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Purpose of benchmarking 

Optimising for computational performance of germline workflows for Parabricks (NVIDIA) and GATK (Broad Institute). The 

benchmarking was performed using Gadi High Performance Computing at the Australian National Computational Infrastructure (NCI).    

Conclusion 

Parabricks enabled fast alignment and variant discovery for large cohorts with low service units consumption. However the joint 

genotyping step is difficult to perform without the tool to merge GVCFs, and we need to use vanilla GATK to do the merging task. The 

Parabricks implementation of genotypegvcf is comparable in result with the vanilla GATK GenotypeGVCF, but is planned to be 

deprecated. The alternative glnexus is convenient to use and faster but has a lower discovery rate than vanilla GATK.  

 

We recommend keeping the parabricks genotypegvcf and to implement a convenient tool to merge GVCFs as an alternative to 

GenomicsDB in GATK. A suggestion is for glnexus to also output the merged gvcf in addition to the final bcf, because non-variant 

information from the gvcfs cannot be recovered from the final bcf nor vcf. 

 

Based on the work outlined below, at the optimal settings identified, the Parabricks germline pipeline is estimated to finish 15-20x 

faster, and uses 5x less service units than vanilla GATK. 

 

The speed-up of SNP discovery using the GPU-assisted methods will greatly assist molecular geneticists, breeders, and diagnosticians 

who identify variants from large sets of samples under time constraints, wherein decisions on the next step of research or medical 

diagnostic for treatment rely on the timely availability of information of variants in samples.For example in breeding, SNP genotyping a 

population at F1 allows identification of true offsprings from a cross, since planting the next generation population is time-bound (the 

planting season cannot be delayed) and resource intensive. Another example in medical diagnosis: a quick turnaround time for variant 

identification is important for COVID-19 management. 

 

Tools & workflows  

List 

Table 1. List and information about the variant calling pipelines used in the benchmarking exercise.  

Title Version Maturity Creators Source License 
Workflow 

manager 
Container 

PB germline 3.1.6* stable NVIDIA Parabricks NVIDIA license* None Singularity 

GATK 

germline 
4.1.4.0 stable Broad Institute GATK4    

*Parabricks v3 is now deprecated and no longer supported or available for download. Parabricks v4 is now available, free to use for 

researchers, and with significant performance improvements. 

https://docs.nvidia.com/clara/parabricks/4.2.0/whatsnew.html


Link to original workflow documentation 

● GATK / PB germline pipeline at Gadi@NCI 

● Parabricks Germline Pipeline 

● GATK Germline Pipeline 

Visual comparison (workflow diagrams) 

 

Before running both GATK and Parabricks workflows, the dict and fai files are generated from the reference fasta file using: gatk 

CreateSequenceDictionary and samtools faidx  (GATK prepare reference FASTA). 

Vanilla GATK fastq2bam 

The GATK fastq2bam consists of several steps to produce the alignment bam from the fastq and reference files.  

 

 
 

Figure 1. Diagram of the vanilla GATK fastq2bam workflow. 

 

 

From parabricks documentation of fq2bam, the BQSR step is optional and performed only if --knownSites file is provided. Since we 

have no known sites for our species, BQSR is not implemented in the GATK vanilla workflow.  

 
 

https://github.com/Southern-Cross-Plant-Science/GATK-Parabricks_benchmarking_Gadi_NCI
https://github.com/Southern-Cross-Plant-Science/GATK-Parabricks_benchmarking_Gadi_NCI
https://docs.nvidia.com/clara/parabricks/v3.0/text/germline_pipeline.html
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-
https://gatk.broadinstitute.org/hc/en-us/articles/360035531652-FASTA-Reference-genome-format


Figure 2. The fq2bam workflow, the BQSR step is skipped due to lack of gold standard SNPs in the species of interest. (adapted from 

https://docs.nvidia.com/clara/parabricks/v3.0/text/fastq_and_bam_processing.html#fq2bam)  

 

Vanilla GATK HaplotypeCaller is called per chromosome using the -L $CHR option, where $CHR is the chromosome/contig name in 

the fasta file. All unassembled contigs are called together by excluding all assembled chromosomes with the option -XL $CHR01 -XL 

$CHR02 .. -XL $CHRNN 

 
 

Figure 3. Diagram of the vanilla GATK HaplotypeCaller workflow. 

 

Unlike in GATK HaplotypeCaller, which is run with 1 core per chromosome, Parabricks haplotypecaller is run for the entire genome 

using multiple cores. BQSR report is optional, and is not available for our species. 

