphies for

356 Acipenseridae are diagnostic for a more inclusive pan-acipenserid clade that includes 357 *†Priscosturion longipinnis*. Possible synapomorphies for this acipenserid total clade 358 include the supracleithrum reaching the level of the extrascapulars (Grande and Bemis 359 1996; Findeis 1997; Hilton et al. 2011), the presence of a cardiac shield (Grande and 360 Bemis 1996; Findeis 1997; Hilton et al. 2011), a pillar-like and laterally concave 361 dorsalmost branchiostegal (Findeis 1997; Hilton et al. 2011), and a suture between 362 clavicle and cleithrum is interdigitating (Findeis 1997; Hilton et al. 2011). The presence 363 of supracleithral cartilage may be an apomorphy for Acipenseridae, but its absence in 364 fossil pan-acipenserids might be a preservational artifact (Hilton et al. 2011).

365

366 Zoological Nomenclature (Van der Laan et al. 2014:27).

367

368 **Constituent Lineages:**

Acipenser	Huso	Pseudoscaphirhynchus
Scaphirhynchus	Sinosturio	†"Acipenser" praeparatorum

Acipenseridae is a valid family-group name under the International Code of

 $\dagger Protos caphirhynchus$

369	
370	Acipenser Linnaeus 1758 [C.D. Brownstein and T. J. Near], converted clade name
371	
372	Definition: The least inclusive crown clade that contains Acipenser sturio Linnaeus
373	1758, Acipenser oxyrinchus Mitchill 1815, and Acipenser desotoi Vladykov 1955. This is
374	a minimum-crown-clade definition.
375	
376	Registration number: 1080
377	
378	Etymology: Acipenser is the Latin name for sturgeon, which is derived from the ancient
379	Greek ἀκκιπήσιος (Thompson 1947).
380	
381	Reference Phylogeny: A phylogeny inferred from a concatenated DNA sequence dataset
382	containing a mitochondrial (cytb) gene and 30 nuclear genes (Figure 5).
383	
384	Composition: Acipenser includes three living species Acipenser desotoi Vladykov 1955
385	Gulf Sturgeon, Acipenser oxyrinchus Mitchill 1815 Atlantic Sturgeon, and Acipenser
386	sturio Linnaeus 1758 European Sea Sturgeon (Table 1).
387	
388	Diagnostic Apomorphies: There are no known morphological synapomorphies for
389	Acipenser; however, in a parsimony analysis of morphological characters, the reduction
390	of the bulb-shaped sack of the stomach resolves Acipenser as monophyletic (Artyukhin
391	2006). This trait is also present in <i>Huso huso</i> and all species of <i>Sinosturio</i> except <i>S</i> .
392	schrenckii (Artyukhin 2006).
393	
394	Synonyms: Antaceus (Fitzinger and Heckel 1836:292–293) and Dinoctus (Rafinesque
395	1818:447) are unambiguous synonyms of Acipenser. Gladostomus (Holly 1936:31),
396	Helopes (Brandt and Ratzeburg 1833:3), Lioniscus (Fitzinger and Heckel 1836:270), and
397	Shipa (Brandt 1869:113) are partial synonyms of Acipenser.
398	

399 **Comments**: In molecular phylogenies, *Acipenser* is consistently resolved as a clade and 400 often as the sister lineage of all other Acipenseridae (Figures 1, 2, 3, and 5; Birstein and 401 DeSalle 1998; Fontana et al. 2001; Ludwig et al. 2001; Birstein et al. 2002; Krieger et al. 402 2008; Laumann 2016; Luo et al. 2019; Shen et al. 2020; Cheng et al. 2021; Shedko 2022; 403 Tsessarsky 2022). The monophyly of Acipenser is not supported in a set of phylogenetic 404 analyses using 62 morphological characters (Hilton and Forey 2009; Hilton et al. 2011; 405 Sato et al. 2018; Murray et al. 2023), but Acipenser is resolved as a clade in a maximum 406 parsimony analysis of 28 morphological characters (Artyukhin 2006). 407 The North American species Acipenser oxyrinchus and A. desotoi are 408 allopatrically distributed along the Atlantic Slope and eastern Gulf of Mexico (Vladykov 409 1955; Vladykov and Greeley 1963; Gruchy and Parker 1980c; Smith 1985:47; Jenkins 410 and Burkhead 1994:187; Boschung and Mayden 2004:107; Wilson and McKinley 2004; 411 Rohde et al. 2009:71–72; Kuhajda 2014; Robins et al. 2018:42–44). Acipenser desotoi 412 was initially described as a subspecies of A. oxyrinchus (Vladykov 1955). However, 413 subsequent analysis of morphological differences and the presence of species-specific 414 mtDNA haplotypes support the recognition of the Atlantic Sturgeon and Gulf Sturgeon as 415 distinct species (Wooley 1985; Ong et al. 1996). 416 Acipenser is a valid genus-group name under the International Code of 417 Zoological Nomenclature that was historically applied to a group of 18 species of 418 Acipenseridae (Eschmeyer and Fricke 2024). Given the non-monophyly of this previous 419 delimitation of *Acipenser*, we limit the group to three species (Table 1; Figures 1, 2, 3, 420 and 5). Acipenser sturio Linnaeus 1758 is the type species of Acipenser. 421 422 **Constituent Species:** Acipenser desotoi Acipenser oxyrinchus Acipenser sturio 423 424 Sinosturio Jaekel in Weigelt 1929 [T. J. Near and C.D. Brownstein], converted clade 425 name 426

427	Definition: The least inclusive crown clade that contains Sinosturio transmontanus
428	(Richardson 1836), Sinosturio medirostris (Ayers 1854), and Sinosturio dabryanus
429	(Duméril 1869). This is a minimum-crown-clade definition.
430	
431	Registration number: 1081
432	
433	Etymology: Sinosturio is from the French sino pertaining to China and the Latin sturio,
434	which means sturgeon.
435	
436	Reference Phylogeny: A phylogeny inferred from a concatenated DNA sequence dataset
437	containing a mitochondrial (cytb) gene and 30 nuclear genes (Figure 5).
438	
439	Composition: Sinosturio includes seven living species: Sinosturio dabryanus (Duméril
440	1869) Yangtze Sturgeon, Sinosturio dauricus (Georgi 1775) Kaluga, Sinosturio
441	medirostris (Ayers 1854) Green Sturgeon, Sinosturio mikadoi (Hilgendorf 1892)
442	Sakhalin Sturgeon, Sinosturio schrenckii (Brandt 1869) Japanese Sturgeon, Sinosturio
443	sinensis (Gray 1835) Chinese Sturgeon, and Sinosturio transmontanus (Richardson 1836)
444	White Sturgeon (Table 1).
445	
446	Diagnostic Apomorphies: Characters that may be synapomorphies of Sinosturio include
447	(1) a wide rostrum (Artyukhin 2006) and (2) the presence of large and rounded fontanelle
448	positioned between frontal bones (Artyukhin 2006). These traits are not present in S.
449	dauricus and S. schrenckii (Artyukhin 2006).
450	
451	Synonyms: There are no synonyms of Sinosturio.
452	
453	Comments: In molecular phylogenies, species of Sinosturio are resolved as a
454	monophyletic group that is distantly related to species of Acipenser and Huso (Figures 1,
455	2, 3, and 5; Ludwig et al. 2001; Dillman et al. 2007; Krieger et al. 2008; Laumann 2016;
456	Cheng et al. 2021; Shedko 2022).

457	Species of Sinosturio are distributed in the North Pacific of Asia and North			
458	America (Lee 1980a, b; Bemis et al. 1997; Wei et al. 1997; Billard and Lecointre 2000;			
459	Wilson and McKinley 200	4). Species of Sinosturio have	been referred as the Pacific	
460	Clade in previous phyloger	netic analyses (Luo et al. 2019)).	
461	Sinosturio is a valio	l genus-group name under the	International Code of	
462	Zoological Nomenclature.	Given the non-monophyly of	the previous delimitations of	
463	Acipenser and Huso, Sinos	Acipenser and Huso, Sinosturio was chosen because it is the oldest available group name		
464	among species resolved in	this clade. Sinosturio dabryan	nus (Duméril 1869) is the type	
465	species of Sinosturio.			
466				
467	Constituent Species:			
	Sinosturio dabryanus	Sinosturio dauricus	Sinosturio medirostris	
	Sinosturio mikadoi	Sinosturio schrenckii	Sinosturio sinensis	
	Sinosturio transmontanus			
468				
469	Huso Brandt and Ratzeb	urg 1833 [C.D. Brownstein a	and T. J. Near], converted clade	
470		name		
471				
472	Definition: The least inclusive crown clade that contains Huso huso (Linnaeus 1758),			
473	Huso fulvescens (Rafinesque 1817), and Huso gueldenstaedtii (Brandt and Ratzeburg			
474	1833). This is a minimum-	crown-clade definition.		
475				
476	Registration number: 108	32		
477				
478	Etymology: Huso is a Mec	lieval Latin and Old High Ger	man word for sturgeon (Scharpf	
479	2024).			
480				
481	Reference Phylogeny : A p	phylogeny inferred from a con	catenated DNA sequence dataset	
482	containing a mitochondrial	(cytb) gene and 30 nuclear ge	enes (Figure 5).	
483				

484 **Composition**: *Huso* includes 11 living species: *Huso baerii* (Brandt 1869) Siberian

- 485 Sturgeon, *Huso brevirostrum* (Lesueur 1818) Shortnose Sturgeon, *Huso colchicus* (Marty
- 486 1940) Colchian Sturgeon, Huso fulvescens (Rafinesque 1817) Lake Sturgeon, Huso
- 487 gueldenstaedtii (Brandt and Ratzeburg 1833) Russian Sturgeon, Huso huso (Linnaeus
- 488 1758) Beluga, *Huso naccarii* (Bonaparte 1836) Adriatic Sturgeon, *Huso nudiventris*
- 489 (Lovetsky 1828) Ship Sturgeon, Huso persicus (Borodin 1897) Persian Sturgeon, Huso
- 490 ruthenus (Linnaeus 1758) Sterlet, and Huso stellatus (Pallas 1771) Starry Sturgeon
- 491 (Table 1).
- 492
- 493 **Diagnostic Apomorphies:** There are no known morphological synapomorphies for
- 494 *Huso*. However, two characters are of note (1) numerous distinct prominences on the
- 495 surfaces of ventral rostral bones are present in *H. huso*, *H. ruthenus*, and *H. baerii* but not
- 496 *H. stellatus*, *H. brevirostrum*, and *H. fulvescens* (Hilton and Forey 2009; Hilton et al.
- 497 2011) and (2) a slight medial broadening of the dermopalatine is present in *H. huso*, *H.*
- 498 ruthenus, H. brevirostrum, and H. fulvescens but not in H. stellatus and H. baerii (Hilton
- 499 and Forey 2009; Hilton et al. 2011). A medially broadened dermopalatine is also present
- 500 in species of *Scaphirhynchus* and in *†Priscosturion longipinnis*. The presence of these
- 501 traits are not known for *Huso nudiventris*, *H. persicus*, *H. gueldenstaedtii*, *H. colchicus*,
- 502 and *H. naccarii* because these species were not included in the morphological
- 503 phylogenetic analyses (Hilton and Forey 2009; Hilton et al. 2011).
- 504
- 505 Synonyms: Antacea (Bory de Saint-Vincent 1822:410) is a synonym of Huso.
- 506
- 507 **Comments**: *Huso* is resolved as monophyletic and the sister lineage of
- 508 *Pseudoscaphirhynchus* in phylogenetic analyses of DNA sequences from nuclear genes
- and concatenated mtDNA and nuclear genes (Figures 2, 3, and 5; Luo et al. 2019).
- 510 Phylogenies inferred from mtDNA gene sequences consistently nest
- 511 *Pseudoscaphirhynchus* within *Huso* as the sister lineage of *H. stellatus* (Figure 1; Birstein
- 512 et al. 2002; Dillman et al. 2007; Laumann 2016; Shedko 2022). *Huso stellatus* and
- 513 *Pseudoscaphirhynchus* are resolved as a clade in morphological phylogenetic analyses on
- the basis of the horizontal arm of the jugal undercutting the nasal capsule (Doukakis

515 2000; Hilton and Forey 2009; Hilton et al. 2011; Sato et al. 2018; Hilton et al. 2022;
516 Murray et al. 2023).

