
Chapter 25

Computational linguistics and grammar
engineering
Emily M. Bender

 

 

University of Washington

Guy Emerson
 

 

University of Cambridge

We discuss the relevance of HPSG for computational linguistics, and the relevance
of computational linguistics for HPSG, including: the theoretical and computa-
tional infrastructure required to carry out computational studies with HPSG; com-
putational resources developed within HPSG; how those resources are deployed,
for both practical applications and linguistic research; and finally, a sampling of lin-
guistic insights achieved through HPSG-based computational linguistic research.

1 Introduction

From the inception of HPSG in the 1980s, there has been a close integration be-
tween theoretical and computational work (for an overview, see Flickinger, Pol-
lard & Wasow 2024, Chapter 2 of this volume). In this chapter, we discuss com-
putational work in HPSG, starting with the infrastructure that supports it (both
theoretical and practical) in Section 2. Next we describe several existing large-
scale projects which build HPSG or HPSG-inspired grammars (see Section 3) and
the deployment of such grammars in applications including both those within
linguistic research and otherwise (see Section 4). Finally, we turn to linguistic
insights gleaned from broad-coverage grammar development (see Section 5).

Emily M. Bender & Guy Emerson. 2024. Computational linguistics and gram-
mar engineering. In Stefan Müller, Anne Abeillé, Robert D. Borsley & Jean-
 Pierre Koenig (eds.), Head-Driven Phrase Structure Grammar: The handbook,
2nd revised edn. (Empirically Oriented Theoretical Morphology and Syntax
9), 1181–1229. Berlin: Language Science Press. DOI: 10.5281/zenodo.13645044

https://orcid.org/0000-0001-5384-6227
https://orcid.org/0000-0002-3136-9682
https://doi.org/10.5281/zenodo.13645044


Emily M. Bender & Guy Emerson

2 Infrastructure

2.1 Theoretical considerations

There are several properties of HPSG as a theory that make it well-suited to com-
putational implementation. First, the theory is kept separate from the formalism:
the formalism is expressive enough to encode a wide variety of possible theories.
While some theoretical work does argue for or against the necessity of particu-
lar formal devices (e.g., the shuffle operator; Reape 1994), much of it proceeds
within shared assumptions about the formalism. This is in contrast to work in
the context of the Minimalist Program (Chomsky 1995), where theoretical results
are typically couched in terms of modifications to the formalism itself. From a
computational point of view, the benefit of differentiating between theory and
formalism is that the formalism is relatively stable. That enables the develop-
ment and maintenance of software systems that target the formalism (Boguraev
et al. 1988), such as software for parsing, generation, and grammar exploration
(see Section 3 below for some examples).1

A second important property of HPSG that supports a strong connection be-
tween theoretical and computational work is an interest in both so-called “core”
and so-called “peripheral” phenomena. Most implemented grammars are built
with the goal of handling naturally occurring text.2 This means that they will
need to handle a wide variety of linguistic phenomena not always treated in theo-
retical syntactic work (Baldwin et al. 2005). A syntactic framework that discounts
research on “peripheral” phenomena as uninteresting provides less support for
implementational work than does one, like HPSG or Construction Grammar, that
values such topics (for a comparison of HPSG and Construction Grammar, see
Müller 2024a, Chapter 32 of this volume).

Finally, the type hierarchy characteristic of HPSG lends itself well to devel-
oping broad-coverage grammars which are maintainable over time (see Sygal
& Wintner 2011). The use of the type hierarchy to manage complexity at scale
comes out of the project at HP Labs where HPSG was originally developed (Flick-
inger et al. 1985, Flickinger 1987). The core idea is that any given constraint is
(ideally) expressed only once, on a type which serves as a supertype to all enti-

1There are implementations of Minimalism, notably Stabler (1997) and Herring (2016). Most
recently, Torr (2019) developed a broad-coverage, treebank-trained Minimalist parser. How-
ever, implementing a theory requires fixing the formalism, and so these implementations are
unlikely to be useful for testing theoretical ideas if the formalism moves on. See Borsley &
Müller (2024: Section 2.1), Chapter 28 of this volume for further discussion.

2It is possible, but less common, to do implementation work strictly against test suites of sen-
tences constructed specifically to focus on phenomena of interest.

1182



25 Computational linguistics and grammar engineering

ties that bear that constraint.3 Such constraints might represent broad general-
izations that apply to many entities or relatively narrow, idiosyncratic properties
that apply to only a few. By isolating any given constraint on one type (as op-
posed to repeating it in multiple places), we build grammars that are easier to
update and adapt in light of new data that require refinements to constraints.
Having a single locus for each constraint also makes the types a very useful tar-
get for documentation (Hashimoto et al. 2008) and grammar exploration (Letcher
2018).

2.2 Practical considerations

HPSG allows practical implementations because it uses a well-defined formal-
ism.4 Furthermore, because HPSG is defined to be bi-directional, an implemented
grammar can be used for both parsing and generation. In this section, we discuss
how HPSG allows tractable algorithms, which enables linguists to empirically
test hypotheses and which also enables HPSG grammars to be used in a range of
applications, as we will see in Sections 4.1 and 4.2, respectively.

2.2.1 Computational complexity

One way to measure how easy or difficult it is to use a syntactic theory in prac-
tical computational applications is to consider the computational complexity5 of

3Originally this only applied to lexical entries in Flickinger’s work. Now it also applies to phrase
structure rules, lexical rules, and types below the level of the sign which are used in the defini-
tion of all of these. See Flickinger, Pollard & Wasow (2024: Section 6), Chapter 2 of this volume
for further discussion.

4See Richter (2024), Chapter 3 of this volume for further discussion. To clarify a potentially
confusing terminological point, much theoretical work in HPSG, including Pollard & Sag (1994),
distinguishes between fully resolved feature structures and possibly underspecified feature
structure descriptions. Much computational work, by contrast, operates entirely with partially
specified feature structures, at both the level of grammar and the level of analyses licensed by
the grammar. In keeping with this tradition, we use the term “feature structure” to refer to both
fully specified and partially specified objects, and have no need for the term “feature structure
description”.