 

 
 

Figure 4. Diagram of the Parabricks haplotypecaller workflow (adapted from 

https://docs.nvidia.com/clara/parabricks/v3.0/text/variant_callers.html#haplotypecaller)  

Merge gvcf for joint genotyping  

 

GenomicsImportDB runs for more than 48 hours if all chromosomes are included. To avoid this, both vanilla GATK and Parabricks-

generated g.vcf.gz files are imported to the database per chromosome: one set of database folders for GATK and another for the 

Parabricks results. Each chromosome creates a database folder with all the samples. SelectVariants generates a g.vcf.gz for each 

chromosome containing all samples. The GenotypeGVCFs performs the joint genotyping per chromosome. 

 

https://docs.nvidia.com/clara/parabricks/v3.0/text/fastq_and_bam_processing.html#fq2bam
https://docs.nvidia.com/clara/parabricks/v3.0/text/variant_callers.html#haplotypecaller


 
Figure 5. Diagram for vanilla joint genotyping using the GATK GenomicsDB database. 

 

The final step is to combine all per-chromosome vcfs into one vcf containing all samples for the entire genome. 

 

 
 

Figure 6. Concatenate all chromosomes into the final VCF file 

Benchmarking: PB germline vs. GATK germline 

Benchmark datasets 

The datasets used for this benchmarking are 161 publicly available Cannabis paired-end whole genome sequence reads, including 55 

from PRJNA310948 (Lynch et al., 2016), 40 from PRJNA575581 (McKernan et al., 2020), 2 from (Welling et al., 2020) (SRR12845227, 

SRR12845228), 58 from https://www.medicinalgenomics.com/kannapedia-fastq/, from Cannabis  genome sequencing projects PK_SIL 

(SRR352161.2- SRR352169.2), CBDRx (ERR3850862),  Finola (SRR7285294), JL (SRR10019825), and JD-DASH (RSP11074), 

Cannatonic (RSP11349) from https://www.medicinalgenomics.com/crypto-funded-public-genomics. 

The reference genome used is Cannabis CBDRx (GCF_900626175.2). 

 

https://www.medicinalgenomics.com/kannapedia-fastq/
https://www.medicinalgenomics.com/kannapedia-fastq/
https://www.medicinalgenomics.com/crypto-funded-public-genomics
https://www.medicinalgenomics.com/crypto-funded-public-genomics


Service unit optimization for vanilla GATK 

First, optimization was performed for both GATK and Parabricks to determine the optimal number of cores and RAM to use to minimize 

service unit consumption. Samples of the datasets were used to cover a wide range of input file sizes, run with different numbers of 

cores and RAM. 

For the fastq2bam pipeline (GATK), bwa mem and MarkDuplicate have an option for multi-threading. Core numbers were varied to 

obtain the setting which consumes the fewest minimum service units. Based on the figure below, 10 cores were selected as 

optimum.   

 

Figure 7. Plot of service units used by the GATK fastq2bam workflow (Figure 1) when assigned different numbers of cores and RAM 

usage. 

GATK HaplotypeCalller does not have an option for multi-threading, but it is possible to split the genome into intervals and then 

distribute each interval across different cores. When used with 1 core only, fastq inputs above 1 GB will take more than 48 hours to run, 

exceeding the normal maximum walltime for Gadi jobs. We chose to split variant-calling to a thread per chromosome, plus 1 thread for 

all the unassembled contigs. For the task of assigning 1 job per chromosome, different memory sizes were compared for different input 

data sizes. As shown in the figure below, service units do not vary much for memory sizes in the range 1 to 16 GB. 

  

Figure 8. Plot of service units used for GATK HaplotypeCaller workflow (Figure 3). Values are the totals for 13 cores, 1 core per 

chromosome and 1 for all unassembled contigs for different Fastq input sizes. 

Service units optimization for Parabricks 

To optimise the Parabricks runs, different numbers of GPU and CPU cores were tried. Each GPU needs 12 CPU cores: therefore runs 

with different input file sizes were compared using 1, 2 or 3 GPUs, with the corresponding 12, 24 or 36 CPUs. The results are illustrated 

in the figure below and these are the observations: 

For fq2bam, as NGPU increases (and NCPU) from 1 to 2, the wall time improves and SU consumption remains the same.  



  

Figure 9. Parabricks fq2bam workflow (Figure 2) walltime and service units consumption for different numbers of cores and assigned 

RAM. 