517 There remains uncertainty in the delimitation of some species of Huso. Molecular 518 phylogenies inferred from mtDNA and SNPs resolve Huso baerii as the sister lineage of 519 a clade containing H. gueldenstaedtii, H. naccarii, and H. persicus (Figure 1; Ludwig et 520 al. 2001; Birstein et al. 2002; Dillman et al. 2007; Krieger et al. 2008; Rastorguev et al. 521 2008; Rastorguev et al. 2013; Laumann 2016; Cheng et al. 2021; Shedko 2022). In 522 contrast, phylogenetic analyses of nuclear genes resolve H. baerii and H. ruthenus as 523 sister species (Figure 2; Luo et al. 2019). Historically, *H. baerii* comprised three 524 subspecies (Ruban 1997): the nominate H. b. baerii, H. b. stenorrhynchus (Nikolskii 525 1896), and H. b. baicalensis (Nikolskii 1896). The subspecies are not distinct in analysis 526 of mtDNA, but the population of *H. baerii* in Lake Baikal contains several mtDNA 527 haplotypes not shared with other populations (Doukakis et al. 1999; Birstein et al. 2009). 528 The species H. colchicus, H. naccarii, and H. persicus have been considered in various 529 combinations as subspecies of *H. gueldenstaedtii* or *H. persicus* (Birstein and Bemis 530 1997; Ruban et al. 2008, 2011; Vasil'eva and Vasil'ev 2021), but all are treated as 531 distinct species here (Table 1; Vecsei and Artyukhin 2001; Eschmeyer and Fricke 2024). 532 Phylogenetic analysis of mtDNA gene sequences does not resolve specimens of H. 533 gueldenstaedtii, H. persicus, H. colchicus, nor H. naccarii as reciprocally monophyletic lineages (Birstein et al. 2000; Doukakis et al. 2005; Ruban et al. 2008, 2011). 534 535 Morphometric variation and differential timing of spawning in sympatry are cited as 536 evidence for the distinctiveness of *H. gueldenstaedtii* and *H. persicus* (Vasil'eva and 537 Vasil'ev 2021). Complicating the delimitation of species of *Huso* is the likely mtDNA 538 introgression between *H. baerii* and species of the *H. gueldenstaedtii* complex and the 539 exceptionally slow rate of molecular evolution in *Acipenseriformes* (Jenneckens et al. 540 2000; Rastorguev et al. 2008; Rastorguev et al. 2013; Brownstein et al. 2024). 541 Species of *Huso* are distributed in the Caspian Sea, Black Sea, Aral Sea, Aegean 542 Sea, Adriatic Sea, the Siberian Sea, the Atlantic Coast of North America, Mississippi 543 River system, Great Lakes, and Hudson Bay (Gruchy and Parker 1980a, b; Pirogovskii et 544 al. 1989; Shubina et al. 1989; Sokolov and Vasil'ev 1989a, c, b; Tortonese 1989; 545 Vlasenko et al. 1989a; Vlasenko et al. 1989b; Bemis et al. 1997; Billard and Lecointre

546 2000; Wilson and McKinley 2004). Species of *Huso* have been referred as the Atlantic

547 Clade in previous phylogenetic analyses (Luo et al. 2019).

548 *Huso* is a valid genus-group name under the *International Code of Zoological*

- 549 Nomenclature. Historically, Huso was a applied to a group containing two species
- 550 (Eschmeyer and Fricke 2024) that are not resolved as monophyletic (Figures 1, 2, 3, and
- 551 5). *Huso huso* (Linnaeus 1758) is the type species of *Huso*.
- 552

553 Constituent Species:

Huso bae	rii	Huso brevirostrum	Huso colchicus
Huso fulv	escens	Huso gueldenstaedtii	Huso huso
Huso nac	carii	Huso nudiventris	Huso persicus
Huso ruth	ienus	Huso stellatus	

554

Scaphirhynchus Heckel 1836 [C.D. Brownstein and T. J. Near], converted clade name

- 557
- 558 **Definition:** The least inclusive crown clade that contains *Scaphirhynchus platorynchus*
- 559 (Rafinesque 1820), *Scaphirhynchus albus* (Forbes and Richardson 1905), and
- 560 *Scaphirhynchus suttkusi* Williams and Clemmer 1991. This is a minimum-crown-clade 561 definition.
- 562

563 **Registration number:** 1083

564

565 Etymology: From the ancient Greek σκαφίς (sk'effiz) meaning spade or shovel, and

- 566 $\dot{\rho}$ ύγχος (I'Agko $\overline{v}z$) meaning the snout or muzzle of a mammal or the beak of a bird.
- 567

568 **Reference Phylogeny**: A phylogeny inferred from a concatenated DNA sequence dataset 569 containing a mitochondrial (*cytb*) gene and 30 nuclear genes (Figure 5).

- 570
- 571 **Composition**: *Scaphirhynchus* includes three living species: *Scaphirhynchus albus*
- 572 (Forbes and Richardson 1905) Pallid Sturgeon, *Scaphirhynchus platorynchus*

573 (Rafinesque 1820) Shovelnose Sturgeon, and *Scaphirhynchus suttkusi* Williams and
574 Clemmer 1991 Alabama Sturgeon (Table 1).

575

576 **Diagnostic Apomorphies:** Morphological synapomorphies of *Scaphirhynchus* include 577 (1) caudal peduncle and preanal area armored with scutes (Mayden and Kuhajda 1996; 578 Findeis 1997; Kuhajda 2002), (2) flattened and elongate caudal peduncle (Mayden and 579 Kuhajda 1996; Findeis 1997; Kuhajda 2002), (3) presence of preorbital spines (Mayden 580 and Kuhajda 1996; Kuhajda 2002), (4) presence of accessory fringe on barbel (Mayden 581 and Kuhajda 1996; Kuhajda 2002), (5) lower lip with four lobes (Mayden and Kuhajda 582 1996; Kuhajda 2002), (6) lower lip continuous or narrowly interrupted medially (Mayden 583 and Kuhajda 1996; Kuhajda 2002), (7) incompletely developed clavicle keel (Mayden 584 and Kuhajda 1996), (8) lateral extrascapulars are clustered laterally alongside the median 585 extrascapular (Findeis 1997), (10) complete circumorbital present (Findeis 1997), (11) 586 branchiostegal 1 short and triangular (Findeis 1997), (12) crenulated gill rakers (Findeis 1997), (13) cleithral wall present (Findeis 1997), (14) propterygial fossa encircled by a 587 588 thin process (Findeis 1997), (15) coracoid shelf restricted to the cleithrum (Findeis 1997), 589 (16) dermopalatine and ectopterygoid fused (Findeis 1997; Hilton et al. 2011), (17) 590 elongate caudal fin element present (Grande and Hilton 2006), (18) supraorbital bone 591 present with an considerably enlarged descending process (Hilton et al. 2011), (19) dorsal 592 head of hyomandibular is circular in cross section (Hilton et al. 2011), and (20) the 593 anterior junction of clavicles forms a straight line (Hilton et al. 2011). 594 595 **Synonyms**: Parascaphirhynchus (Forbes and Richardson 1905:38) and Scaphyrhynchops 596 Gill in Hayden (1863:178) are unambiguous synonyms of *Scaphirhynchus*. 597 598 **Comments**: Scaphirhynchus is consistently resolved as monophyletic in analyses of 599 morphological and molecular data (Mayden and Kuhajda 1996; Billard and Lecointre 600 2000; Ludwig et al. 2001; Birstein et al. 2002; Dillman et al. 2007; Peng et al. 2007;

601 Krieger et al. 2008; Laumann 2016; Shen et al. 2020; Cheng et al. 2021; Shedko 2022).

- 602 Phylogenetic analyses resolve every possible relationship among the three species of
- 603 Scaphirhynchus: morphology and mtDNA genes resolve S. suttkusi and S. platorynchus

604 as sister species (Mayden and Kuhajda 1996; Ludwig et al. 2001; Birstein et al. 2002;

605 Peng et al. 2007), analysis of combined morphological and mtDNA datasets, whole

species (Shen et al. 2020; Cheng et al. 2021).

606 mtDNA genomes, and 77 single nucleotide polymorphisms resolve S. platorynchus and

- 607 S. albus as sister species (Birstein et al. 2002; Laumann 2016; Zhou et al. 2022), and
- 608 phylogenetic analysis of whole mtDNA genomes resolve S. suttkusi and S. albus as sister 609

610 Meristic and morphometric traits provided evidence for the discovery, 611 delimitation, and description of the three species of *Scaphirhynchus* (Forbes and 612 Richardson 1905; Bailey and Cross 1954; Williams and Clemmer 1991; Keenlyne et al. 613 1994; Mayden and Kuhajda 1996; Kuhajda 2002). Relationships among the species of 614 Scaphirhynchus are unresolved and the species S. platorynchus and S. albus are not 615 reciprocally monophyletic in phylogenetic trees inferred from mtDNA sequences 616 (Simons et al. 2001; Dillman et al. 2007). This lack of reciprocal monophyly is reflected 617 by the lack of fixed genetic differences among the species of *Scaphirhynchus* (Phelps and 618 Allendorf 1983; Campton et al. 2000; Tranah et al. 2001; Schrey et al. 2007; Eichelberger 619 et al. 2014), but one allele at a single microsatellite locus is fixed for S. suttkusi (Ray et

620 al. 2007).

621 Scaphirhynchus is a valid genus-group name under the International Code of 622 Zoological Nomenclature and was applied to a group containing S. platorynchus and S. 623 albus (Bailey and Cross 1954), which was later expanded to include S. suttkusi (Williams 624 and Clemmer 1991). Scaphirhynchus platorynchus (Rafinesque 1820) is the type species

- 625 of Scaphirhynchus.
- 626

627 **Constituent Species:**

Scaphirhynchus albus Scaphirhynchus platorynchus Scaphirhynchus suttkusi

628

629 Pseudoscaphirhynchus Nikolskii 1900 [T. J. Near and C.D. Brownstein], converted 630 clade name

- 631
- 632 **Definition:** The least inclusive crown clade that contains *Pseudoscaphirhynchus*
- 633 fedtschenkoi (Kessler 1872), Pseudoscaphirhynchus hermanni (Kessler 1877), and

634	Pseudoscaphirhynchus kaufmanni (Kessler 1877). This is a minimum-crown-clade
635	definition.
636	
637	Registration number: 1084
638	
639	Etymology : From the ancient Greek $\psi \epsilon \tilde{\upsilon} \delta \sigma \zeta$ (s'u:do $\tilde{\upsilon}$) meaning a lie or falsehood, $\sigma \kappa \alpha \phi i \zeta$
640	(sk'effiz) meaning spade or shovel, and ῥύγχος (1'Agkoūz) meaning snout or muzzle of a
641	mammal or beak of a bird.
642	
643	Reference Phylogeny: A phylogeny inferred from a concatenated DNA sequence dataset
644	containing a mitochondrial (cytb) gene and 30 nuclear genes (Figure 5).
645	
646	Composition: Pseudoscaphirhynchus includes three living species:
647	Pseudoscaphirhynchus fedtschenkoi (Kessler 1872) Syr Darya Shovelnose Sturgeon,
648	Pseudoscaphirhynchus hermanni (Kessler 1877) Small Amu Darya Shovelnose Sturgeon,
649	and Pseudoscaphirhynchus kaufmanni (Kessler 1877) Amu Darya Shovelnose Sturgeon
650	(Table 1).
651	
652	Diagnostic Apomorphies: Morphological synapomorphies of Pseudoscaphirhynchus
653	include (1) presence of spikes on the frontal bones (Findeis 1997), (2) the trunk, occipital,
654	and supratemporal canals are enclosed by the lateral extrascapulars (Findeis 1997), (3)
655	the jugal is very large in size and lacks a canal process (Findeis 1997), (4) gill rakers are
656	distally split with paired pronged tips (Findeis 1997), (5) tips of the clavicles meet as an
657	anteromedial wedge (Findeis 1997), and (6) the caudal peduncle armored with irregularly
658	arranged scutes positioned dorsal and ventral to the lateral line scutes (Hilton et al. 2011).
659	
660	Synonyms: Hemiscaphirhynchus (Berg 1911) and Kessleria (Jordan 1905) are
661	unambiguous synonyms of Pseudoscaphirhynchus.
662	
663	Comments: Pseudoscaphirhynchus is resolved as monophyletic in analyses of
664	morphological and molecular data (Billard and Lecointre 2000; Birstein et al. 2002;