5Computational complexity is related to the complexity hierarchy of language classes in for-
mal language theory. More complex language classes tend to require parsing and generation
algorithms with higher computational complexity, as illustrated by the Chomsky Hierarchy
(Chomsky 1963, Hopcroft & Ullman 1969) and the Weir Hierarchy (Weir 1992). However, this
relationship is not exact. For example, the class of strictly local languages is a proper subset
of the class of regular languages, but both classes can be parsed in linear time (Jäger & Rogers
2012). Similarly, there are proper supersets of the class of context-free languages which do
not require additional computational complexity (Boullier 1999). Müller (2019: Chapter 17)
discusses HPSG from the point of view of formal language theory.

1183



Emily M. Bender & Guy Emerson

parsing and generation algorithms (Gazdar & Pullum 1985). Computational com-
plexity includes both how much memory and how much computational time a
parsing algorithm needs to process a particular sentence.6 Considering parsing
time, longer sentences will take longer to process, but the more complex the al-
gorithm is, the more quickly the amount of processing time increases. Parsing
complexity can thus be measured by considering sentences containing 𝑛 tokens,
and then increasing 𝑛 to see how the amount of time changes. This can be done
based on the average amount of time for sentences in a corpus (average-case
complexity), or based on the longest amount of time for all theoretically possible
sentences (worst-case complexity).

At first sight, analyzing computational complexity would seem to paint HPSG
in a bad light, because the formalism allows us to write grammars which can be
arbitrarily complex; in technical terminology, the formalism is Turing-complete
(Johnson 1988: Section 3.4). However, as discussed in the previous section, there
is a clear distinction between theory and formalism. Although the HPSG for-
malism rules out the possibility of efficient algorithms that could cope with any
possible feature-structure grammar, a particular theory (or a particular grammar)
might well allow efficient algorithms.

Keeping processing complexity manageable is handled differently in other
computationally-friendly frameworks, such as Combinatory Categorial Gram-
mar (CCG),7 or Tree Adjoining Grammar (TAG; Joshi 1987, Schabes et al. 1988).
The formalisms of CCG and TAG inherently limit computational complexity:
for both of them, as the sentence length 𝑛 increases, worst-case parsing time
is proportional to 𝑛6 (Kasami et al. 1989). This is a deliberate feature of these
formalisms, which aim to be just expressive enough to capture human language,
and not any more expressive. Building this kind of constraint into the formalism
itself highlights a different school of thought from HPSG. Indeed, Müller (2015:
64) explicitly argues in favor of developing linguistic analyses first, and improv-
ing processing efficiency second. As discussed above in Section 2.1, separating
the formalism from the theory means that the formalism is stable, even as the
theory develops.

It would be beyond the scope of this chapter to give a full review of parsing
algorithms, but it is instructive to give an example. For grammars that have a
context-free backbone (every analysis can be expressed as a phrase-structure tree
plus constraints between mother and daughter nodes), it is possible to adapt the

6In this section, we only consider parsing algorithms, but a similar analysis can be done for
generation (e.g., Carroll et al. 1999).

7For an introduction, see Steedman & Baldridge (2011). For a comparison with HPSG, see Kubota
(2024), Chapter 29 of this volume.

1184



25 Computational linguistics and grammar engineering

standard parsing algorithm (Kay 1973) for context-free grammars. The basic idea
is to parse “bottom-up”, starting by finding analyses for each token in the input,
and then finding analyses for increasingly longer sequences of tokens (called
spans), until the parser reaches the entire sentence.

For a context-free grammar, there is a finite number of nonterminal symbols,
and each span is analyzed as a subset of the nonterminals. For a feature-structure
grammar, each span must be analyzed as a set of feature structures, which makes
the algorithm more complicated. In principle, a grammar may allow an infinite
number of possible feature structures, for example if it includes recursive unary
rules. However, if we can bound the number of possible feature structures as 𝐶 ,
then the worst-case parsing time is proportional to 𝐶2𝑛𝜌+1, where 𝜌 is the maxi-
mum number of children in a phrase-structure rule (Carroll 1993: Section 3.2.3).
This is less complex than for an arbitrary grammar (which means that this class
of grammars is not Turing-complete), but 𝐶 may nonetheless be very large.

But is the number of possible feature structures bounded in implemented HPSG
grammars? For delph-in grammars (see Section 3.2), the answer is yes. Assum-
ing a system without relational constraints, the potential for unboundedness in
the number of feature structures stems from the potential for recursion in fea-
ture paths: a list is a simple example,8 and as another example, the elements on
a comps list also include the feature comps.

However, in practice, such recursive paths do not need to be considered by
the parsing algorithm. For example, selecting heads might place constraints on
their complements’ subjects (e.g., in raising/control constructions), but no fur-
ther than that (e.g., a complement’s complement’s subject). Similarly, while lists
that are potentially unbounded in length are used in semantic representations,
these are never involved in constraining grammaticality. The only lists that con-
strain grammaticality are valence lists, but in practical grammars these are never
greater than length four or five.9

When parsing real corpora, it turns out that the average-case complexity is
much better than might be expected (Carroll 1994). On the one hand, grammat-

8More precisely, in the standard implementation of a list as a feature structure, the type list
has two subtypes null and non-empty-list, and non-empty-list has the features first and rest,
where the value of rest is of type list. This means that the value of rest can itself have the
feature rest. See also Richter (2024: 106), Chapter 3 of this volume on lists.

9In part, this is because delph-in does not adopt proposals like the deps list of Bouma, Mal-
ouf & Sag (2001). Furthermore, in many delph-in grammars, including the English Resource
Grammar (ERG), the slash list cannot have more than one element. If unbounded valence lists
or slash lists are required, such as to model cross-serial dependencies (Rentier 1994; see also
Godard & Samvelian 2024, Chapter 11 of this volume), the number of possible structures might
still be bounded as a function of sentence length; this would allow us to bound worst-case
parsing complexity, but it will be a higher bound.