For haplotypecaller, as NGPU increases (and NCPU) from 1 to 2, wall time improves and SU decreases. SU remains the same 

with a slight wall time improvement when increasing NGPU further. 

  



Figure 10. Parabricks haplotypecaller workflow (Figure 4) walltime and service units consumption for different numbers of cores and 

assigned RAM. 

  

Based on these results we chose the following settings for Parabricks fq2bam and haplotypecaller: 

● Ngpu = 2,  

● Ncpu = 24,  

● Mem = 32GB  

 

Estimation of service units and walltime to process entire dataset 

Using the optimal cores and memory determined above, the run time and service unit consumption  required to process the entire 

dataset were estimated for both GATK and Parabricks using the slopes in the figures below and the total size of all input files. 

  

 

Figure 11. Extrapolation charts to estimate wall time and service units for GATK and PB fastq2bam workflows (figures 1 and 2) using 

the Fastq input sizes. 

The actual service units used to process the entire set of test data, using GATK and Parabricks, are in the figure below. 



  

 

Figure 12. Actual wall time and service units used by GATK (top) and Parabricks for different Fastq input sizes. 

For fq2bam: 

● GATK estimated SU/fastqMB is 0.0216, actual is 0.029;  

● Parabricks estimated SU/fastqMB is  0.0084, actual is 0.0095. 

For haplotype caller, still recomputing because estimate was based on fastqMB while actual on bamMB. 

 

Merging of GVCFs and joint genotyping 

Downstream processing requires merging of all sample gvcfs into a single gvcf  for joint genotyping. GATK uses genomicsdbimport 

and selectvariants, while the Parabricks equivalent is being  discontinued and NVIDIA recommend the use of glnexus for this step. 

The processing occurs per chromosome, each point in the figure is for one chromosome gvcf. 



 

Figure 13. Service units used by GATK GenomicsDBImport and SelectVariants for merging of different input GVCF file sizes. 

Then GenotypeGVCFs is run for joint genotyping to get the final vcf file. GATK and Parabricks service units in this figure. 

 

Figure 14. Service units used by GATK and PB GenotypeGVCF for different input GVCF file sizes. 

Service units and walltime estimation 

 
The service units requirement  to run fastq2bam and haplotypecaller can be estimated using the average fastq file sizes in MB: 

 

avgFastqMB= (fastq_R1.gz + fastq_R2.gz)/2 for pair-end reads, or  

fastq.gz/2 for interleaved fastq.gz file 

 

● Using 10 cores for GATK fq2bam (bwa mem + samtools view + gatk AddOrReplaceGroup + gatk SortSam + gatk 

MarkDuplicatesSpark) 

● GATK fq2bam Service Units = 0.0188*avgFastqMB 

 

● Using GATK HaplotypeCaller per chromosome 

● GATK haplotypecaller Service Units = 0.0609*avgFastqMB 

 

● Using 2 GPUs, 24 CPUs, 32GB RAM for parabricks 

● Parabricks fq2bam Service Units = 0.0084*avgFastqMB 



● Parabricks haplotypecaller Service Units = 0.0077*avgFastqMB 

 

 

Estimating walltime depends on the number of cores used. For the same settings as above: 

 

● GATK fq2bam Walltime mins = 0.0563 * avgFastqMB 

● GATK haplotypecaller Walltime mins = 0.1662 * avgFastqMB 

 
● Parabricks fq2bam Walltime mins = 0.0057 * avgFastqMB 

● Parabricks haplotypecaller Walltime mins = 0.0042 * avgFastqMB 

 

Based on these values, at the optimal settings identified, the Parabricks germline pipeline is estimated to finish 15 - 20x faster, and use 

5x less service units than vanilla GATK. 

 

Benchmarking scripts 

Running GATK 

The scripts to run GATK for this benchmarking tests on Gadi are available here: https://github.com/Southern-Cross-Plant-

Science/GATK-Parabricks_benchmarking_Gadi_NCI/tree/main/GATK_Gadi_Pipeline. The details are explained in the repository and 

will be summarised here. The pipeline involves multiple scripts to be executed in the order listed below. 

Table 2. List of scripts to run GATK on Gadi at NCI. 

submit_array_gatkbam.sh Iterates through all samples, generates a BAM alignment for each FASTQ pairs 

submit_array_gatk_hc_byint.sh Performs variant calling to generates a genomic VCF file g.vcf.gz for each sample 
and chromosome 

submit_array_gatk_genomicsdb_byint.sh Loads the g.vcf.gz to a GenomicsDB database, one database for each chromosome 

submit_array_gatk_genotype_byint.sh GenotypeGVCF performs the joint genotyping to generate vcf.gz file foreach 
chromosome 

qsub merge_vcfs.sh Concatenates all the chromosomes vcf.gz into one genome-wide VCF file 

  These files need to be prepared before running the scripts. 