Dillman et al. 2007; Hilton and Forey 2009; Nedoluzhko et al. 2020; Shen et al. 2020;

- 666 Shedko 2022), but some analyses of morphological characters have resolved
- 667 Pseudoscaphirhynchus as paraphyletic relative to Scaphirhynchus (Mayden and Kuhajda
- 668 1996; Kuhajda 2002). Within *Pseudoscaphirhynchus*, phylogenetic analysis of mtDNA
- 669 resolves the possibly extinct *P. fedtschenkoi* as the sister lineage of a clade consisting of
- 670 P. hermanni and P. kaufmanni (Nedoluzhko et al. 2020). The sympatric
- 671 Pseudoscaphirhynchus hermanni and P. kaufmanni are both endemic to the Amu Darya
- 672 River and are both critically endangered due to the Aral Sea ecological disaster
- 673 (Zholdasova 1997; Nedoluzhko et al. 2020). Mitochondrial DNA gene trees do not
- 674 resolve the syntopic species *P. hermanni* and *P. kaufmanni* as reciprocally monophyletic,
- but both species are diagnosed by the presence or absence of rostral spines, caudal
- 676 filaments, and a skin fold at the anterior edge of the pectoral fin (Nedoluzhko et al. 2020).
- 677 *Pseudoscaphirhynchus* is a valid genus-group name under the *International Code*
- 678 *of Zoological Nomenclature* and was applied to a group containing *S. platorynchus* and *S.*
- 679 albus (Bailey and Cross 1954), which was later expanded to include S. suttkusi (Williams
- and Clemmer 1991). *Pseudoscaphirhynchus hermanni* (Kessler 1877) is the type species
- 681 of Pseudoscaphirhynchus.
- 682

683 **Constituent Species:**

Pseudoscaphirhynchus	Pseudoscaphirhynchus	Pseudoscaphirhynchus
fedtschenkoi	hermanni	kaufmanni

- 684
- 685

686 Discussion

Our phylogenetic analyses of sturgeons, using both morphological and molecular
data, corroborate previous studies indicating that the traditional classifications of *Acipenser* and *Huso* are not monophyletic (Figures 1, 2, 3, 4, and 5; Birstein et al. 2002;
Dillman et al. 2007; Peng et al. 2007; Krieger et al. 2008; Hilton et al. 2011; Sato et al.
2018; Luo et al. 2019; Shen et al. 2020; Shedko 2022). This non-monophyly has been
recognized for over a decade, with Hilton et al. (2011:157) asserting that "the current
classification of extant members of Acipenseridae does not reflect the phylogenetic

694 relationships within the family as they are currently understood." Given the consistent 695 evidence for non-monophyly of *Acipenser* and *Huso*, we propose revisions to the 696 taxonomy of Acipenseridae. These changes include redefining both genera and elevating 697 Sinosturio from synonymy with Acipenser. Taxonomy serves as the primary framework 698 for organizing our understanding of biodiversity, and biological classifications should 699 accurately represent phylogenetic relationships. Systematic studies produce phylogenies 700 and taxonomies that form the foundation for evolutionary and comparative interpretations 701 of biological information. Our proposed taxonomy of sturgeons aims to align with the 702 inferred phylogenetic relationships within this clade.

703 The lineages *Scaphirhynchus* and *Pseudoscaphirhynchus* were traditionally 704 classified in the Scaphirhynchinae or Scaphirynchini (Bailey and Cross 1954; Sokolov 705 and Berdichevski 1989; Mayden and Kuhajda 1996; Bemis et al. 1997; Findeis 1997). 706 However, this group is not monophyletic (Figures 1, 3, 4, and 5). There is incongruence 707 among the phylogenies that we infer using different types of molecular data: the mtDNA 708 gene tree resolves *Pseudoscaphirhynchus* nested in *Huso*, but the phylogenies inferred 709 from solely nuclear genes or concatenated mtDNA and nuclear genes resolve 710 *Pseudoscaphirhynchus* and *Huso* as sister lineages (Figures 2 and 3). In addition to a 711 number of proposed shared morphological character states (Findeis 1997; Artyukhin 712 2006), other traits common to *Scaphirhynchus* and *Pseudoscaphirhynchus* include a 713 relatively small body size, fan-shaped gill rakers, spines at the tip of the snout, and a flat 714 spade-shaped snout that are likely the result of convergent evolution associated with 715 adaptation to large river habitats (Mayden and Kuhajda 1996).

716 *Huso stellatus* and *Pseudoscaphirhynchus* are resolved as a clade in phylogenies 717 inferred from mtDNA and morphology (Figures 1 and 4; Birstein et al. 2002; Dillman et 718 al. 2007; Krieger et al. 2008; Hilton and Forey 2009; Hilton et al. 2011; Laumann 2016; 719 Shedko 2022; Tsessarsky 2022). Phylogenies inferred from DNA sequences of nuclear 720 genes resolve *Pseudoscaphirhynchus* as the sister lineage of all sampled species of *Huso* 721 (Figure 2; Luo et al. 2019). The incongruence between the mtDNA gene tree and nuclear 722 gene phylogeny may have resulted from ancient mitochondrial introgression from a 723 lineage of *Huso* to the common ancestor of *Pseudoscaphirhynchus*. Phylogenetic 724 inferences from morphology may be complicated by substantial within species variation

in skeletal features, as observed in *H. brevirostrum* (Hilton and Bemis 1999; Hilton et al.
2011).

727 Hybridization is common among species of Huso, Scaphirhynchus, and 728 Pseudoscaphirhynchus in natural conditions (Birstein et al. 1997; Tranah et al. 2004), and 729 a number of intergeneric hybrids, e.g., Huso naccarii X Acipenser transmontana, Huso 730 baerii X Sinosturio schrenckii, and Sinosturio dabryanus X Huso baerii, have been 731 produced in aquaculture settings (Congiu et al. 2001; Ludwig et al. 2002; Bi et al. 2023). 732 Detection of F2 individuals from hybrid crosses of species *Huso* and *Sinosturio* indicate 733 these intergeneric hybrids are both viable and fertile (Zhang et al. 2013). The ability of 734 lineages with a time to common ancestry exceeding 75 million years ago to produce 735 viable and fit hybrids is likely associated with the very slow molecular evolutionary rate 736 exhibited in Acipenseriformes (Brownstein et al. 2024) Amazingly, F1 hybrids were 737 successfully produced from the artificial cross *Polyodon spathula* X *Acipenser* 738 gueldenstaedtii (Káldy et al. 2020), two lineages that last shared common ancestry ~180-739 200 Ma during the Early Jurassic (Figures 4 and 5; Peng et al. 2007; Shen et al. 2020; 740 Shedko 2022). Mitochondrial introgression is reported between Huso gueldenstaedtii and 741 H. baerii (Rastorguev et al. 2013) and is likely more widespread among living lineages 742 of sturgeons given the frequency of hybridization in the clade and the apparent lack of 743 postzygotic reproductive incompatibilities among the most distantly related species of 744 sturgeons.

Our proposed taxonomy of sturgeons provides a classification framework that agrees with inferred phylogenetic relationships of *Acipenseridae*. Given that overharvesting and degradation of aquatic habitats have negatively impacted sturgeons and all species are threatened or endangered, an understanding of phylogenetic relationships and a taxonomy that reflects the phylogeny is crucial for the effective management and investigation of the biology of these imperiled species (Hilton et al. 2011).

752

753 Acknowledgements

754	We thank Wily Bemis and an anonymous reviewer for constructive comments on an
755	earlier version of this manuscript. This research is supported by the Bingham
756	Oceanographic Fund maintained by the Yale Peabody Museum.
757 758 759	Literature Cited
760	[IUCN] International Union for Conservation of Nature. 2024. The IUCN red list of
761	threatened species. Available:
762	https://www.iucnredlist.org/search?query=sturgeon&searchType=species (August 2024).
763	
764	Argyriou, T., S. Giles and M. Friedman. 2022. A Permian fish reveals widespread
765	distribution of neopterygian-like jaw suspension. eLife 11:e58433.
766	
767	Artyukhin, E. N. 2006. Morphological phylogeny of the order acipenseriformes. Journal
768	of Applied Ichthyology 22:66–69.
769	
770	Ayers, W. O. 1854. [Descriptions of new species of California fishes.] A number of short
771	notices read before the Society at several meetings in 1854. Proceedings of the California
772	Academy of Sciences Series 1 1:3–22.
773	
774	Bailey, R. M. and F. B. Cross. 1954. River sturgeons of the American genus
775	Scaphirhynchus: characters, distribution, and synonymy. Michigan Academy of Science,
776	Arts and Letters 39:169–208.
777	
778	Bemis, W. E., E. K. Findeis and L. Grande. 1997. An overview of Acipenseriformes.
779	Environmental Biology of Fishes 48:25–72.

- Bemis, W. E. and B. Kynard. 1997. Sturgeon rivers: An introduction to acipenseriform
 biogeography and life history. Environmental Biology of Fishes 48:167–184.
- 783
- 784 Berg, L. S. 1911. Faune de la Russie et des pays limitrophes. Poissons (Marsipobranchii
- et Pisces). Vol. 1. Marsipobranchii, Selachii et Chondrostei [In Russian]. St. Petersburg.
 337 pp.
- 787
- 788 Betancur-R, R., E. O. Wiley, G. Arratia, A. Acero, N. Bailly, M. Miya, G. Lecointre and
- G. Ortí. 2017. Phylogenetic classification of bony fishes. BMC Evolutionary Biology17:162.
- 791
- 792 Bi, B., Y. Yuan, Y. Zhao, M. He, H. Song, L. Kong and Y. Gao. 2023. Effect of
- rowding stress on growth performance, the antioxidant system and humoral immunity in
- hybrid sturgeon. Aquaculture Reports 28:101468.
- 795
- Bi, X., K. Wang, L. Yang, H. Pan, H. Jiang, Q. Wei, M. Fang, H. Yu, C. Zhu, Y. Cai, Y.
- He, X. Gan, H. Zeng, D. Yu, Y. Zhu, H. Jiang, Q. Qiu, H. Yang, Y. E. Zhang, W. Wang,
- M. Zhu, S. He and G. Zhang. 2021. Tracing the genetic footprints of vertebrate landing in
- non-teleost ray-finned fishes. Cell 184:1377–1391.
- 800
- 801 Billard, R. and G. Lecointre. 2000. Biology and conservation of sturgeon and paddlefish.
- 802 Reviews in Fish Biology and Fisheries 10:355–392.

- 804 Birstein, V. J. and W. E. Bemis. 1997. How many species are there within the genus
- 805 *Acipenser*? Environmental Biology of Fishes 48:157–163.
- 806
- 807 Birstein, V. J. and R. DeSalle. 1998. Molecular phylogeny of Acipenserinae. Molecular
- 808 Phylogenetics and Evolution 9:141–155.