1185



Emily M. Bender & Guy Emerson

ical constructions do not generally combine in the worst-case way, and on the
other, when a grammar writer is confronted with multiple possible analyses for
a particular construction, they may opt for the analysis that is more efficient for
a particular parsing algorithm (Flickinger 2000). To measure the efficiency of
grammars and parsing algorithms in practice, it can be helpful to use a test suite
composed of a representative sample of sentences (Oepen & Flickinger 1998).

2.2.2 Parse ranking

Various kinds of ambiguity are well-known in linguistics (such as modifier at-
tachment and part-of-speech assignment), to the point that examples like (1) are
stock in trade:

(1) a. I saw the kid with the telescope.
b. Visiting relatives can be annoying.

A well-constructed grammar should be expected to return multiple parses for
each ambiguous sentence.

However, people are naturally very good at resolving ambiguity, which means
most ambiguity is not apparent, even to linguists. It is only with the development
of large-scale grammars that the sheer scale of ambiguity has become clear. For
example, (2) might seem unambiguous, but there is a second reading, where my
favorite is the topicalized object of speak, which would mean that town criers
generally speak the speaker’s favorite thing (perhaps a language) clearly. There
is also a third, even more implausible reading, where my favorite town is the top-
icalized object. Such implausible readings don’t easily come to mind, and in fact,
the 2018 version of the English Resource Grammar (ERG; Flickinger 2000, 2011)
gives a total of 21 readings for this sentence. With increasingly long sentences,
such ambiguities stack up very quickly. For (3), the first line of a newspaper
article,10 the ERG gives 35,094 readings.

(2) My favorite town criers speak clearly.

(3) A small piece of bone found in a cave in Siberia has been identified as
the remnant of a child whose mother was a Neanderthal and father was a
Denisovan, a mysterious human ancestor that lived in the region.

While exploring ambiguity can be interesting for a linguist, typical practical
applications require just one parse per input sentence and specifically the parse

10https://www.theguardian.com/science/2018/aug/22/offspring-of-neanderthal-and-denisovan-
identified-for-first-time, accessed 2024-10-13.

1186

https://www.theguardian.com/science/2018/aug/22/offspring-of-neanderthal-and-denisovan-identified-for-first-time
https://www.theguardian.com/science/2018/aug/22/offspring-of-neanderthal-and-denisovan-identified-for-first-time


25 Computational linguistics and grammar engineering

that best reflects the intended meaning (or only the top few parses, in case the
one put forward as “best” is wrong). Thus, what is required is a ranking of the
parses, so that the application can only use the most highly-ranked parse, or the
top 𝑘 parses.

Parse ranking is not usually determined by the grammar itself, because of the
difficulty of manually writing disambiguation rules.11 Typically, a statistical sys-
tem is used (Toutanova et al. 2002, 2005). First, a corpus is treebanked: for each
sentence in the corpus, an annotator (often the grammar writer) chooses the
best parse, out of all parses produced by the grammar. The set of all parses for
a sentence is often referred to as the parse forest, and the selected best parse is
often referred to as the gold standard or gold parse. Given the gold parses for
the whole corpus, a statistical system is trained to predict the gold parse from a
parse forest, based on many features12 of the parse. From the example in (2), a
number of different features all influence the preferred interpretation: the likeli-
hood of a construction (such as topicalization), the likelihood of a valence frame
(such as transitive speak), the likelihood of a collocation (such as town crier), the
likelihood of a semantic relation (such as speaking a town), and so on.

Because of the large number of possible parses, it can be helpful to prune the
search space: rather than ranking the full set of parses, ranking is restricted to
a smaller set of parses. Carefully choosing how to restrict the parser’s attention
can drastically reduce processing time without hurting parsing accuracy, as long
as the algorithm for selecting the subset includes the correct parse sufficiently
frequently. One method, called supertagging,13 exploits the fact that HPSG is a
lexicalized theory: choosing the correct lexical entry for each token brings in
rich information that can be exploited to rule out many possible parses. Thus if
the correct lexical entry can be chosen prior to parsing (e.g., on the basis of the
preceding and following words), the range of possible analyses the parser must
consider is drastically reduced. Although there is a chance that the supertagger
will predict the wrong lexical entry, using a supertagger can often improve pars-
ing accuracy by ruling out parses that the parse-ranking model might incorrectly

11In fact, in earlier work, this task was undertaken by hand. One of the authors (Bender) had the
job of maintaining rule weights in addition to developing the Jacy grammar (Siegel, Bender
& Bond 2016) at YY Technologies in 2001–2002. No systematic methodology for determining
appropriate weights was available and the system was both extremely brittle (sensitive to any
changes in the grammar) and next to impossible to maintain.

12In the machine-learning sense of feature, not the feature-structure sense.
13The term supertagging, coined by Bangalore & Joshi (1999), refers to part-of-speech tagging,

which predicts a part of speech for each input token, from a relatively small set of part-of-
speech tags. Supertagging is “super” in that it predicts detailed lexical entries, rather than
simple parts of speech.

1187



Emily M. Bender & Guy Emerson

rank too high. Supertagging was first applied to HPSG by Matsuzaki et al. (2007),
building on previous work for TAG (Bangalore & Joshi 1999) and CCG (Clark &
Curran 2004). To allow multiword expressions (such as by and large), where the
grammar assigns a single lexical entry to multiple tokens, Dridan (2013) proposes
an extension of supertagging, called ubertagging, which jointly predicts both a
segmentation of the input and supertags for those segments. Dridan manages to
increase parsing speed by a factor of four, while also improving parsing accuracy.

Finally, in order to train these statistical systems, we need to first annotate a
treebank. When there are many parses for a sentence, it can be time-consuming
to select the best one. To efficiently use an annotator’s time, it can be helpful
to use discriminants: properties which hold for some parses but not for others
(Carter 1997). For example, discriminants might include whether to analyze an
ambiguous token as a noun or a verb, or where to attach a prepositional phrase.
This approach to treebanking also means that annotations can be re-used when
the grammar is updated (Oepen et al. 2004, Flickinger et al. 2017). For more on
treebanking, see Section 4.1.4.