 1.  paths.sh – located in the same directory as the scripts, paths.sh is called by the other scripts to define variables and file 

locations.  

Table 3. List of variables needed for running GATK at Gadi 

JOB_NAME job name 

REFERENCE_DIR directory where the reference FASTA is stored 

REF reference genome, located in ${REFERENCE_DIR}${REF}.fna 

https://github.com/Southern-Cross-Plant-Science/GATK-Parabricks_benchmarking_Gadi_NCI/tree/main/GATK_Gadi_Pipeline
https://github.com/Southern-Cross-Plant-Science/GATK-Parabricks_benchmarking_Gadi_NCI/tree/main/GATK_Gadi_Pipeline


SAMPLE_FILE file location of samples file 

CHROMOSOME_FILE File location of the chromosomes file 

 2.  SAMPLE_FILE – the sample file lists the tab separated read group id, sample name and file paths (one line per sample). 

read_group_i sample_name_i  path/to/fastq_i_R1  path/to/fastq_i_R2 

 read_group_i is used for @RGID,@RGLB,@RGPU and sample_name_i for @RGSM in the generated BAM file. 

For samples with multiple FASTQ pairs, sample_name  may be repeated for multiple read groups. Then merge their BAMs manually 

using picard MergeSAMFiles into a single BAM for the sample. 

 3.  CHROMOSOME_FILE - the chromosome file lists the identifiers of all assembled chromosomes in the FASTA. All other 

contigs/scaffolds in the FASTA are combined in one VCF. The filename should end with “.intervals”. 

 A directory with name JOB_NAME is created with all the intermediate and result files. 

 

Running Parabricks 

The Parabricks pipeline scripts are available here: https://github.com/Southern-Cross-Plant-Science/GATK-

Parabricks_benchmarking_Gadi_NCI/tree/main/Parabricks_Gadi_Pipeline. The same files and definitions are required as for the GATK 

pipeline above, except for NGPU, which is the number of GPUs to use. THREADS should be set at 12x NGPU based on the Gadi 

specification for gpuvolta queues. The pipeline consists of these scripts to be executed in the given order. 

Table 4. List of scripts to run the Parabricks pipeline in Gadi at NCI. 

submit_array_pb.sh Iterates through all samples, generates a BAM alignment for each FASTQ 

pairs. 

submit_array_pb_glnexus_byint.sh Using GLNEXUS, performs variant calling and joint genotyping to generate a 

vcf.gz file for each chromosome. 

qsub merge_vcfs.sh Concatenates all the chromosomes vcf.gz into one genome-wide VCF file. 

  

 

Collecting run statistics 

 

The jobs above generate stdout and stderr reports with file names JOB_NAME.$i.stdout and JOB_NAME.$i.stderr, respectively. $i is 

the row number of the ith sample defined in the ith line of SAMPLE_FILE. 

 

The final BAM files have the name ${JOB_NAME}-${group_id}-${BWA}-rg-dup.bam, and the GVCF names are  

${JOB_NAME}-${group_id}-${BWA}.g.vcf.gf 

 

python3 summarize-stdout.py JOB_NAME BWA OUTFILE REF 

 

This script collects and tabulates the runtime information for all subjobs submitted through submit_array.sh. It should be called from the 

same directory where submit_array.sh was run. This generates the file summary_${JOB_NAME}.txt 

 

BWA parameter can be: bwa1 for GATK, fq2bam for parabricks 

REF is reference genome as used in submit_array.sh,  defaults to cs10 

https://github.com/Southern-Cross-Plant-Science/GATK-Parabricks_benchmarking_Gadi_NCI/tree/main/Parabricks_Gadi_Pipeline
https://github.com/Southern-Cross-Plant-Science/GATK-Parabricks_benchmarking_Gadi_NCI/tree/main/Parabricks_Gadi_Pipeline
https://opus.nci.org.au/display/Help/Queue+Limits
https://opus.nci.org.au/display/Help/Queue+Limits


 

OUTFILE is the workflow to collect statistics. The possible values are in this table: 

 

Table 5. Values for OUTFILE 

dup GATK fastq to bam 

hc GATK gvcf 

pbdup Parabricks fastq2bam 

pbhc Parabricks haplotypecaller 

 