- 810 Birstein, V. J., R. Desalle, P. Doukakis, R. Hanner, G. I. Ruban and E. Wong. 2009.
- 811 Testing taxonomic boundaries and the limit of DNA barcoding in the Siberian sturgeon,
- 812 Acipenser baerii. Mitochondrial DNA 20:110–118.
- 813
- 814 Birstein, V. J., P. Doukakis and R. DeSalle. 2000. Polyphyly of mtDNA lineages in the
- 815 Russian sturgeon, Acipenser gueldenstaedtii: forensic and evolutionary implications.
- 816 Conservation Genetics 1:81–88.
- 817
- 818 Birstein, V. J., P. Doukakis and R. DeSalle. 2002. Molecular phylogeny of
- 819 Acipenseridae: nonmonophyly of Scaphirhynchinae. Copeia287–301.
- 820
- 821 Birstein, V. J., R. Hanner and R. DeSalle. 1997. Phylogeny of the Acipenseriformes:
- 822 cytogenetic and molecular approaches. Environmental Biology of Fishes 48:127–156.
- 823

824	Birstein, V. J., G. Ruban, A. Ludwig, P. Doukakis and R. DeSalle. 2005. The enigmatic
825	Caspian Sea Russian sturgeon: How many cryptic forms does it contain? Systematics and
826	Biodiversity 3:203-218.
827	
828	Bonaparte, C. L. 1831. Saggio di una distribuzione metodica degli animali vertebrati.
829	Giornale Arcadico di Scienze Lettere ed Arti 52:155-189.
830	
831	Bonaparte, C. L. 1836. Iconografia della fauna italica per le quattro classi degli animali
832	vertebrati. Tomo III. Pesci. Roma: Salviucci. Fascicle 15–18, puntata 80–93 pp.
833	
834	Borodin, N. A. 1897. A report on the zoological research excursion to the north Caspian
835	in summer 1895 aboard the cruiser Uralets [In Russian.]. Vestnik Rybopromyshlennosti
836	St. Petersburg 12:1–31.
837	
838	Bory de Saint-Vincent, J. B. G. M. 1822. Dictionnaire Classique d'Histoire Naturelle.
839	Vol. 1. Paris: J. Tastu. 604 pp.
840	
841	Boschung, H. T., Jr. and R. L. Mayden. 2004. Fishes of Alabama. Washington, D.C.:
842	Smithsonian Books. 736 pp.
843	
844	Bouckaert, R., T. G. Vaughan, J. Barido-Sottani, S. Duchêne, M. Fourment, A.
845	Gavryushkina, J. Heled, G. Jones, D. Kühnert, N. De Maio, M. Matschiner, F. K.
846	Mendes, N. F. Müller, H. A. Ogilvie, L. du Plessis, A. Popinga, A. Rambaut, D.

- 847 Rasmussen, I. Siveroni, M. A. Suchard, C.-H. Wu, D. Xie, C. Zhang, T. Stadler and A. J.
- 848 Drummond. 2019. BEAST 2.5: An advanced software platform for Bayesian
- evolutionary analysis. PLOS Computational Biology 15:e1006650.
- 850
- 851 Brandt, J. F. 1869. Einige Worte über die europäisch-asiatischen Störarten (Sturionides).
- 852 Mélanges biologiques 7:110–116.
- 853
- 854 Brandt, J. F. and J. T. C. Ratzeburg. 1833. Medizinische Zoologie, oder getreue
- 855 Darstellung und Beschreibung der Thiere, die in der Arzneimittellehre in Betracht
- kommen, in systematischer Folge herausgegeben, Volume 2. Berlin: A. Hirschwald. 364pp.
- 858
- 859 Bronzi, P., M. Chebanov, J. T. Michaels, Q. Wei, H. Rosenthal and J. Gessner. 2019.
- 860 Sturgeon meat and caviar production: Global update 2017. Journal of Applied
- 861 Ichthyology 35:257-266.
- 862
- 863 Brownstein, C. D. 2023. Evidence of large sturgeons in the Paleocene of North America.
- Solution Section 864 Journal of Paleontology 97:218–222.
- 865
- 866 Brownstein, C. D., D. J. MacGuigan, D. Kim, O. Orr, L. Yang, S. R. David, B. Kreiser
- and T. J. Near. 2024. The genomic signatures of evolutionary stasis. Evolution 78:821–
- 868 834.
- 869

870	Campton,	D.	Е.,	A. L.	Bass,	F. A	. Cha	pman	and B.	W.	Bowen.	2000.	Genetic	distinction

- 871 of pallid, shovelnose, and Alabama sturgeon: emerging species and the US Endangered
- 872 Species Act. Conservation Genetics 1:17–32.
- 873
- 874 Cantino, P. D. and K. de Queiroz. 2020. International Code of Phylogenetic
- 875 Nomenclature (*PhyloCode*). Bocca Raton: CRC Press. 149 pp.
- 876
- 877 Cheng, P.-L., D. Yu, H.-Z. Liu, H. Du and Q.-W. Wei. 2021. Molecular phylogeny of
- 878 Acipenseriformes based on complete mitochondrial genome sequence [in Chinese]. Acta
- 879 Hydrobiologica Sinica 45:487–494.
- 880
- 881 Congiu, L., I. Dupanloup, T. Patarnello, F. Fontana, R. Rossi, G. Arlati and L. Zane.
- 882 2001. Identification of interspecific hybrids by amplified fragment length polymorphism:
- the case of sturgeon. Molecular Ecology 10:2355–2359.
- 884
- 885 Dadkhah, K., G. R. Mianji, A. Barzegar and A. Farhadi. 2023. Characterization of the
- 886 mitochondrial Huso huso genome and new aspects of its organization in the presence of
- tandem repeats in 12S rRNA. BMC Ecology and Evolution 23:55.
- 888
- de Queiroz, K. and J. Gauthier. 1990. Phylogeny as a central principle in taxonomy:
- 890 Phylogenetic definition of taxon names. Systematic Zoology 39:307–322.
- 891

- de Queiroz, K. and J. Gauthier. 1992. Phylogenetic taxonomy. Annual Review of
- Ecology and Systematics 23:449–480.
- 894
- de Queiroz, K. and J. Gauthier. 1994. Toward a phylogenetic system of biological
- nomenclature. Trends in Ecology and Evolution 9:27–31.
- 897
- Dillman, C. B., R. M. Wood, B. R. Kuhajda, J. M. Ray, V. B. Salnikov and R. L.
- 899 Mayden. 2007. Molecular systematics of Scaphirhynchinae: an assessment of North
- 900 American and Central Asian Freshwater Sturgeon Species. Journal of Applied
- 901 Ichthyology 23:290–296.
- 902
- 903 Dornburg, A. and T. J. Near. 2021. The emerging phylogenetic perspective on the
- 904 evolution of actinopterygian fishes. Annual Review of Ecology, Evolution, and
- 905 Systematics 52:427–452.
- 906
- 907 Doukakis, P. 2000. Systematics and conservation genetics of sturgeons (order
- 908 Acipenseriformes). Yale University. pp. 216.
- 909
- 910 Doukakis, P., V. J. Birstein and R. De Salle. 2005. Intraspecific structure within three
- 911 caviar-producing sturgeons (Acipenser gueldenstaedtii, A. stellatus, and Huso huso)
- 912 based on mitochondrial DNA analysis. Journal of Applied Ichthyology 21:457–460.
- 913

- 914 Doukakis, P., V. J. Birstein, G. I. Ruban and R. DeSalle. 1999. Molecular genetic
- analysis among subspecies of two Eurasian sturgeon species, Acipenser baerii and A.
- 916 *stellatus*. Molecular Ecology 8:S117–S127.
- 917
- 918 Du, K., M. Stöck, S. Kneitz, C. Klopp, J. M. Woltering, M. C. Adolfi, R. Feron, D.
- 919 Prokopov, A. Makunin, I. Kichigin, C. Schmidt, P. Fischer, H. Kuhl, S. Wuertz, J.
- 920 Gessner, W. Kloas, C. Cabau, C. Iampietro, H. Parrinello, C. Tomlinson, L. Journot, J. H.
- 921 Postlethwait, I. Braasch, V. Trifonov, W. C. Warren, A. Meyer, Y. Guiguen and M.
- 922 Schartl. 2020. The sterlet sturgeon genome sequence and the mechanisms of segmental
- 923 rediploidization. Nature Ecology & Evolution
- 924
- 925 Duméril, A. H. A. 1869. Note sur trois poissons de la collection du Muséum, un
- 926 esturgeon, un polydonte, et un malarmat, accompgnée de quelques considérations
- 927 générales sur les groupes auxquels ces espèces appartiennent. Nouvelles Archives du
- 928 Muséum d'Histoire Naturelle, Paris93–116, Pls. 22–23.
- 929
- 930 Egerton, P. M. G. 1858. On *Chondrosteus*, an extinct genus of the Sturionidae, found in
- the Lias formation at Lyme Regis. Philosophical Transactions of the Royal Society ofLondon 148:871–885.
- 933
- Eichelberger, J. S., P. J. Braaten, D. B. Fuller, M. S. Krampe and E. J. Heist. 2014. Novel
- 935 single-nucleotide polymorphism markers confirm successful spawning of endangered

- 936 Pallid Sturgeon in the Upper Missouri River Basin. Transactions of the American
- 937 Fisheries Society 143:1373–1385.
- 938
- 939 Eschmeyer, W. N. and R. Fricke, Eds. 2024. Catalog of Fishes electronic version (1 June
- 940 2024). <u>http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp</u>. San
- 941 Francisco, California Academy of Sciences (
- 942 <u>http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp</u>).
- 943
- 944 Findeis, E. K. 1997. Osteology and phylogenetic interrelationships of sturgeons
- 945 (Acipenseridae). Environmental Biology of Fishes 48:73–126.
- 946
- 947 Fitzinger, L. J. F. J. and J. J. Heckel. 1836. Monographische Darstellung der Gattung
- 948 *Acipenser*. Annalen des Wiener Museums der Naturgeschichte 1:261–326, Pls. 25–30.
- 949
- 950 Fontana, F., J. Tagliavini and L. Congiu. 2001. Sturgeon genetics and cytogenetics:
- 951 recent advancements and perspectives. Genetica 111:359–373.
- 952
- 953 Forbes, S. A. and R. E. Richardson. 1905. On a new shovelnose sturgeon from the
- 954 Mississippi River. Bulletin of the Illinois State Laboratory of Natural History 7:37–44,
- 955 Pls. 4–7.
- 956
- 957 Fricke, R., W. N. Eschmeyer and J. D. Fong. 2023. Genera/species by family/subfamily.
- 958 In: Eschmeyer's Catalog of Fishes. California Academy of Sciences.

- 959 <u>https://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.as</u>
- 960 <u>p</u>. Electronic version accessed September 1, 2023.
- 961
- 962 Gale, A. S., J. Mutterlose, S. Batenburg, F. M. Gradstein, F. P. Agterberg, J. G. Ogg and
- 963 M. R. Petrizzo. 2020. The Cretaceious Period. In: F. M. Gradstein, J. G. Ogg, M. D.
- 964 Schmitz and G. M. Ogg, eds. Geologic time scale 2020, vol. 2. Amsterdam: Elsevier.
- 965 pp. 1023–1086.
- 966
- 967 Gardiner, B. G. 1984. Sturgeons as living fossils. In: N. Eldredge and S. M. Stanley,
- 968 eds. Living fossils. New York: Springer-Verlag. pp. 148–152.
- 969
- 970 Gavryushkina, A., T. A. Heath, D. T. Ksepka, T. Stadler, D. Welch and A. J. Drummond.
- 971 2017. Bayesian total-evidence dating reveals the recent crown radiation of penguins.
- 972 Systematic Biology 66:57–73.
- 973
- 974 Georgi, J. G. 1775. Bemerkungen einer Reise im russischen Reich in 1772, Volume 1. St.
- 975 Petersburg: Gedruckt bey der Kayserl. Academie der Wissenschaften. 506 pp.
- 976
- 977 Gradstein, F. M. and J. G. Ogg. 2020. The chronostratigraphic scale. In: F. M.
- 978 Gradstein, J. G. Ogg, M. D. Schmitz and G. M. Ogg, eds. Geologic time scale 2020, vol.
- 979 1. Amsterdam: Elsevier. pp. 21–32.
- 980

981	Grande, L. and W. E. Bemis. 1991. Osteology and phylogenetic relationships of fossil
982	and recent paddlefishes (Polyodontidae) with comments on the interrelationships of
983	Acipenseriformes. Journal of Vertebrate Paleontology 11:1-121.
984	
985	Grande, L. and W. E. Bemis. 1996. Interrelationships of Acipenseriformes, with
986	comments on "Chondrostei". In: M. L. J. Stiassny, L. R. Parenti and G. D. Johnson, eds.
987	Interrelationships of Fishes. San Diego: Academic Press. pp. 85–115.
988	
989	Grande, L. and E. J. Hilton. 2006. An exquisitely preserved skeleton representing a
990	primitive sturgeon from the Upper Cretaceous Judith River Formation of Montana
991	(Acipenseriformes: Acipenseridae: n. gen. and sp). Journal of Paleontology 80:1-39.
992	
993	Grande, L. and E. J. Hilton. 2009. A replacement name for † <i>Psammorhynchus</i> Grande &
994	Hilton, 2006 (Actinopterygii, Acipenseriformes, Acipenseridae). Journal of Paleontology
995	83:317–318.
996	
997	Grande, L., F. Jin, Y. Yabumoto and W. E. Bemis. 2002. †Protopsephurus liui, a well-
998	preserved primitive paddlefish (Acipenseriformes : polyodontidae) from the lower
999	cretaceous of China. Journal of Vertebrate Paleontology 22:209-237.
1000	
1001	Gray, J. E. 1835. Characters of two new species of sturgeon (Acipenser, Linn.).