2.2.3 Semantic dependencies

In practical applications of HPSG grammars, the full phrase-structure trees and
the full feature structures are often unwieldy, containing far more information
than is necessary for the task at hand. It is therefore often desirable to extract a
concise semantic representation.

In computational linguistics, a popular approach to semantics is to represent
the meaning of a sentence as a dependency graph, as this enables the use of
graph-based algorithms.14 Several types of dependency graph have been pro-
posed based on Minimal Recursion Semantics (MRS; Copestake et al. 2005), with
varying levels of simplification. Oepen & Lønning (2006) observe that if every
predicate has a unique intrinsic argument, an MRS can be converted to a variable-
free semantic representation by replacing each reference to a variable with a
reference to the corresponding predicate. They present Elementary Dependency
Structures (EDS): semantic graphs which maintain predicate-argument structure
but discard some scope information. (For many applications, scope information
is less important than predicate-argument structure.) Copestake (2009) builds
on this idea to create a more expressive graph-based representation called De-
pendency Minimal Recursion Semantics (DMRS), which is fully interconvertible

14In this section, we are concerned with semantic dependencies. For syntactic dependencies, see
Hudson (2024), Chapter 31 of this volume. Some practical applications of HPSG use syntactic
dependencies (including many applications of the Alpino grammar, discussed in Section 3.3.1).

1188



25 Computational linguistics and grammar engineering

with MRS.15 This expressivity is achieved by adding annotations on the edges to
indicate scope information. Finally, delph-in MRS Dependencies (DM; Ivanova
et al. 2012) express predicate-argument structure purely in terms of the surface
tokens, without introducing any abstract predicates.

For example, the English Resource Grammar (ERG) produces the MRS rep-
resentation in (4) for the sentence The cherry tree blossomed. For simplicity, we
have omitted some details, including features such as number and tense, individ-
ual constraints (icons), and the use of difference lists. By convention, delph-in
predicates beginning with an underscore correspond to a lexical item, and have
a three-part format, consisting of a lemma, a part-of-speech tag, and (optionally)
a sense. Predicates without an initial underscore are abstract predicates. The qeq
constraints (equality modulo quantifiers) are scopal relationships, where quanti-
fiers may possibly intervene (for details, see Copestake et al. 2005 or Koenig &
Richter 2024, Chapter 22 of this volume).

(4)



mrs

hook

hook
ltop 1
index 2



rels

〈


relation
pred _the_q
lbl 3
arg0 4
rstr 5
body 6


,



relation
pred compound
lbl 7
arg0 8
arg1 4
arg2 9


,



relation
pred udef_q
lbl 10
arg0 9
rstr 11
body 12


,


relation
pred _cherry_n_1
lbl 13
arg0 9

 ,


relation
pred _tree_n_of
lbl 7
arg0 4

 ,


relation
pred _blossom_v_1
lbl 1
arg0 2
arg1 4



〉

hcons

〈
qeq
harg 5
larg 7

 ,

qeq
harg 11
larg 13


〉


For readability, it can be easier to express an MRS in a more abstract mathemat-
ical form, as shown in (5). This is equivalent to the feature structure in (4).

15More precisely, for DMRS and MRS to be fully interconvertible, every predicate (except for
quantifiers) must have an intrinsic argument, and every variable must be the intrinsic argu-
ment of exactly one predicate.

1189



Emily M. Bender & Guy Emerson

(5)

index: 𝑒1

𝑙1 : _the_q (𝑥1, ℎ1, ℎ2) , ℎ1 qeq 𝑙4
𝑙2 : udef_q (𝑥2, ℎ3, ℎ4) , ℎ3 qeq 𝑙3
𝑙3 : _cherry_n_1 (𝑥2)
𝑙4 : _tree_n_of (𝑥1) , compound (𝑒2, 𝑥1, 𝑥2)

ltop, 𝑙5 : _blossom_v_1 (𝑒1, 𝑥1)
The corresponding DMRS representation is shown in (6). This captures all of

the information in the MRS in (5). Predicates are represented as nodes, while
semantic roles and scopal constraints are represented as directed edges, called
dependencies or links. Each dependency has two labels. The first is an argument
label, such as arg1, arg2, or rstr (the restriction of a quantifier). The second
is a scopal constraint, such as qeq,16 eq (the linked nodes share a label in the
MRS, which is generally true for modifiers), or neq (the linked nodes don’t share
a label).

(6) _cherry_n_1 compound _tree_n_of _blossom_v_1

udef_q _the_q

arg2/neq arg1/eq arg1/neq
rstr/qeq rstr/qeq

ltop
index

Finally, the corresponding DM representation is shown in (7). This is a simpli-
fied version of MRS, where all nodes are tokens in the sentence. Some abstract
predicates are dropped (such as udef_q), while others are converted to depen-
dencies (such as compound). Some scopal information is dropped (such as eq vs.
neq). The label bv stands for the “bound variable” of a quantifier, equivalent to
the rstr/qeq of DMRS.

(7) the cherry tree blossomed
compound arg1

bv

top
The existence of such dependency graph formalisms, as well as software pack-

ages to manipulate such graphs (e.g., Ivanova et al. 2012, Copestake et al. 2016,
Hershcovich et al. 2019, or PyDelphin17), has made it easier to use HPSG gram-
mars in a number of practical tasks, as we will discuss in Section 4.2.

16An alternative notation is to write /h instead of /qeq.
17https://github.com/delph-in/pydelphin/, accessed 2024-10-13.

1190

https://github.com/delph-in/pydelphin/


25 Computational linguistics and grammar engineering

3 Development of HPSG resources

In this section we describe various projects that have developed computational
resources on the basis of or inspired by HPSG. As we will discuss in Section 4
below, such resources can be used both in linguistic hypothesis testing as well
as in various practical applications. The intended purpose of the resources in-
fluences the form that they take. The CoreGram Project (Section 3.1) and Babel
(Section 3.3.3) primarily target linguistic hypothesis testing, the Alpino and Enju
parsers (Section 3.3.1 and 3.3.2) primarily target practical applications, and the
delph-in Consortium (Section 3.2) attempts to balance these two goals.