 

The summary table has these columns: 

 

READ   sample name 

FASTQ1_MB  file size 

FASTQ2_MB  file size 

SU   service units 

EXIT   exit status 

BAMSIZE_MB  generated BAM file size 

OUTSIZE_MB  generated GVCF file (or BAM for OUTFILE of dup or pbdup) 

WALLTIME  wall time 

MEMORY   memory used MB 

NCPU   cpu used 

JOBFS    jobfs sized used MB 

JOBID   jobid 

CPUTIME  CPU time 

%CPU   CPU TIME / (N * WALLTIME) 

WALL_MINS  wall time in minutes 

BWA_MINS  fastq2bam cpu time in mins 

HC_MINS  haplotypecaller cpu time in mins 

N_FASTQ  number of fastq files 

AVG_FASTQ  avg fastq file size MB 

FQ2BAM_SEC  fastq2bam cpu time in secs  

HC_SEC   haplotypecaller cpu time in secs 

Joint genotyping GATK (importdb+selectvariants+genotypegvcf+concat) vs Parabricks 

glnexus 

 

GVCF files were joint-genotyped using GATK and Parabricks glnexus to produce the final VCF file. GATK was run per chromosome 

since the job takes longer than 48 hours if using the entire chromosome. For glnexus, both per chromosome and whole genome runs 

were performed.The charts below compare the service units, CPU time and wall time for the per chromosome runs for both glnexus 

and GATK, with the contributions for each GATK step broken down further. The variant positions for the per chromosome and whole 

genome using glnexus perfectly matched. 

 

 



 
 

 



 
 

Figure 15. Service units, wall time and CPU time for joint genotyping using Parabricks GLNEXUS and GATK workflow. 

Compare results for the different methods 

The genotyping pipeline can be separated into two stages, variant calling and joint genotyping. Variant calling consists of alignment and 

haplotype calling. The methods used for each steps are: 

 

Table 6. Tools tested for the GATK and Parabricks genotyping pipelines. 

Step Pipeline (code) Tools 

Variant calling 

GATK 
bwa1 

bwa mem + sort sam + markduplicate + haplotypecaller 

Parabricks 
(fq2bam) 

fq2bam + haplotypecaller 

Joint genotyping 

GATK (genotypegvcf) dbimport + selectvariants + genotypeGVCFs 

Parabricks (glnexus) glnexus 

Parabricks 
(pbgenotypegvcf) 

deprecated pbrun genotypegvcf  
(requires a combined gvcf, tools to combine are not available in parabricks and 
had to use dbimport + selectvariants from vanilla GATK ) 

 

To quantify the effects of the pipeline used, four sets of vcf were generated using different combinations: 

 

1. GATK-GATK genotypegvcf 

2. GATK-glnexus 

3. PB-GATK genotypegvcf 

4. PB-glnexus 

 

Effect of joint genotyping, with GVCF inputs generated by GATK and Parabricks. 



 
Figure 16. Number of variants discovered and shared between usingGLNEXUS and GenotypeGVCF for joint genotyping. 

 

Effect of haplotypecaller, with joint genotyping using GATK genotypegvcf or glnexus. 

 

 
Figure 17. Number of variants discovered and shared between using GATK and PB haplotypecaller. 

 



Using GATK-genotypegvcf vs Parabricks-glnexus. 

         
 

Figure 18. Number of variants discovered and shared between GATK-genotypegvcf and Parabricks-glnexus. 

 

The deprecated Parabricks pbrun genotypegvfc (pbgenotypegvfc) was also tested using the combined gvcf generated by vanilla GATK 

(dbimport + selectvariants + bcftools concat).. The result shows it is equivalent to the vanilla GATK GenotypeGVCFs (genotypegvcf). 

 

PB-pbgenotypegvcf = PB-genotypegvcf 

GATK-pbgenotypegvcf = GATK-genotypegvcf 

 

The effect of haplotype caller using genotypegvfc for joint genotyping. 

 
 

Figure 19. Number of variants discovered and shared between GATK GenotypeGVCF and PB genotypegvcf. 

 

The above comparisons show that glnexus contributed to most of the difference between the vanilla GATK and Parabricks results. 

Vanilla GATK discovered more variants (57 M SNPS, 11.3 M indels) compared to Parabricks-glnexus (49.7 M SNPs, 9.26M indels). 

However, the Parabricks version of genotypegvcf gives the same results with the vanilla GATK GenotypeGVCFs, and the older 

Parabricks pipeline discovered (56.8 M SNPS, 11 M indels). 