1002 Proceedings of the Zoological Society of London 1834:122–123.

- 1004 Gruchy, C. G. and B. Parker. 1980a. Acipenser brevirostrum Lesueur Shortnose
- 1005 sturgeon. In: D. S. Lee, C. R. Gilbert, C. H. Hocutt, R. E. Jenkins, D. E. McAllister and
- 1006 J. J.R. Stauffer, eds. Atlas of North American freshwater fishes. Raleigh: North
- 1007 Carolina State Museum. pp. 38.
- 1008
- 1009 Gruchy, C. G. and B. Parker. 1980b. Acipenser fulvescens Rafinesque Lake sturgeon.
- 1010 In: D. S. Lee, C. R. Gilbert, C. H. Hocutt, R. E. Jenkins, D. E. McAllister and J. J.R.
- 1011 Stauffer, eds. Atlas of North American freshwater fishes. Raleigh: North Carolina State
- 1012 Museum. pp. 39.
- 1013
- 1014 Gruchy, C. G. and B. Parker. 1980c. Acipenser oxyrhynchus [sic] Mitchill Atlantic
- 1015 sturgeon. In: D. S. Lee, C. R. Gilbert, C. H. Hocutt, R. E. Jenkins, D. E. McAllister and
- 1016 J. J.R. Stauffer, eds. Atlas of North American freshwater fishes. Raleigh: North
- 1017 Carolina State Museum. pp. 41.
- 1018
- 1019 Gumbs, R., O. Scott, R. Bates, M. Böhm, F. Forest, C. L. Gray, M. Hoffmann, D. Kane,
- 1020 C. Low, W. D. Pearse, S. Pipins, B. Tapley, S. T. Turvey, W. Jetz, N. R. Owen and J.
- 1021 Rosindell. 2024. Global conservation status of the jawed vertebrate Tree of Life. Nature
- 1022 Communications 15:1101.
- 1023
- Hayden, F. V. 1863. On the geology and natural history of the upper Missouri.
- 1025 Transactions of the American Philosophical Society (New Series) 12:1–218.
- 1026

- 1027 Heckel, J. J. 1836. Scaphirhynchus, eine neue Fischgattung aus der Ordnung der
- 1028 Chondropterygier mit freien Kiemen. Annalen des Wiener Museums der Naturgeschichte1029 1:69–78.
- 1030
- 1031 Hilgendorf, F. M. 1892. Neue Stör-Art von Nord-Japan, Acipenser mikadoi.
- 1032 Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin 1892:98–100.
- 1033
- 1034 Hilton, E. J. and W. E. Bemis. 1999. Skeletal variation in Shortnose Sturgeon
- 1035 (Acipenser brevirostrum) from the Connecticut River: implications for comparative
- 1036 osteological studies of fossil and living fishes. In: G. Arratia and H.-P. Schultze, eds.
- 1037 Mesozoic fishes 2: systematics and fossil record. Munich: Verlag Dr. Friedrich Pfeil.
- 1038 pp. 69–94.
- 1039
- 1040 Hilton, E. J., C. B. Dillman, M. Paraschiv and R. Suciu. 2022. Cranial morphology of the
- 1041 Stellate Sturgeon, Acipenser stellatus Pallas 1771 (Acipenseriformes, Acipenseridae),
- 1042 with notes on the skulls of other sturgeons. Acta Zoologica 103:57–77.
- 1043
- 1044 Hilton, E. J., M. A. D. During, L. Grande and P. E. Ahlberg. 2023. New paddlefishes
- 1045 (Acipenseriformes, Polyodontidae) from the Late Cretaceous Tanis Site of the Hell Creek
- 1046 Formation in North Dakota, USA. Journal of Paleontology 97:675–692.
- 1047
- 1048 Hilton, E. J. and P. L. Forey. 2009. Redescription of *†Chondrosteus acipenseroides*
- 1049 Egerton, 1858 (Acipenseriformes, †Chondrosteidae) from the Lower Lias of Lyme Regis

1051 Journal of Systematic Palaeontology 7:427–453.

1052

- 1053 Hilton, E. J. and L. Grande. 2023. Late Cretaceous sturgeons (Acipenseridae) from North
- 1054 America, with two new species from the Tanis site in the Hell Creek Formation of North
- 1055 Dakota. Journal of Paleontology 97:189–217.
- 1056
- 1057 Hilton, E. J., L. Grande and W. E. Bemis. 2011. Skeletal anatomy of the Shortnose
- 1058 Sturgeon, Acipenser brevirostrum Lesueur, 1818, and the systematics of sturgeons
- 1059 (Acipenseriformes, Acipenseridae). Fieldiana: Life and Earth Sciences 1560:1–168.

- 1061 Hilton, E. J., L. Grande and F. Jin. 2021. Redescription of *†* Yanosteus longidorsalis Jin et
- 1062 al., (Chondrostei, Acipenseriformes, †Peipiaosteidae) from the Early Cretaceous of
- 1063 China. Journal of Paleontology 95:170–183.
- 1064
- 1065 Holly, M. 1936. Pisces, Teil 4. Ganoidei. Lepzig: De Gruyter.
- 1066
- 1067 Hughes, L. C., G. Ortí, Y. Huang, Y. Sun, C. C. Baldwin, A. W. Thompson, D. Arcila, R.
- 1068 Betancur-R, C. Li, L. Becker, N. Bellora, X. Zhao, X. Li, M. Wang, C. Fang, B. Xie, Z.
- 1069 Zhou, H. Huang, S. Chen, B. Venkatesh and Q. Shi. 2018. Comprehensive phylogeny of
- 1070 ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proceedings
- 1071 of the National Academy of Sciences 115:6249–6254.
- 1072

1073	Jenkins, R. E. and N. M. Burkhead. 1994. Freshwater fishes of Virginia. Bethesda
1074	American Fisheries Society. 983 pp.

- 1076 Jenneckens, I., J.-N. Meyer, L. Debus, C. Pitra and A. Ludwig. 2000. Evidence of
- 1077 mitochondrial DNA clones of Siberian sturgeon, Acipenser baerii, within Russian
- 1078 sturgeon, Acipenser gueldenstaedtii, caught in the River Volga. Ecology Letters 3:503-
- 1079 508.

1080

- 1081 Jin, F. 1999. Middle and Late Mesozoic Acipenseriforms from Northern Hebei and
- 1082 Western Liaoning, China. In: C. P.-J. and F. Jin, eds. Palaeoworld, Vol. 11: Jehol Biota.

1083 Hefei: University of Science and Technology China Press. pp. 188–260.

1084

Jordan, D. S. 1905. A guide to the study of fishes. Volume II. New York: Henry Holtand Company. 599 pp.

1087

- 1088 Káldy, J., A. Mozsár, G. Fazekas, M. Farkas, D. L. Fazekas, G. L. Fazekas, K. Goda, Z.
- 1089 Gyöngy, B. Kovács, K. Semmens, M. Bercsényi, M. Molnár and E. Patakiné Várkonyi.
- 1090 2020. Hybridization of Russian Sturgeon (Acipenser gueldenstaedtii, Brandt and
- 1091 Ratzeberg, 1833) and American Paddlefish (Polyodon spathula, Walbaum 1792) and
- 1092 evaluation of their progeny. Genes 11:753.

1094	Kalyaanamoorthy, S., B. Q. Minh, T. K. F. Wong, A. von Haeseler and L. S. Jermiin.
1095	2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature
1096	Methods 14:587–589.
1097	
1098	Keenlyne, K. D., C. J. Henry, A. Tews and P. Clancey. 1994. Morphometric comparisons
1099	of Upper Missouri River Sturgeons. Transactions of the American Fisheries Society
1100	123:779–785.
1101	
1102	Kessler, K. F. 1872. Ichthyological fauna of Turkestan [In Russian]. Izvestiia
1103	Imperatorskago Obschchestva Liubitelei Estestvozaniia, Antropologii i Etnografii 10:47-
1104	67, Pls. 6–12.
1105	
1106	Kessler, K. F. 1877. The Aralo-Caspian Expedition. IV. Fishes of the Aralo-Caspio-
1107	Pontine ichthyological region [In Russian]. St. Petersburg. 360 pp.
1108	

1109 Krieger, J., A. K. Hett, P. A. Fuerst, E. Artyukhin and A. Ludwig. 2008. The molecular

1110 phylogeny of the order Acipenseriformes revisited. Journal of Applied Ichthyology

1111 24:36-45.

1112

1113 Kuhajda, B. R. 2002. Systematics, taxonomy, and conservation status of sturgeon in the

1114 subfamily Scaphirhynchinae (Actinopterygii, Acipenseridae). Ph.D. The University of

1115 Alabama. pp. 291.

1117	Kuhajda, B. R. 2014. Acipenseridae: sturgeons. In: J. M.L. Warren and B. M. Burr, eds
1118	Freshwater fishes of North America 1. Baltimore: John Hopkins University Press. pp.
1119	160–206.
1120	

- 1121 Laumann, K. M. 2016. Sturgeon (Acipenseridae) phylogeny, biogeography, & ontogeny.
- 1122 College of William & Mary. pp. 299.
- 1123
- 1124 Lee, D. S. 1980a. Acipenser medirostris Ayres Green sturgeon. In: D. S. Lee, C. R.
- 1125 Gilbert, C. H. Hocutt, R. E. Jenkins, D. E. McAllister and J. J.R. Stauffer, eds. Atlas of
- 1126 North American freshwater fishes. Raleigh: North Carolina State Museum. pp. 40.
- 1127
- 1128 Lee, D. S. 1980b. Acipenser transmontanus Richardson White sturgeon. In: D. S. Lee,
- 1129 C. R. Gilbert, C. H. Hocutt, R. E. Jenkins, D. E. McAllister and J. J.R. Stauffer, eds.
- 1130 Atlas of North American freshwater fishes. Raleigh: North Carolina State Museum. pp.
- 1131

42.

- 1132
- 1133 Lesueur, C. A. 1818. Description of several species of chondropterygious fishes of North
- America, with their varieties. Journal of the Academy of Natural Sciences of Philadelphia1:383–394.
- 1136
- 1137 Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete
- 1138 morphological character data. Systematic Biology 50:913–925.
- 1139

1140	Linnaeus, C. 1758. Systema Naturae, Ed. X. (Systema naturae per regna tria naturae,
1141	secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis,
1142	locis. Tomus I. Editio decima, reformata. Holmiae [Stockholm]: Impensis Direct.
1143	Laurentii Salvii. 824 pp.
1144	
1145	Liu, H. T. and J. J. Zhou. 1965. A new sturgeon from the Upper Jurassic of Liaoning,
1146	North China [In Chinese with English summary]. Vertebrata PalAsiatica 9:237–247.
1147	
1148	Liu, X. T. and F. Wei. 1988. A new saurichthyid from the Upper Permian of Zhejiang,
1149	China. Vertebrata PalAsiatica 26:77–89.
1150	
1151	Lovetsky, A. 1828. On the fishes belonging to the sturgeon genus and inhabiting waters
1152	of the Russian Empire [in Russian]. Novyi Magazin, Estestvennoi Istorii, Fiziki, Khimii i
1153	Svedenii i Svedenii Ekologicheskikh, Izdannyi 1 Dviubskim Part 2:14–22, 73–79, 145–
1154	150.
1155	
1156	Lu, LW. 1994. A new paddlefish from the Upper Jurassic of northeast China [In
1157	Chinese with English summary]. Vertebrata PalAsiatica 32:132-142.
1158	
1159	Ludwig, A., N. M. Belfiore, C. Pitra, V. Svirsky and I. Jenneckens. 2001. Genome

1160 duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso

1161 and *Scaphirhynchus*). Genetics 158:1203–1215.