3.1 CoreGram

The CoreGram18 Project aims to produce large-scale HPSG grammars, which
share a common “core” grammar (Müller 2015). At the time of writing, large
grammars have been produced for German (Müller 2007), Danish (Müller & Ørs-
nes 2015), Persian (Müller & Ghayoomi 2010), Maltese (Müller 2009), and Man-
darin Chinese (Müller & Lipenkova 2013). Smaller grammars are also available
for English, Yiddish, Spanish, French, and Hindi.

All grammars are implemented in the TRALE system (Meurers et al. 2002,
Penn 2004), which accommodates a wide range of technical devices proposed in
the literature, including phonologically empty elements, relational constraints,
implications with complex antecedents, and cyclic feature structures. It also ac-
comodates macros and an expressive morphological component. Melnik (2007)
observes that, compared to other platforms like the LKB (see Section 3.2 below),
this allows grammar engineers to directly implement a wider range of theoretical
proposals.

An important part of CoreGram is the sharing of grammatical constraints
across grammars. Some general constraints hold for all grammars, while oth-
ers hold for a subset of the grammars, and some only hold for a single grammar.
Müller (2015) describes this as a “bottom-up approach with cheating” (p. 43): the
aim is to analyze each language on its own terms (hence “bottom-up”), but to
re-use analyses from existing grammars if possible (hence “with cheating”). The
use of a core set of constraints is motivated not just for practical reasons, but also
for theoretical ones. By developing multiple grammars in parallel, analyses can
be improved by cross-linguistic comparison. The constraints encoded in the core
grammar can be seen as a hypothesis about the structure of human language, as
we will discuss in Section 4.1.1.

18https://hpsg.hu-berlin.de/Projects/CoreGram.html, accessed 2024-10-13.

1191

https://hpsg.hu-berlin.de/Projects/CoreGram.html


Emily M. Bender & Guy Emerson

CoreGram grammar development aims to incrementally increase coverage of
each language. To measure progress, grammars are evaluated against test suites:
collections of sentences each annotated with a grammaticality judgment (Oepen
et al. 1998, Müller 2004a). This allows a grammarian to check for unexpected side
effects when modifying a grammar and to avoid situations when implementing
an analysis of one phenomenon would break the analysis of another phenom-
enon. This is particularly important when modifying a constraint that is used
by several grammars. To help achieve these aims, grammar development is sup-
ported by a range of software tools, including the test suite tool [incr tsdb()] (Oepen
2001; see also Section 3.2), and the graphical debugging tool Kahina (Dellert et al.
2010, 2013).

3.2 The delph-in Consortium

The delph-in19 Consortium was established in 2001 to facilitate the development
of large-scale, linguistically motivated HPSG grammars for multiple languages,
in tandem with the software required for developing them and deploying them in
practical applications. At the time when delph-in was founded, the ERG (Flick-
inger 2000, 2011) had already been under development for eight years, and the
Verbmobil project (Wahlster 2000) had also spurred the development of grammars
for German (GG; Müller & Kasper 2000, Crysmann 2003) and Japanese (Jacy;
Siegel, Bender & Bond 2016). Project DeepThought (Callmeier, Eisele, Schäfer
& Siegel 2004) was exploring methodologies for combining deep and shallow
processing in practical applications across multiple languages. This inspired the
development of the LinGO Grammar Matrix (Bender, Flickinger & Oepen 2002),
which began as a core grammar, consisting of constraints hypothesized to be
cross-linguistically useful, abstracted out of the ERG with reference to Jacy and
GG. The goal of the Grammar Matrix is to serve as a starting point for the de-
velopment of new grammars, making it easy to reuse what has been learned in
the development of existing grammars. In the years since, it has been extended
to include “libraries” of analyses of cross-linguistically variable phenomena (e.g.,
Drellishak 2009, Bender et al. 2010).

delph-in provides infrastructure (version control repositories, mailing lists,
annual meetings) and an emphasis on open-source distribution of resources, both
of which support the collaboration of a global network of researchers working on
interoperable components. Such components include repositories of linguistic

19delph-in stands for DEep Linguistic Processing in Hpsg INitiative; see http://www.delph-in.
net, accessed 2024-10-13.

1192

http://www.delph-in.net
http://www.delph-in.net


25 Computational linguistics and grammar engineering

knowledge, that is, both grammars and meta-grammars (including the Matrix
and CLIMB, Fokkens 2014); processing engines that apply that knowledge for
parsing and generation (discussed further below); software for supporting the
development of grammar documentation (e.g., Hashimoto et al. 2008), software
for creating treebanks (Oepen et al. 2004, Packard 2015; see also Section 4.1.4
below), parse ranking models trained on these treebanks (Toutanova et al. 2005;
see also Section 2.2.2 above), and software for robust processing, i.e., using the
knowledge encoded in the grammars to return analyses for sentences even if the
grammar deems them ungrammatical (Zhang & Krieger 2011, Buys & Blunsom
2017, Chen et al. 2018).

A key accomplishment of the delph-in Consortium is the standardization of
a formalism for the declaration of grammars (Copestake 2002a), a formalism for
the semantic representations (Copestake et al. 2005), and file formats for the stor-
age and interchange of grammar outputs (e.g., parse forests, as well as the results
of treebanking; Oepen 2001, Oepen et al. 2004). These standards facilitate the de-
velopment of multiple different parsing and generation engines which can all
process the same grammars, including, so far, the LKB (Copestake 2002b), PET
(Callmeier 2000), ACE,20 and Agree (Slayden 2012); of multiple software systems
for processing bulk grammar output, like [incr tsdb()] (Oepen 2001), art,21 and Py-
Delphin22; and of multilingual downstream systems which can be adapted to ad-
ditional languages by plugging in different grammars. These tools and standards
have in turn helped support a thriving community of users who furthermore ac-
cumulate and share information about best practices. Melnik (2007: 234) credits
this community and the tools it has developed as a key factor that makes gram-
mar engineering with the delph-in ecosystem more accessible to HPSG linguists,
compared to other platforms like TRALE (see Section 3.1 above).