Parabricks-glnexus service units for different reference genome size 

Parabricks was also used to call variants using other reference genomes with different sizes. 

 



 
 

Figure 20. Service units used for Parabricks fastq2bam + haplotypecaller for different fastq and reference genome assemblies. 

 

The number of cores and gpus used were found to be optimal (48 cores, 4 gpus) for fq2bam. Increasing them did not improve the wall 

time, and only increased the service units consumed. The same result was observed with glnexus: 5 cpu cores was optimal and 

increasing these further did not improve wall time. 

Rare allele discovery rate 

It would be difficult to assess accuracy because we do not have a gold standard, or experimentally validated variants, for our species. 

Different tools may be compared using other criteria like the discovery rate, especially discovery of rare alleles. The discovery rates for 

C. sativa with different pipelines are shown in the table below. O. sativa is included for comparison although it used ~19x more 

samples. 

 

Table 7. Comparison of variant discovery rates between pipelines and with other species 

 

Genome Size, bp Samples Pipeline SNPs / 10kb 

C. sativa, CBDRx 
cs10 

876,147,649 162 

GATK 651 

PB-genotypegvcf 630 

PB-glnexus 568 

O. sativa, 
Nipponbare 

373,245,519 3024 GATK 859 

 

 

The alternate allele frequencies of the unique SNPs between GATK, PB-pbgenotypegvcf and PB-glnexus are plotted in the figure 

below. It shows that the Parabricks fq2gvcf is comparable with vanilla GATK in discovering alleles, but the joint genotyping between 

using genotypegvcf or glnexus made the difference. Both vanilla GenotypeGVCF and the deprecated pbgenotypegvcf discovered more 

rare alleles (the regions approaching AF=0.0 and AF=1.0 in the graph) than glnexus during joint genotyping. 

 

  

https://s3.amazonaws.com/3kricegenome/reduced/README-3kRG-SNP-v1-1.txt
https://s3.amazonaws.com/3kricegenome/reduced/README-3kRG-SNP-v1-1.txt


 
 

  
 

Figure 21. Comparison of discovery rate for different Alternate Allele Frequencies between GATK and PB-GLNEXUS (top) and 

between GATK and PB_GenotypeGVCF. 

 

Allele frequencies for all SNPs of the three pipelines. 

 

 
Figure 22.  Discovery rate for different Alternate Allele Frequencies for the three tested pipelines. 

RNA-Seq Variant Discovery 

 The GATK RNA-Seq short variant discovery pipeline at https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-

variant-discovery-SNPs-Indels- uses the splice-aware aligner STAR (https://github.com/alexdobin/STAR), to align transcript reads into 

https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-SNPs-Indels-
https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-SNPs-Indels-
https://github.com/alexdobin/STAR


the genome. Alignments that span introns are then split into supplementary alignments and mismatching overhangs are clipped. RNA 

aligner conventions and mapping qualities are also remapped to match DNA conventions. After these pre-processing steps, the 

resulting BAM file is used for variant calling similar to DNA read alignment BAMs in the previous sections. 

   

Figure 23. GATK RNA-Seq data alignment workflow, rna_fq2bam 

Here we compare the vanilla GATK RNA-Seq preprocessing and the Parabricks rna_fq2bam pipeline 

(https://docs.nvidia.com/clara/parabricks/v3.5/text/rna.html#rna-fq2bam) plus PB splitncgar tool 

(https://docs.nvidia.com/clara/parabricks/v3.5/text/qc_metrics.html#splitncigar).  

For the variant calling step using GATK HaplotypeCaller or PB haplotypecaller, the comparisons described in the previous sections 

also apply. We are using 17 RNA-Seq samples with 3 replicates. Initially, 21 samples were available but Parabricks rna_fq2bam did not 

finish after 48 hrs on 4 samples, so only 17 were used to proceed to haplotype calling and comparison. 

The service units consumed as a function of input size for each tool in the pipeline for both vanilla GATK and Parabricks are plotted in 

the figure below. Walltime was not compared because most of the vanilla tools (STAR, MarkDuplicateSpark, SplitNCigarReads) 

support multi-threading. 24 cores were used for both pipelines, plus 2 GPUs for Parabricks. The result shows the vanilla pipeline 

consumed five times more service units than Parabricks. 

https://docs.nvidia.com/clara/parabricks/v3.5/text/rna.html#rna-fq2bam
https://docs.nvidia.com/clara/parabricks/v3.5/text/qc_metrics.html#splitncigar


 

Figure 24. Service units usage for GATK-RNA-Seq and Parabricks pipelines for different fastq input sizes. 