1164 International Trade in Black Caviar. International Review of Hydrobiology 87:661–674.

1165

- 1166 Luo, D., Y. Li, Q. Zhao, L. Zhao, A. Ludwig and Z. Peng. 2019. Highly resolved
- 1167 phylogenetic relationships within Order Acipenseriformes according to novel nuclear
- 1168 markers. Genes 10:

1169

- 1170 Martill, D. M. 2023. A sturgeon (Actinopterygii, Acipenseriformes) from the Upper
- 1171 Cretaceous of Africa. Cretaceous Research 148:105546.

1172

- 1173 Marty, V. J. 1940. Systematics and biology of the Russian sturgeon of the Caucasian
- 1174 coast of the Black Sea [In Russian, English summary.]. Zoologicheskii Zhurnal 19:865–

1175 872.

- 1176
- 1177 Mayden, R. L. and B. R. Kuhajda. 1996. Systematics, taxonomy, and conservation status
- 1178 of the endangered Alabama sturgeon, *Scaphirhynchus suttkusi* Williams and Clemmer
- 1179 (Actinopterygii, Acipenseridae). Copeia 1996:241–273.
- 1180
- 1181 Miller, R. R. 1947. A new genus and species of deep-sea fish of the family Myctophidae
- 1182 from the Philippine Islands. Proceedings of the United States National Museum 97:81–
- 1183 90.
- 1184

- the Literary and Philosophical Society of New-York 1 (art. 5):355–492.
- 1187
- 1188 Miya, M. and M. Nishida. 2015. The mitogenomic contributions to molecular
- 1189 phylogenetics and evolution of fishes: a 15-year retrospect. Ichthyological Research
- 1190 62:29–71.
- 1191
- 1192 Murray, A. M., D. B. Brinkman, D. G. DeMar Jr and G. P. Wilson. 2020. Paddlefish and
- 1193 sturgeon (Chondrostei: Acipenseriformes: Polyodontidae and Acipenseridae) from lower
- Paleocene deposits of Montana, U.S.A. Journal of Vertebrate Paleontology 40:e1775091.
- 1196 Murray, A. M., L. E. Nelson and D. B. Brinkman. 2023. A new sturgeon from the Upper
- 1197 Cretaceous Horseshoe Canyon Formation in central Alberta, Canada. Journal of
- 1198 Vertebrate Paleontology 43:e2232846.
- 1199
- 1200 Near, T. J., A. Dornburg, K. L. Kuhn, J. T. Eastman, J. N. Pennington, T. Patarnello, L.
- 1201 Zane, D. A. Fernández and C. D. Jones. 2012. Ancient climate change, antifreeze, and the
- 1202 evolutionary diversification of Antarctic fishes. Proceedings of the National Academy of
- 1203 Sciences of the United States of America 109:3434–3439.
- 1204
- 1205 Near, T. J. and C. E. Thacker. 2024. Phylogenetic classification of living and fossil ray-
- 1206 finned fishes (Actinopterygii). Bulletin of the Peabody Museum of Natural History 65:3–
- 1207 302.

1209

1210

- Nedoluzhko, A. V., F. S. Sharko, S. V. Tsygankova, E. S. Boulygina, A. E. Barmintseva, A. A. Krasivskaya, A. S. Ibragimova, N. M. Gruzdeva, S. M. Rastorguev and N. S. Mugue. 2020. Molecular phylogeny of one extinct and two critically endangered Central
- 1212 Asian sturgeon species (genus *Pseudoscaphirhynchus*) based on their mitochondrial
- 1213 genomes. Scientific Reports 10:722.
- 1214
- 1215 Nguyen, L. T., H. A. Schmidt, A. von Haeseler and B. Q. Minh. 2015. IQ-TREE: A fast
- 1216 and effective stochastic algorithm for estimating maximum likelihood phylogenies.
- 1217 Molecular Biology and Evolution 32:268–274.
- 1218
- 1219 Nikolskii, A. M. 1896. L'esturgeon de Sibérie (Acipenser stenorrhynchus n. sp.).
- 1220 Ezhegodnik, Zoologicheskago Muzeya Imperatorskoi Akademii Nauk 1:400–405.
- 1221
- 1222 Nikolskii, A. M. 1900. Pseudoscaphirhynchus rossikowi n. gen. et spec. Ezhegodnik,
- 1223 Zoologicheskogo Muzeia, Sankt-Petersburg 5:257–260.
- 1224
- 1225 Ong, T.-L., J. Stabile, I. Wirgin and J. R. Waldman. 1996. Genetic divergence between
- 1226 Acipenser oxyrinchus oxyrinchus and A. o. desotoi as assessed by mitochondrial DNA
- 1227 sequencing analysis. Copeia 1996:464–469.
- 1228

- animals : delivered at the Royal College of Surgeons of England, in 1844 and 1846. Part
- 1231 1 Fishes. London: Longman, Brown, Green, and Longmans. 308 pp.
- 1232
- 1233 Pallas, P. S. 1771. Reise durch verschiedene Provinzen des russischen Reiches, Volume
- 1234 1: Gedruckt bey der Kayserl. Academie der Wissenschaften. 516 pp.
- 1235
- 1236 Peng, Z. G., A. Ludwig, D. Q. Wang, R. Diogo, Q. W. Wei and S. P. He. 2007. Age and
- 1237 biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes).
- 1238 Molecular Phylogenetics and Evolution 42:854–862.
- 1239
- 1240 Phelps, S. R. and F. W. Allendorf. 1983. Genetic Identity of Pallid and Shovelnose
- 1241 Sturgeon (*Scaphirhynchus albus* and *S. platorynchus*). Copeia 1983:696–700.
- 1242
- 1243 Pirogovskii, M. I., L. I. Sokolov and V. P. Vasil'ev. 1989. Huso huso (Linnaeus, 1758).
- 1244 In: J. Holčík, ed. The freshwater fishes of Europe. Vol. 1, Part II: General introduction to
- 1245 fishes. Acipenseriformes. Wiesbaden: Aula Verlag pp. 156–200.
- 1246
- 1247 Rafinesque, C. S. 1817. Additions to the observations on the sturgeons of North America.
- 1248 American Monthly Magazine and Critical Review 1:288.
- 1249

1250	Rafinesque, C. S. 1818. Further discoveries in natural history, made during a journey
1251	through the western region of the United States. American Monthly Magazine and
1252	Critical Review 3:445–447.
1253	
1254	Rafinesque, C. S. 1820. Ichthyologia Ohiensis. Lexington, Kentucky: W.G. Hunt. 90 pp.
1255	
1256	Rambaut, A., A. J. Drummond, D. Xie, G. Baele and M. A. Suchard. 2018. Posterior
1257	summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67:901-
1258	904.
1259	
1260	Rastorguev, S., N. Mugue, A. Volkov and V. Barmintsev. 2008. Complete mitochondrial
1261	DNA sequence analysis of Ponto-Caspian sturgeon species. Journal of Applied
1262	Ichthyology 24:46–49.
1263	
1264	Rastorguev, S. M., A. V. Nedoluzhko, A. M. Mazur, N. M. Gruzdeva, A. A. Volkov, A.
1265	E. Barmintseva, N. S. Mugue and E. B. Prokhortchouk. 2013. High-throughput SNP-
1266	genotyping analysis of the relationships among Ponto-Caspian sturgeon species. Ecology
1267	and Evolution 3:2612–2618.
1268	
1269	Ray, J. M., C. B. Dillman, R. M. Wood, B. R. Kuhajda and R. L. Mayden. 2007.
1270	Microsatellite variation among River Sturgeons of the genus Scaphirhynchus
1271	(Actinopterygii: Acipenseridae): a preliminary assessment of hybridization. Journal of
1272	Applied Ichthyology 23:304–312.

1274	Raymakers, C. and C. Hoover. 2002. Acipenseriformes: CITES implementation from
1275	Range States to consumer countries. Journal of Applied Ichthyology 18:629-638.
1276	
1277	Richardson, J. 1836. Fauna Boreali-Americana; or the zoology of the northern parts of
1278	British America: containing descriptions of the objects of natural history collected on the
1279	late northern land expeditions, under the command of Sir John Franklin, R. N. Part 3.
1280	London: J. Bentley. 327 pp.
1281	
1282	Robins, R. H., L. M. Page, J. D. Williams, Z. S. Randall and G. E. Sheehy. 2018. Fishes
1283	in the fresh waters of Florida: an identification guide and atlas. 467 pp.
1284	
1285	Rohde, F. C., R. G. Arndt, J. W. Foltz and J. M. Quattro. 2009. Freshwater fishes of
1286	South Carolina. Columbia: University of South Carolina Press. 430 pp.
1287	
1288	Ruban, G. I. 1997. Species structure, contemporary distribution and status of the Siberian
1289	surgeon Acipenser baerii. Environmental Biology of Fishes 48:221–230.
1290	
1291	Ruban, G. I., M. V. Kholodova, V. A. Kalmykov and P. A. Sorokin. 2008. Morphological
1292	and molecular genetic study of the Persian sturgeon Acipenser persicus Borodin
1293	(Acipenseridae) taxonomic status. Journal of Ichthyology 48:891–903.
1294	

- 1295 Ruban, G. I., M. V. Kholodova, V. A. Kalmykov and P. A. Sorokin. 2011. A review of
- 1296 the taxonomic status of the Persian sturgeon (Acipenser persicus Borodin). Journal of
- 1297 Applied Ichthyology 27:470–476.
- 1298
- 1299 Sato, H., A. M. Murray, O. Vernygora and P. J. Currie. 2018. A rare, articulated sturgeon
- 1300 (Chondrostei: Acipenseriformes) from the Upper Cretaceous of Dinosaur Provincial Park,
- 1301 Alberta, Canada. Journal of Vertebrate Paleontology 38:e1488137.
- 1302
- 1303 Scharpf, C. 2024. The ETYFish Project.
- 1304 <u>https://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.as</u>
- 1305 <u>p</u>. Electronic version accessed June 1, 2024.
- 1306
- 1307 Schrey, A. W., B. L. Sloss, R. J. Sheehan, R. C. Heidinger and E. J. Heist. 2007. Genetic
- 1308 discrimination of middle Mississippi River Scaphirhynchus sturgeon into pallid,
- 1309 shovelnose, and putative hybrids with multiple microsatellite loci. Conservation Genetics
- 1310 8:683–693.
- 1311
- 1312 Shedko, S. V. 2022. Molecular dating of phylogeny of sturgeons (Acipenseridae) based
- 1313 on total evidence analysis. Russian Journal of Genetics 58:718–729.
- 1314
- 1315 Shen, Y., N. Yang, Z. Liu, Q. Chen and Y. Li. 2020. Phylogenetic perspective on the
- 1316 relationships and evolutionary history of the Acipenseriformes. Genomics 112:3511–
- 1317 3517.