The delph-in community maintains research interests in both linguistics and
practical applications. The focus on linguistics means that delph-in grammari-
ans strive to create grammars which capture linguistic generalizations and model
grammaticality. This, in turn, leads to grammars with lower ambiguity than one
finds with treebank-trained grammars and, importantly, grammars which pro-
duce well-formed strings in generation. The focus on practical applications leads
to several kinds of additional research goals. Practical applications require robust
processing, which in turn requires methods for handling unknown words (e.g.,
Adolphs et al. 2008), methods for managing extra-grammatical mark-up in text

20http://sweaglesw.org/linguistics/ace/, accessed 2024-10-13.
21http://sweaglesw.org/linguistics/libtsdb/art.html, accessed 2024-10-13.
22https://github.com/delph-in/pydelphin/, accessed 2024-10-13.

1193

http://sweaglesw.org/linguistics/ace/
http://sweaglesw.org/linguistics/libtsdb/art.html
https://github.com/delph-in/pydelphin/


Emily M. Bender & Guy Emerson

such as in Wikipedia pages (e.g., Flickinger et al. 2010), and strategies for pro-
cessing inputs that are ungrammatical, at least according to the grammar (e.g.,
Zhang & Krieger 2011; see also Section 4.2.3). Processing large quantities of text
motivates performance innovations, such as supertagging or ubertagging (e.g.,
Matsuzaki et al. 2007, Dridan 2013; see also Section 2.2.2) to speed up process-
ing times. Naturally occurring text can include very long sentences which can
run up against processing limits. Supertagging helps here, too, but other strate-
gies include sentence chunking, which is the task of breaking a long sentence
into smaller ones without loss of meaning (Muszyńska 2016). Working with real-
world text (rather than curated test suites designed for linguistic research only)
requires the integration of external components such as morphological analyz-
ers (e.g., Marimon 2013) and named entity recognizers (e.g., Waldron et al. 2006,
Schäfer et al. 2008). As described in Section 2.2.2, working with real-world appli-
cations requires parse ranking (e.g., Toutanova et al. 2005), and similarly ranking
of generator outputs (known as realization ranking; e.g., Velldal 2009). Finally,
research on embedding broad-coverage grammars in practical applications in-
spires work towards making sure that the semantic representations can serve as
a suitable interface for external components (e.g., Flickinger et al. 2005). These
efforts are also valuable from a strictly linguistic point of view, i.e., one not con-
cerned with practical applications. First, the broader the coverage of a grammar,
the more linguistic phenomena it can be used to explore. Second, external con-
straints on the form of semantic representations provide useful guide points in
the development of semantic analyses.

3.3 Other HPSG and HPSG-inspired broad-coverage grammars

3.3.1 Alpino

Alpino23 is a broad-coverage grammar of Dutch (Bouma, van Noord & Malouf
2001, van Noord & Malouf 2005, van Noord 2006). The main motivation is practi-
cal: to provide coverage and accuracy comparable to state-of-the-art parsers for
English. Nonetheless, it also includes theoretically interesting analyses, such as
for cross-serial dependencies (Bouma & van Noord 1998). In addition to using
hand-written rules, lexical information (such as subcategorization frames) has
also been extracted from two existing lexicons, Celex (Baayen et al. 1995) and
Parole (Kruyt & Dutilh 1997).

Alpino produces syntactic dependency graphs, following the annotation for-
mat of the Spoken Dutch Corpus (Oostdijk 2000). These dependencies are con-

23http://www.let.rug.nl/vannoord/alp/Alpino/, accessed 2024-10-13.

1194

http://www.let.rug.nl/vannoord/alp/Alpino/


25 Computational linguistics and grammar engineering

structed directly in the feature-structure formalism, exploiting the fact that a
feature structure can be formalized as a directed acyclic graph. Each lexical en-
try encodes a partial dependency graph, and these graphs are composed through
phrase structure rules to give a dependency graph for a whole sentence.

Although these dependencies differ from the semantic dependencies discussed
in Section 2.2.3, a common motivation is to make the representations easier to
use in practical applications. To harmonize with other computational work on
dependency parsing, Bouma & van Noord (2017) have also produced a mapping
from this format to Universal Dependencies (UD; Nivre et al. 2016), as discussed
in Section 4.1.4 below. Alpino uses a statistical model trained on a dependency
treebank, and in fact the same statistical model can be used in both parsing and
generation (de Kok et al. 2011).

3.3.2 Enju

Enju24 (Miyao et al. 2005) is a broad-coverage grammar of English, semi-auto-
matically acquired from the Penn Treebank (Marcus et al. 1993). This approach
aims to reduce the cost of writing a grammar by leveraging existing resources.
The basic idea is that, by viewing Penn Treebank trees as partial specifications
of HPSG analyses, it is possible to infer lexical entries.

Miyao et al. converted the relatively flat trees in the Penn Treebank to binary-
branching trees, and percolated head information through the trees. They also
had to convert analyses for certain constructions, including subject-control verbs,
auxiliary verbs, coordination, and extracted arguments. Each converted tree can
then be combined with a small set of hand-written HPSG schemata, to induce a
lexical entry for each word in the sentence.

The development of Enju has focused on performance in practical applications,
and the grammar is supported by an efficient parser (Tsuruoka et al. 2004, Mat-
suzaki et al. 2007), using a probabilistic model for feature structures (Miyao &
Tsujii 2008). Enju has been used in a variety of NLP tasks, as will be discussed in
Section 4.2.2.

3.3.3 Babel

Babel is a broad-coverage grammar of German (Müller 1996, 1999). One interest-
ing feature of this grammar is that it makes extensive use of discontinuous con-
stituents (Müller 2004b). Although this makes the worst-case parsing complexity

24http://www.nactem.ac.uk/enju/, accessed 2024-10-12.

1195

http://www.nactem.ac.uk/enju/


Emily M. Bender & Guy Emerson

much worse, parsing speed doesn’t seem to suffer in practice. This mirrors the
findings of Carroll (1994), discussed in Section 2.2.1 above.

