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ABSTRACT

Reinforcement learning (RL) is a group of machine learning algorithms that do not require pre-collected data and learn solely from interactions with the process.
We explore the application of RL techniques for generating MPC-like explicit control laws without knowing the model of the process. The proposed approach
combines the principles of model predictive control design to derive control laws without prior knowledge of the process model. A series of simulations are
performed using linear dynamical models to generate explicit control laws using RL. The performance of the RL-based approach is then compared to the one
of the explicit model predictive control approach. With RL, we can stabilize and effectively control numerous processes regarding the process control input and
output bounds.

REINFORCEMENT LEARNING

RL is one of three basic machine learning
paradigms alongside supervised learning and un-
supervised learning. Compared to other two
paradigms, RL does not require collected or la-
belled data. RL algorithm is often called Agent.
Policy - controller is updated based on interaction
with environment - process. The Agents goal is
to learn a policy, which maximizes the cumulative
value of objective function (reward)

max−
∑
k∈E

(yk − rk)
⊺
Qy (yk − rk) + ∆u⊺

kQu∆uk,

where yk is output from process, rk is reference,
∆uk is difference of the controlled input, Qy andQ-u
are weighting matrices. To put RL in perspective
with process control, we used block diagram below
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our controller - policy, represented by neural net-
work (NN) generates an control input to the envi-
ronment - process. Inputs to the policy are called
observables and contain every information about
process available (outputs, reference, previous con-
trol inputs, etc.). RL algorithm uses evaluations
of control inputs generated to maximize objective
function and updates the policy until a desired
level of control performance is achieved.

TRAINING OF EXPLICIT CONTROL LAW

Training of explicit control law - policy - is done in
simulation of the same length. At the beginning of
each simulation the process is being reset with ran-
dom initial condition and controlled to random ref-
erence or to steady states. Every time step in simu-
lation the policy is updated by one step of gradient
ascent calculated based on current and previously
collected data from interactions with the process.
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Figure 1:
Training of MIMO system. Light blue indicates cumu-
lative value of objective function in one simulation and
dark blue mean of last 40 simulations.

RESULTS

Figure 3: Control of the MIMO system with high interac-
tions. Controlled system is a tank in which cold and hot
inlet streams are mixed. Upper two graphs show outputs,
temperature T and tank level h and bottom two shows con-
trol inputs, percentage openings for cold αc and hot αh in-
let steams. Percentage error between MPC and RL is only
5.62%, but small steady state error could be observed.

Figure 4: Control of the second order SISO system with os-
cillations. The upper two graphs show output y with the
middle one zoomed to the area of bounds. The control in-
put u is shown on the bottom graph. Percentage error be-
tween MPC and RL is only 4.30%, but small steady state
error could be observed.

After successful training, we obtained our explicit
control law in the form of a NN. To test the perfor-
mance of this law, we simply replace the controller
in the closed loop with the trained policy. In the
following figures, we can see comparisons of the
trained control laws with the MPC control.
We demonstrated control on three processes: a
double integrator (DI) (Figure 2), a MIMO process
(Figure 3), and a stable SISO system of second or-
der with oscillations (Figure 4). The explicit con-
trol law effectively stabilized and controlled each
process from random initial conditions to desired
states.
We implemented control input bounds by select-
ing appropriate activation functions. Also, for the
SISO system of second order, we successfully im-
plemented output bounds. By penalizing the cross-
ing of soft bounds, the RL algorithm was able to
train an effective explicit control law that did not
cross the bounds.
All of this results were achieved without any infor-
mation about model, just by the RL algorithm inter-
acting with the process. The comparison of the Cu-
mulative values of objective function can be seen in
Table 1.

Table 1: Comparing objective function values in con-
trolled systems.

Algorithm J

RLDI −3.092 · 102
MPCDI −3.044 · 102
RLMIMO −4.341
MPCMIMO −4.110
RLSISO2 −5.604 · 102
MPCSISO2 −5.373 · 102

Figure 2: Control of the double integrator system. Up-
per two graphs show outputs, position p and velocity v.
Bottom one shows control input, force applied F . Per-
centage error between MPC and RL is only 2.09%.
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