- 1319 Shubina, T. N., A. A. Popova and V. P. Vasil'ev. 1989. Acipenser stellatus Pallas, 1771.
- 1320 In: J. Holčík, ed. The freshwater fishes of Europe. Vol. 1, Part II: General introduction to
- 1321 fishes. Acipenseriformes. Wiesbaden: Aula Verlag pp. 395–443.
- 1322
- 1323 Simons, A. M., R. M. Wood, L. C. Heath, B. R. Kuhajda and R. L. Mayden. 2001.
- 1324 Phylogenies of Scaphirhynchus based on mitochondrial DNA sequences. Transactions
- 1325 American Fisheries Society 130:359–366.
- 1326
- 1327 Smith, C. L. 1985. The inland fishes of New York State. Albany: New York State
- 1328 Department of Environmental Conservation. 522 pp.
- 1329
- 1330 Sokolov, L. I. and L. S. Berdichevski. 1989. Acipenseridae Bonaparte, 1831. In: J.
- 1331 Holčík, ed. The freshwater fishes of Europe. Vol. 1, Part II: General introduction to
- 1332 fishes. Acipenseriformes. Wiesbaden: Aula Verlag pp. 150–153.
- 1333
- 1334 Sokolov, L. I. and V. P. Vasil'ev. 1989a. Acipenser baeri Brandt, 1869. In: J. Holčík,
- 1335 ed. The freshwater fishes of Europe. Vol. 1, Part II: General introduction to fishes.
- 1336 Acipenseriformes. Wiesbaden: Aula Verlag pp. 263–284.
- 1337
- 1338 Sokolov, L. I. and V. P. Vasil'ev. 1989b. Acipenser nudiventris Lovetsky, 1828. In: J.
- 1339 Holčík, ed. The freshwater fishes of Europe. Vol. 1, Part II: General introduction to
- 1340 fishes. Acipenseriformes. Wiesbaden: Aula Verlag pp. 206–226.

- 1342 Sokolov, L. I. and V. P. Vasil'ev. 1989c. Acipenser ruthenus Linnaeus, 1758. In: J.
- 1343 Holčík, ed. The freshwater fishes of Europe. Vol. 1, Part II: General introduction to
- 1344 fishes. Acipenseriformes. Wiesbaden: Aula Verlag pp. 227–262.
- 1345
- 1346 Thompson, D. W. 1947. A glossary of Greek fishes. London: Oxford University Press.1347 302 pp.
- 1348
- 1349 Tortonese, E. 1989. Acipenser naccarii Bonaparte, 1836. In: J. Holčík, ed. The
- 1350 freshwater fishes of Europe. Vol. 1, Part II: General introduction to fishes.
- 1351 Acipenseriformes. Wiesbaden: Aula Verlag pp. 285–293.
- 1352
- 1353 Tranah, G., D. E. Campton and B. May. 2004. Genetic evidence for hybridization of
- 1354 Pallid and Shovelnose Sturgeon. Journal of Heredity 95:474–480.
- 1355
- 1356 Tranah, G. J., H. L. Kincaid, C. C. Krueger, D. E. Campton and B. May. 2001.
- 1357 Reproductive isolation in sympatric populations of Pallid and Shovelnose Sturgeon.
- 1358 North American Journal of Fisheries Management 21:367–373.
- 1359
- 1360 Tsessarsky, A. A. 2022. Origin and diversification of Acipenseriforms. Journal of
- 1361 Ichthyology 62:1361–1380.
- 1362

1363	Van der Laan, R., W. N. Eschmeyer and R. Fricke. 2014. Family-group names of Recent
1364	fishes. Zootaxa 3882:1–230.

- 1366 Vasil'eva, E. D. and V. P. Vasil'ev. 2021. Taxonomic relations of Russian and Persian
- 1367 sturgeons (genus Acipenser, Acipenseridae): an updated synthesis. Journal of Ichthyology
- 1368 61:17–32.

1369

- 1370 Vecsei, P. and E. Artyukhin. 2001. Threatened Fishes of the World: Acipenser persicus
- 1371 Borodin, 1897 (Acipenseridae). Environmental Biology of Fishes 61:160–160.

- 1373 Vladykov, V. D. 1955. A comparison of Atlantic Sea Sturgeon with a new subspecies
- 1374 from the Gulf of Mexico (Acipenser oxyrhynchus de sotoi). Journal of the Fisheries
- 1375 Research Board of Canada 12:754–761.
- 1376
- 1377 Vladykov, V. D. and J. R. Greeley. 1963. Order Acipenseroidei. In: B. Bigelow and W.
- 1378 C. Schroeder, eds. Fishes of the Western North Atlantic. Part 3. Soft-rayed bony fishes.
- 1379 Class Osteichthyes Sturgeons, Gars, Tarpon, Ladyfish, Bonefish, Salmon, Charrs,
- 1380 Anchovies, Herring, Shads, Smelt, Capelin, et al. New Haven, CT: Memoirs of the
- 1381 Sears Foundation of Marine Research. pp. 24–60.
- 1382
- 1383 Vlasenko, A. D., A. V. Pavlov, L. I. Sokolov and V. P. Vasil'ev. 1989a. Acipenser
- 1384 gueldenstaedti Brandt, 1833. In: J. Holčík, ed. The freshwater fishes of Europe. Vol. 1,

- Part II: General introduction to fishes. Acipenseriformes. Wiesbaden: Aula Verlag pp.294–344.
- 1387
- 1388 Vlasenko, A. D., A. V. Pavlov and V. P. Vasil'ev. 1989b. Acipenser persicus Borodin,
- 1389 1897. In: J. Holčík, ed. The freshwater fishes of Europe. Vol. 1, Part II: General
- 1390 introduction to fishes. Acipenseriformes. Wiesbaden: Aula Verlag pp. 345–366.

- 1392 Wei, Q., F. e. Ke, J. Zhang, P. Zhuang, J. Luo, R. Zhou and W. Yang. 1997. Biology,
- 1393 fisheries, and conservation of sturgeons and paddlefish in China. Environmental Biology
- 1394 of Fishes 48:241-255.
- 1395

1396 Weigelt, J. 1929. Die Morphogenie der ältesten Wirbeltiere: mit 130 Textabbildungen

1397 und 14 Tafeln / von Otto Jaekel; nach seinem Tode herausgegeben von Johannes Weigelt.

1398 Monographien zur Geologie und Palaeontologie, Berlin 3:1–198.

- 1399
- 1400 White, S. L., D. A. Fox, T. Beridze, S. K. Bolden, R. L. Johnson, T. F. Savoy, F. Scheele,
- 1401 A. D. Schreier and D. C. Kazyak. 2023. Decades of global sturgeon conservation efforts
- 1402 are threatened by an expanding captive culture industry. Fisheries 48:54-61.
- 1403
- 1404 Wilimovsky, N. J. 1956. Protoscaphirhynchus squamosus, a new sturgeon from the
- 1405 Upper Cretaceous of Montana. Journal of Paleontology 30:1205–1208.
- 1406

- 1407 Williams, J. D. and G. H. Clemmer. 1991. Scaphirhynchus suttkusi, a new sturgeon
- 1408 (Pisces: Acipenseridae) from the Mobile basin of Alabama and Mississippi. Bulletin of
- 1409 the Alabama Museum of Natural History 10:17–31.
- 1410
- 1411 Wilson, J. A. and R. S. McKinley. 2004. Distribution, habitat, and movements. In: G.
- 1412 T. O. LeBreton, F. W. H. Beamish and R. S. McKinley, eds. Sturgeons and paddlefish of
- 1413 North America. Dordrecht: Kluwer Academic Publishers. pp. 40–72.
- 1414
- 1415 Wooley, C. M. 1985. Evaluation of morphometric characters used in taxonomic
- 1416 separation of Gulf of Mexico Sturgeon, Acipenser oxyrhynchus desotoi. In: F.
- 1417 Binkowski and S. Doroshov, eds. North American sturgeon. Developments in
- 1418 environmental biology of fishes. Dordrecht: Dr. W. Junk Publishers. pp. 97–103.
- 1419
- 1420 Zhang, X., W. Wu, L. Li, X. Ma and J. Chen. 2013. Genetic variation and relationships of
- seven sturgeon species and ten interspecific hybrids. Genetics Selection Evolution 45:21.
- 1422
- 1423 Zholdasova, I. 1997. Sturgeons and the Aral Sea ecological catastrophe. Environmental
- 1424 Biology of Fishes 48:373–380.
- 1425
- 1426 Zhou, T., J. Huang, C. B. Dillman, Y. He and C. Li. 2022. Development of single
- 1427 nucleotide polymorphism markers for the autotetraploid *Scaphirhynchus* sturgeons
- 1428 (Acipenseriformes). Journal of Ichthyology 62:1419–1429.
- 1429

Figure Legends

Figure 1. Maximum Likelihood Phylogeny of Sturgeons Using Mitochondrial DNA. Maximum likelihood phylogeny generated in IQ-TREE 2 using aligned *cytb* sequences for 27 species of sturgeons and two species of paddlefishes. Numbers at nodes are ultrafast bootstrap supports.

Figure 2. Maximum Likelihood Phylogeny of Sturgeons Using Nuclear DNA. Maximum likelihood phylogeny generated in IQ-TREE 2 using aligned sequences of 30 nuclear markers for 16 species of sturgeons and paddlefishes. Numbers at nodes are ultrafast bootstrap supports.

Figure 3. Maximum Likelihood Phylogeny of Sturgeons Using Concatenated Nuclear and Mitochondrial DNA. Maximum likelihood phylogeny generated in IQ-TREE 2 using concatenated sequences of 30 nuclear markers and *cytb* for 27 species of sturgeons and two species of paddlefishes. Numbers at nodes are ultrafast bootstrap supports.

Figure 4. Bayesian Tip-Dated Phylogeny of Sturgeons Using Morphological Data. Timecalibrated maximum clade credibility tree with median node heights generated using 62 morphological characters coded for 18 living and extinct species of sturgeons and paddlefishes. Gray bars at nodes indicate 95% highest posterior density (HPD) intervals for divergence times, and clear bars indicate nodes with posterior support values less than 0.80. Abbreviations: Paleo. = Paleogene, N. = Neogene.

Figure 5. Bayesian Tip-Dated Phylogeny of Sturgeons Using Molecular Data. Timecalibrated maximum clade credibility tree with median node heights generated using the concatenated nuclear and mitochondrial DNA dataset for 27 species of sturgeons, two species of paddlefishes, and six fossil tip calibrations. Numbers at nodes are posterior support values. Gray bars at nodes indicate 95% highest posterior density (HPD) intervals for divergence times, and clear bars indicate nodes with posterior support values less than 0.80. Abbreviations: Paleo. = Paleogene, N. = Neogene.

Table 1. Living species of *Acipenseridae* with common names and geographic distribution. Previous genus taxonomy provided for species with new genus species combinations.