4 Deployment of HPSG resources

There are several different ways in which computational resources based on
HPSG are used. In Section 4.1, we first consider applications furthering linguis-
tic research, including both language documentation and linguistic hypothesis
testing. Then, in Section 4.2, we consider applications outside of linguistics.

4.1 Language documentation and linguistic hypothesis testing

As described by Müller (1999: 439), Bender (2008), and Bender et al. (2011), gram-
mar engineering — that is, the building of grammars in software — is an essential
technique for testing linguistic hypotheses at scale. By “at scale”, we mean both
against large quantities of data and as integrated models of language that handle
multiple phenomena at once. In this section, we review how this is done in the
CoreGram and Grammar Matrix projects for cross-linguistic hypothesis testing,
and in the AGGREGATION project in the context of language documentation.25

4.1.1 CoreGram

As described in Section 3.1, the CoreGram project develops grammars for a di-
verse set of languages, and shares constraints across grammars in a bottom-up
fashion, so that more similar languages share more constraints. There are con-
straints shared across all of the grammars in the project which can be seen as a
hypothesis about properties shared by all languages. Whenever the CoreGram
project expands to cover a new language, it can be seen as a test of this hypoth-
esis.

For example, the most general constraint set allows a language to have V2
word order (as exemplified by Germanic languages), but rules out verb-penulti-
mate word order, as discussed by Müller (2015: 45–46) (see also Müller 2024b,
Chapter 10 of this volume on constituent order and Borsley & Crysmann 2024,

25Grammar engineering is not specific to HPSG and in fact has a history going back to at least the
early 1960s (Kay 1963, Zwicky et al. 1965, Petrick 1965, Friedman et al. 1971) and modern work
in grammar engineering includes work in many different frameworks, such as Lexical Func-
tional Grammar (Butt et al. 1999), Combinatory Categorial Grammar (Baldridge et al. 2007),
Grammatical Framework (Ranta 2009), and others. For reflections on grammar engineering
for linguistic hypothesis testing in LFG, see Butt et al. (1999) and King (2016).

1196



25 Computational linguistics and grammar engineering

Chapter 13 of this volume on nonlocal dependencies). It also includes constraints
for argument structure and linking (see Davis, Koenig & Wechsler 2024, Chap-
ter 9 of this volume), as well as for information structure (see De Kuthy 2024,
Chapter 23 of this volume).

4.1.2 Grammar Matrix

As noted in Section 3.2, the LinGO Grammar Matrix (Bender et al. 2002, 2010) was
initially developed in the context of Project DeepThought with the goal of speed-
ing up the development of delph-in-style grammars for additional languages. It
consists of a shared core grammar and a series of “libraries” of analyses for cross-
linguistically variable phenomena. Both of these constitute linguistic hypotheses:
the constraints are hypothesized to be cross-linguistically useful. However, in
the course of developing grammars based on the Matrix for specific languages,
it is not uncommon to find reasons to refine the core grammar. The libraries,
in turn, are intended to cover the attested range of variation for the phenom-
ena they model. Languages that are not covered by the analyses in the libraries
provide evidence that the libraries need to be extended or refined.

Grammar Matrix grammar development is less tightly coordinated than that
of CoreGram (see Section 3.1): in the typical use case, grammar developers start
from the Grammar Matrix, but with their own independent copy of the Matrix
core grammar. This impedes somewhat the ability of the Matrix to adapt to the
needs of various languages (unless grammar developers report back to the Matrix
developers). On the other hand, the Matrix libraries represent an additional kind
of linguistic hypothesis testing: each library on its own represents one linguistic
phenomenon, but the libraries must be interoperable with each other. This is the
cross-linguistic analogue of how monolingual implemented grammars allow lin-
guists to ensure that analyses of different phenomena are interoperable (Müller
1999: 439–440; Bender 2008): the Grammar Matrix customization system allows
its developers to test cross-linguistic libraries of analyses for interactions with
other phenomena (Bender et al. 2011, Bender 2016). Without computational sup-
port (i.e., a computer keeping track of the constraints that make up each analysis,
compiling them into specific grammars, and testing those grammars against test
suites), this problem space would be too complex for exploration.

4.1.3 AGGREGATION

In many ways, the most urgent need for computational support for linguistic hy-
pothesis testing is the description of endangered languages. Implemented gram-
mars can be used to process transcribed but unglossed text in order to find rel-

1197



Emily M. Bender & Guy Emerson

evant examples more quickly, both of phenomena that have already been an-
alyzed and of phenomena that are as yet not well-understood.26 Furthermore,
treebanks constructed from implemented grammars can be tremendously valu-
able additions to language documentation (see Section 4.1.4 below). However,
the process of building an implemented grammar is time-consuming, even with
the start provided by a multilingual grammar engineering project like CoreGram,
ParGram (Butt et al. 2002, King et al. 2005), the GF Resource Grammar Library
(Ranta 2009), or the Grammar Matrix.

This is the motivation for the AGGREGATION27 project, which starts from
two observations: (1) descriptive linguists produce extremely rich annotations
on data in the form of interlinear glossed text (IGT); and (2) the Grammar Ma-
trix’s libraries are accessed through a customization system which elicits a gram-
mar specification in the form of a series of choices describing either high-level
typological properties or specific constraints on lexical classes and lexical rules.
The goal of AGGREGATION is to automatically produce such grammar specifi-
cations on the basis of information encoded in IGT, to be used by the Grammar
Matrix customization system to produce language-particular grammars. AGGRE-
GATION uses different approaches for different linguistic subsystems. For exam-
ple, it learns morphotactics by observing morpheme order in the training data,
and how to group affixes together into position classes based on measures of over-
lap of stems they attach to (Wax 2014, Zamaraeva et al. 2017). For many kinds of
syntactic information, it leverages syntactic structure projected from the transla-
tion line (English, easily parsed with current tools) through the gloss line (which
facilitates aligning the language and translation lines) to the language line (Xia &
Lewis 2007, Georgi 2016). Using this projected information, the AGGREGATION
system can detect case frames for verbs, word order patterns, etc. (Bender et al.
2013, Zamaraeva et al. 2019).28

4.1.4 Treebanks and sembanks

Annotated corpora are a particularly valuable type of resource that can be de-
rived from HPSG grammars. Two important kinds are treebanks and sembanks.
A treebank is a collection of text where each sentence is associated with a syn-

26This methodology of using an implemented grammar as a sieve to sift the interesting examples
out of corpora is demonstrated for English by Baldwin et al. (2005).