There is a large discrepancy on the number of aligning reads in the resulting BAM files between the two pipelines. In the figure below, 

samtools (samtools view -c) was used to get the number of aligning reads in the BAM file for each sample. The number of reads that 

are aligned using GATK pipeline with vanilla STAR are more than twice that of using Parabricks rna_fq2bam+splitncgar. Except for the 

results to output, both ‘--two-pass-mode Basic’ and default settings were used. The commands can be checked in the github scripts. 

This information alone indicates that the vanilla pipeline has apparently discovered more variants than the Parabricks pipeline.  

 

Figure 25. Comparison of the number of RNA reads that are aligned for GATK and Parabricks RNASeq Variant discovery pipelines. 



Comparison of RNA-Seq variants discovery 

Haplotype caller and joint genotyping were performed on both BAM files using the same method (PB genotypegvcf) to determine the 

difference in variants discovered. The number of common and unique variants discovered using vanilla GATK pipeline and Parabricks 

are compared in the Venn diagram below.  

 

Figure 26. Number of variants discovered and shared between GATK and Parabricks RNASeq Variant discovery pipelines. 

The result shows the vanilla pipeline discovered more SNPs (6.3 M vs 4.03 M) and indels (1.09 M vs 743 k) than the parabricks 

pipeline.  

 

 STAR + GATK pipeline 

The scripts to run the RNA-Seq variant-calling are included in the GATK pipeline, RNA-Seq sequence variant-calling section. The 

pipeline involves multiple scripts to be executed in the order listed below. 

 

Table 8. List of scripts to run variant calling using RNA-Seq data. 

submit_array_gatk_rna_fq2bam.sh Iterates through all samples, generates a BAM alignment for each sample using 
triplicate FASTQ pairs 

submit_array_gatk_rna_hc_byint.sh Performs variant calling to generates a g.vcf.gz for each sample and chromosome 

submit_array_rna_genomicdb_byint.sh Loads the g.vcf.gz to a GenomicsDB database and performs joint genotyping to 
generate a vcf.gz file for each chromosome 

qsub merge_rna_vcfs.sh Concatenates all the chromosomes vcf.gz into one genome-wide VCF file 

  These files need to be prepared before running the scripts. 

 1.  paths_rna.sh – located in the same directory as the scripts, paths.sh is called by the other scripts to define variables and file 

locations.  

Table 9. List of variables to define in path.sh for running STAR-GATK RNA-Seq variant discovery in Gadi  

https://github.com/Southern-Cross-Plant-Science/GATK-Parabricks_benchmarking_Gadi_NCI/tree/main/GATK_Gadi_Pipeline#rna-seq-sequence-variant-calling


JOB_NAME job name 

REFERENCE_DIR directory where the reference FASTA is stored 

REF reference genome, located in ${REFERENCE_DIR}${REF}.fna 

SAMPLE_FILE file location of samples file 

CHROMOSOME_FILE File location of the chromosomes file 

STAR_PATH path to STAR executable 

STAR_GENOMEDIR
  

STAR reference genome directory, generated using STAR --runMode genomeGenerate 

 2.  SAMPLE_FILE – the sample file lists the tab separated sample name, read groups and file paths, one line per sample. 

SMi  RGi1 path/to/FQi1_R1 path/to/FQi1_R2  RGi2 path/to/FQi2_R1 path/to/FQi2_R2 RGi3 path/to/RGi3_1 path/to/RGi3_2 

 3.  CHROMOSOME_FILE - the chromosome file lists the identifiers of all assembled chromosomes in the FASTA. All other 

contigs/scaffolds in the FASTA are combined in one VCF. The filename should end with “.intervals”. 

 A directory with name JOB_NAME is created with all the intermediate and result files. 

Parabricks commands 

The Parabricks pipeline scripts for RNA-Seq variant calling are included in the repository.  The same files and definitions are required 

as for the GATK pipeline above, except for NGPU which is the number of GPUs to use. THREADS should be set at 12 x NGPU based 

on Gadi specification for gpuvolta queues. The pipeline consists of these scripts to be executed in the given order. 