Species	Common Name	Distribution	Previous Genus
Acipenser desotoi	Gulf Sturgeon	Gulf Coast of North America	
Acipenser oxyrinchus	Atlantic Sturgeon	Atlantic Coast of North America	
Acipenser sturio	European Sea Sturgeon	Atlantic Coast of Europe, Mediterranean,	
		Aegean Sea, Black Sea	
Huso baerii	Siberian Sturgeon	Siberian Sea	Acipenser
Huso brevirostrum	Shortnose Sturgeon	Atlantic coastal rivers of North America	Acipenser
Huso colchicus	Caucasian Sturgeon	Black Sea	Acipenser
Huso fulvescens	Lake Sturgeon	Mississippi River system, Great Lakes,	Acipenser
		Hudson Bay	
Huso gueldenstaedtii	Russian Sturgeon	Black Sea, Caspian Sea	Acipenser
Huso huso	Beluga	Adriatic Sea, Black Sea, Caspian Sea	
Huso naccarii	Adriatic Sturgeon	Adriatic Sea	Acipenser
Huso nudiventris	Ship Sturgeon	Black Sea, Caspian Sea, and Aral Sea	Acipenser
Huso persicus	Persian Sturgeon	Black Sea, Caspian Sea	Acipenser
Huso ruthenus	Sterlet	Azov Sea, Black Sea, Caspian Sea	Acipenser
Huso stellatus	Stellate Sturgeon	Azov Sea, Black Sea, Caspian Sea	Acipenser
Pseudoscaphirhynchus fedtschenkoi	Syr Darya Sturgeon	Sry Darya River in the Aral Sea Drainage	
Pseudoscaphirhynchus hermanni	Dwarf Sturgeon	Amu Darya River system in the Aral Sea	
		Drainage	

er
er
er
er
er
er

Species	Genbank Accession
Psephurus gladius	AY571339
Polyodon spathula	NC004419
Acipenser sturio	NC027417
Acipenser oxyrinchus	KP997217
Acipenser desotoi	KP997218
Sinosturio medirostris	NC028405
Sinosturio mikadoi	KX276658
Sinosturio dauricus	NC023837
Sinosturio dabryanus	AY510085
Sinosturio sinensis	KJ174513
Sinosturio transmontanus	NC004743
Sinosturio schrenckii SM	MH973734
Sinosturio schrenckii BG	MH973733
Huso naccarii	MK078265
Huso colchicus	AF238695
Huso gueldenstaedtii	NC012576
Huso persicus	MW713795
Huso baerii	NC017603
Huso brevirostrum	MK078263
Huso fulvescens	NC030325
Huso ruthenus	KF153104
Huso nudiventris	NC030344
Huso stellatus	NC005795
Pseudoscaphirhynchus fedtschenkoi	NC058991
Pseudoscaphirhynchus hermanni	NC058992
Pseudoscaphirhynchus kaufmanni	NC050885
Huso huso	NC005252
Scaphirhynchus albus	NC030324
Scaphirhynchus suttkusi	NC036060
Scaphirhynchus platorynchus	NC030326

Table S1. Genbank Accession Numbers for cytb sequences analyzed in this study

Table S2. Genbank Accession Numbers for nuclear gene sequences analyzed in this study

	stx11a	cnr1	junbb	fam43a	flrt3	aplnra	LOC102693787
Huso baerii	MH522337	MH522019	MH522161	MH522083	MH522113	MH521972	MH522193
Sinosturio dabryanus	MH522338	MH522020	MH522162	MH522084	MH522114	MH521973	MH522194
Huso fulvescens	MH522339	MH522021	MH522163	MH522085	MH522115	MH521974	MH522195
Huso gueldenstaedtii	MH522340	MH522022	MH522164	MH522086	MH522116	MH521975	MH522196
Acipenser oxyrinchus	MH522341	MH522023	MH522165	MH522087	MH522117	MH521976	MH522197
Huso persicus	MH522342	MH522024	MH522166	MH522088	MH522118	MH521977	MH522198
Huso ruthenus	MH522343	MH522025	MH522167	MH522089	MH522119	MH521978	MH522199
Sinosturio schrenckii	MH522344	MH522026	MH522168	MH522090	MH522120	MH521979	MH522200
Sinosturio sinensis	MH522345	MH522027	MH522169	MH522091	MH522121	MH521980	MH522201
Huso stellatus	MH522346	MH522028	MH522170	MH522092	MH522122	MH521981	MH522202
Acipenser sturio	MH522347	MH522029	MH522171	MH522093	MH522123	MH521982	MH522203
Sinosturio transmontanus	MH522348	MH522030	MH522172	MH522094	MH522124	MH521983	MH522204
Sinosturio dauricus	MH522349	MH522031	MH522173		MH522125	MH521984	MH522205
Huso huso	MH522350	MH522032	MH522174	MH522095	MH522126	MH521985	MH522206
Pseudoscaphirhynchus kaufmanni	MH522351	MH522033	MH522175		MH522127	MH521986	MH522207
Polyodon spathula	MH522352	MH522034	MH522176	MH522096	MH522128	MH521987	MH522208

	s1pr3	gas1a	nfil3-5	puraa	zbtb1	cysltr1
Huso baerii	MH522289	MH522145	MH522209	MH522241	MH522353	MH522035
Sinosturio dabryanus	MH522290	MH522146	MH522210	MH522242	MH522354	MH522036
Huso fulvescens	MH522291	MH522147	MH522211	MH522243	MH522355	MH522037
Huso gueldenstaedtii	MH522292	MH522148	MH522212	MH522244	MH522356	MH522038
Acipenser oxyrinchus	MH522293	MH522149	MH522213	MH522245	MH522357	MH522039
Huso persicus	MH522294	MH522150	MH522214	MH522246	MH522358	MH522040
Huso ruthenus	MH522295	MH522151	MH522215	MH522247	MH522359	MH522041
Sinosturio schrenckii	MH522296	MH522152	MH522216	MH522248	MH522360	MH522042
Sinosturio sinensis	MH522297	MH522153	MH522217	MH522249	MH522361	MH522043
Huso stellatus	MH522298	MH522154	MH522218	MH522250	MH522362	MH522044
Acipenser sturio	MH522299	MH522155	MH522219	MH522251	MH522363	MH522045
Sinosturio transmontanus	MH522300	MH522156	MH522220	MH522252	MH522364	MH522046
Sinosturio dauricus	MH522301	MH522157	MH522221	MH522253	MH522365	MH522047
Huso huso	MH522302	MH522158	MH522222	MH522254	MH522366	MH522048
Pseudoscaphirhynchus kaufmanni	MH522303	MH522159	MH522223	MH522255	MH522367	MH522049
Polyodon spathula	MH522304	MH522160	MH522224	MH522256	MH522368	MH522050

c1galt1c1	rep15	si:dkey-90m5.4	rrs1	sox21b	kctd12
MH521988	MH522257	MH522305	MH522273	MH552932	MH552963
MH521989	MH522258	MH522306	MH522274	MH552933	MH552964
MH521990	MH522259	MH522307	MH522275	MH552934	MH552965
MH521991	MH522260	MH522308	MH522276	MH552935	MH552966
MH521992	MH522261	MH522309	MH522277	MH552936	MH552967
MH521993	MH522262	MH522310	MH522278	MH552937	MH552968
MH521994	MH522263	MH522311	MH522279	MH552938	MH552969
MH521995	MH522264	MH522312	MH522280	MH552939	MH552970
MH521996	MH522265	MH522313	MH522281	MH552940	MH552971
MH521997	MH522266	MH522314	MH522282	MH552941	MH552972
MH521998	MH522267	MH522315	MH522283	MH552942	MH552973
MH521999	MH522268	MH522316	MH522284	MH552943	MH552974
MH522000	MH522269	MH522317	MH522285	MH552944	MH552975
MH522001	MH522270	MH522318	MH522286	MH552945	MH552976
MH522002	MH522271	MH522319	MH522287	MH552946	MH552977
MH522003	MH522272	MH522320	MH522288	MH552947	MH552978
	<i>c1galt1c1</i> MH521988 MH521989 MH521990 MH521991 MH521992 MH521993 MH521994 MH521995 MH521996 MH521997 MH521998 MH521999 MH522000 MH522001 MH522002 MH522003	c1galt1c1rep15MH521988MH522257MH521989MH522258MH521990MH522259MH521991MH522260MH521992MH522261MH521993MH522262MH521994MH522263MH521995MH522264MH521996MH522265MH521997MH522266MH521998MH522267MH521999MH522267MH521991MH522267MH521995MH522267MH521996MH522267MH521997MH522267MH522000MH522267MH522001MH522271MH522003MH522271	c1galt1c1rep15si:dkey-90m5.4MH521988MH522257MH522305MH521989MH522258MH522306MH521990MH522259MH522307MH521991MH522260MH522308MH521992MH522261MH522309MH521993MH522262MH522310MH521994MH522263MH522311MH521995MH522264MH522312MH521996MH522265MH522313MH521997MH522266MH522313MH521998MH522267MH522315MH521999MH522268MH522316MH521000MH522269MH522317MH522001MH522271MH522319MH522003MH522272MH522320	c1galt1c1rep15si:dkey-90m5.4rrs1MH521988MH522257MH522305MH522273MH521989MH522258MH522306MH522274MH521990MH522259MH522307MH522275MH521991MH522260MH522308MH522276MH521992MH522261MH522309MH522277MH521993MH522262MH522310MH522278MH521994MH522263MH522311MH522279MH521995MH522264MH522312MH522280MH521996MH522265MH522313MH522281MH521997MH522266MH522314MH522282MH521998MH522267MH522315MH522283MH521999MH522269MH522316MH522284MH521999MH522269MH522317MH522284MH522000MH522270MH522318MH522286MH522001MH522271MH522319MH522287MH522003MH522272MH522320MH522287	c1galt1c1rep15si:dkey-90m5.4rrs1sox21bMH521988MH522257MH522305MH522273MH552932MH521989MH522258MH522306MH522274MH552933MH521990MH522259MH522307MH522275MH552934MH521991MH522260MH522308MH522276MH552935MH521992MH522261MH522309MH522277MH552936MH521993MH522262MH522310MH52277MH552937MH521994MH522263MH522311MH522279MH552938MH521995MH522264MH522312MH52280MH552939MH521996MH522265MH522313MH522281MH552940MH521997MH522266MH522314MH522283MH552941MH521998MH522267MH522315MH522283MH552943MH521999MH522269MH522317MH522284MH552943MH521999MH522269MH522317MH522286MH552944MH522000MH522270MH522318MH522286MH552945MH522001MH522271MH522319MH522287MH552946MH522003MH522271MH522319MH522288MH552946MH522003MH522271MH522310MH522288MH552946MH522003MH522271MH522300MH522288MH552947

	phospho2	si:dkeyp-92c9.2	ENSLOCG0000017388	june	ENSLOCG0000018097
Huso baerii	MH522225	MH522321	MH522067	MH522177	MH552948
Sinosturio dabryanus	MH522226	MH522322	MH522068	MH522178	MH552949
Huso fulvescens	MH522227	MH522323	MH522069	MH522179	MH552950
Huso gueldenstaedtii	MH522228	MH522324	MH522070	MH522180	MH552951
Acipenser oxyrinchus	MH522229	MH522325	MH522071	MH522181	MH552952
Huso persicus	MH522230	MH522326	MH522072	MH522182	MH552953
Huso ruthenus	MH522231	MH522327	MH522073	MH522183	MH552954
Sinosturio schrenckii	MH522232	MH522328	MH522074	MH522184	MH552955
Sinosturio sinensis	MH522233	MH522329	MH522075	MH522185	MH552956
Huso stellatus	MH522234	MH522330	MH522076	MH522186	MH552957
Acipenser sturio	MH522235	MH522331	MH522077	MH522187	MH552958
Sinosturio transmontanus	MH522236	MH522332	MH522078	MH522188	MH552959
Sinosturio dauricus	MH522237	MH522333	MH522079	MH522189	MH552960
Huso huso	MH522238	MH522334	MH522080	MH522190	MH552961
Pseudoscaphirhynchus kaufmanni	MH522239	MH522335	MH522081	MH522191	
Polyodon spathula	MH522240	MH522336	MH522082	MH522192	MH552962

	102685713	znf503	fbxo30a	foxo1	cebpa	egr1
Huso baerii	MH521956	MH522369	MH522097	MH522129	MH522004	MH522051
Sinosturio dabryanus	MH521957	MH522370	MH522098	MH522130	MH522005	MH522052
Huso fulvescens	MH521958	MH522371	MH522099	MH522131	MH522006	MH522053
Huso gueldenstaedtii	MH521959	MH522372	MH522100	MH522132	MH522007	MH522054
Acipenser oxyrinchus	MH521960	MH522373	MH522101	MH522133	MH522008	MH522055
Huso persicus	MH521961	MH522374	MH522102	MH522134	MH522009	MH522056
Huso ruthenus	MH521962	MH522375	MH522103	MH522135	MH522010	MH522057
Sinosturio schrenckii	MH521963	MH522376	MH522104	MH522136	MH522011	MH522058
Sinosturio sinensis	MH521964	MH522377	MH522105	MH522137	MH522012	MH522059
Huso stellatus	MH521965	MH522378	MH522106	MH522138	MH522013	MH522060
Acipenser sturio	MH521966	MH522379	MH522107	MH522139	MH522014	MH522061
Sinosturio transmontanus	MH521967	MH522380	MH522108	MH522140	MH522015	MH522062
Sinosturio dauricus	MH521968	MH522381	MH522109	MH522141	MH522016	MH522063
Huso huso	MH521969	MH522382	MH522110	MH522142	MH522017	MH522064
Pseudoscaphirhynchus kaufmanni	MH521970	MH522383	MH522111	MH522143		MH522065
Polyodon spathula	MH521971	MH522384	MH522112	MH522144	MH522018	MH522066