Table 10 List of scripts to run the Parabricks RNA-Seq variant discovery pipeline in Gadi at NCI.  

submit_array_pb_rna.sh Iterates through all samples, generates a BAM alignment for each sample 

submit_array_pb_rna_glnexus_byint.sh Using GLNEXUS, performs variant calling and joint genotyping to generate a 
vcf.gz file for each chromosome 

qsub merge_vcfs_rna.sh Concatenates all the chromosomes vcf.gz into one genome-wide VCF file 

  

Variant calling on single sample 

To isolate the effects of joint genotyping on the results, we checked the concordance when using only one sample. GATK 

GenotypeGVCFs was run on the g.vcf.gz files already generated before from the HaplotypeCaller of both GATK and Parabricks 

pipelines. We presume that having only one sample, GenotypeGVCFs has no further basis in altering the variants, and will just remove 

the GVCFBlock and <NON_REF> in the gvcf, to generate the VCF file. Haplotype caller could have been used to generate the vcf 

directly without passing to g.vcf. 

 

vcf-compare (https://vcftools.github.io/perl_module.html#vcf-compare) was used in the comparison of vcf files.  

Variant calling on genomic sequence 

For genomic variant calling, two samples, SRR3294430.1, SRR3294441.1 (both Afghan Kush) using the cs10 reference assembly 

(GCF_900626175.2) were tested individually.  For SRR3294441.1, comparison of unique and common sites gives a high concordance:  

https://github.com/Southern-Cross-Plant-Science/GATK-Parabricks_benchmarking_Gadi_NCI/tree/main/Parabricks_Gadi_Pipeline#rns-seq-sequence-variant-calling


● Unique to GATK 97651 (2.1%),  

● Unique to PB: 75545 (1.6%),  

● Common 4509620 (97.9% of GATK, 98.4% of PB) 

  
Figure 27. Number of unique and common SNP positions between GATK and Parabricks pipelines using only one sample. 

 

Genotype comparison on common sites gives a non-reference discordance rate (NDR) of 0.41% (mismatches over total calls involving 

non-reference alleles). 

 

Table 11. Vcf-compare output for genotype concordance between GATK and fq2bam pipelines. 

  
 

The same comparison for SRR3294430.1 gives:  

● Unique to GATK 126236 (2.5%),  

● Unique to PB: 99086 (2.0%),  

● Common 4840704 (97.5% of GATK, 98.0% of PB), and  

● NDR of 0.53% 

 

Variant calling on RNA-Seq sequence 

For RNA-Seq variant calling, STAR-GATK discovered more variant sites compared to Parabricks using the rna_fq2bam pipeline.  

Using the Afghan Kush RNA-Seq data (SRR10871515 to SRR10871527) on cs10 assembly (GCF_900626175.2), the Venn diagram of 

discovered sites is shown with Unique to STAR-GATK 259704 (39.1%), unique to PB 41811 (9.4%), common 403662 (90.6% of PB, 

60.9% of STAR-GATK). Genotype comparison on common sites gives a non-reference discordance rate of 6.97%. 



  
Figure 28. Number of unique and common SNP positions between STAR-GATK and Parabricks pipelines using only one sample for 

RNA-Seq variant calling. 

 

Table 12. Vcf-compare output for genotype concordance between STAR-GATK and rna_fq2bam pipelines. 

 
 

Another RNA-Seq sample, finola bulbous trichome (SRR7630401, SRR7630403, SRR7630404), was compared. Site comparison 

gives: 

● unique to GATK 160803 (35.8%),  

● unique to PB 21479 (6.9%),  

● common 288281 (93.1% of PB, 64.2% of STAR-GATK), and  

● Genotype comparison gives NDR 16.26% 

 

The above comparisons show fq2bam gives highly concordant results with GATK for DNA/genomic variant calling. However, the 

rna_fq2bam in Parabricks RNA-Seq variant discovery pipeline behaved similarly for multiple and single samples, discovering less 

SNPs compared to the legacy STAR-GATK pipeline.  

 

Conclusion 
Parabricks enabled fast alignment and variant discovery for large cohorts with low service units consumption. However, the joint 

genotyping step is difficult to perform without the tool to merge GVCFs, and we needed to use vanilla GATK to do the merging task. 

The Parabricks implementation of genotypegvcf is comparable in result with the vanilla GATK GenotypeGVCF but is planned to be 

deprecated. The alternative glnexus is convenient to use and faster but has a lower discovery rate than vanilla GATK.  

 

We recommend keeping the parabricks genotypegvcf and to implement a convenient tool to merge GVCFs as an alternative to 

GenomicsDB in GATK. A suggestion is for glnexus to also output the merged gvcf in addition to the final bcf, because non-variant 

information from the gvcfs cannot be recovered from the final bcf nor vcf. 
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