27http://depts.washington.edu/uwcl/aggregation/, accessed 2024-10-13.
28The TypeGram project (Hellan & Beermann 2014) is in a similar spirit. TypeGram provides

methods of creating HPSG grammars by encoding specifications of valence and inflection in
particularly rich IGT and then creating grammars based on those specifications.

1198

http://depts.washington.edu/uwcl/aggregation/


25 Computational linguistics and grammar engineering

tactic representation. A sembank has semantic representations (in some cases in
addition to the syntactic ones). Treebanks and sembanks can be used for linguis-
tic research, as the analyses allow for more detailed structure-based searches for
phenomena of interest (Rohde 2005, Ghodke & Bird 2010, Kouylekov & Oepen
2014).29 In the context of language documentation and description, searchable
treebanks can also be a valuable addition, helping readers connect prose descrip-
tions of linguistic phenomena to multiple examples in the corpus (Bender et al.
2012). In natural language processing, treebanks and sembanks are critical source
material for training parsers (see Sections 2.2.2 and 4.2.3).

Traditional treebanks are created by doing a certain amount of automatic pro-
cessing on corpus data, including possibly chunking or context-free grammar
parsing, and then hand-correcting the result (Marcus et al. 1993, Banarescu et
al. 2013). While this approach is a means to encode human insight about lin-
guistic structure for later automatic processing, it is both inefficient and poten-
tially error-prone. The Alpino project (van der Beek et al. 2002; see also Sec-
tion 3.3.1 above) addresses this by first parsing the text with a broad-coverage
HPSG-inspired grammar of Dutch and then having annotators select among the
parses. The selection process is facilitated by allowing the annotators to mark
constituent boundaries and to mark lexical entries as correct, possibly correct,
or wrong. These constraints reduce the search space for the parser and conse-
quently also the range of analyses the annotator has to consider before choosing
the best one. A facility for adding one-off lexical entries to handle misspellings,
for example, helps increase grammar coverage. Disambiguation is handled with
the aid of discriminants, as discussed in Section 2.2.2 above. Finally, the anno-
tators may further edit analyses deemed insufficient. Though the underlying
grammar is based on HPSG, the treebank stores dependency graphs instead. The
Alpino parser was similarly used to construct the Lassy Treebanks of written
Dutch (van Noord et al. 2013). In more recent work, these dependency repre-
sentations have been mapped to the Universal Dependencies (UD) annotation
standards (Nivre et al. 2016) to produce a UD treebank for Dutch (Bouma & van
Noord 2017).

The Redwoods project (Oepen et al. 2004) also produces grammar-driven tree-
banks, in this case for English and without any post-editing of the selected anal-
yses.30 As with Alpino, this is done by first parsing the corpus with the grammar

29The WeSearch interface of Kouylekov & Oepen (2014) can be accessed at http://wesearch.delph-
in.net/deepbank/search.jsp (accessed 2019-08-16).

30There are also Redwoods-style treebanks for other languages, including the Hinoki Treebank
of Japanese (Bond et al. 2004) and the Tibidabo Treebank of Spanish (Marimon 2015).

1199

http://wesearch.delph-in.net/deepbank/search.jsp
http://wesearch.delph-in.net/deepbank/search.jsp


Emily M. Bender & Guy Emerson

and calculating the discriminants for each parse forest. After annotation, the tree-
banking software stores not only the final full HPSG analysis that was selected,
but also the decisions the annotator made about each discriminant. Thus when
the grammar is updated, for example to refine the semantic representations, the
corpus can be reparsed and the decisions replayed, leaving only a small amount
of further annotation work to be done to handle any additional ambiguity in-
troduced by the grammar update. The activity of treebanking in turn provides
useful insight into grammatical analyses, including sources of spurious ambigu-
ity and phenomena that are not yet properly handled, and thus informs and spurs
on further grammar development. A downside to strictly grammar-based tree-
banking is that only items for which the grammar finds a reasonable parse can be
included in the treebank. For many applications, this is not a drawback, so long
as there are sufficient and sufficiently varied sentences that do receive analyses.

Finally, there are also automatically annotated treebanks, which use a statis-
tical parse-ranking model to select the best parse, instead of using a human an-
notator. These are not as reliable as manually annotated treebanks, but they can
be considerably larger. WikiWoods31 covers 55 million sentences of English (900
million tokens). It was produced by Flickinger et al. (2010) and Solberg (2012)
from the July 2008 dump of the full English Wikipedia, using the ERG and PET,
with parse ranking trained on the manually treebanked subcorpus WeScience
(Ytrestøl et al. 2009). As with the Redwoods treebanks, WikiWoods is updated
with each release of the ERG.

4.2 Downstream applications

In this section, we discuss the use of HPSG grammars for practical tasks. There is
a large number of applications, and we focus on several important ones here. In
Section 4.2.1, we cover educational applications where a grammar is used directly.
In Section 4.2.2, we cover cases where a grammar is used to provide features to
help solve tasks in Natural Language Processing (NLP). Finally, in Section 4.2.3,
we cover situations where a grammar is used to provide data for machine learn-
ing systems.32

4.2.1 Education

Precise syntactic analyses can be useful in language teaching, in order to auto-
matically identify errors and give feedback to the student. In order to model

31http://moin.delph-in.net/WikiWoods, accessed 2024-10-13.
32The delph-in community maintains an updated list of applications of delph-in software and

resources at http://moin.delph-in.net/DelphinApplications (accessed 2024-10-13).

1200

http://moin.delph-in.net/WikiWoods
http://moin.delph-in.net/DelphinApplications


25 Computational linguistics and grammar engineering

common mistakes, a grammar can be extended with so-called mal-rules. A mal-
rule is like a normal rule, in that it licenses a construction, and can be treated the
same during parsing. However, given a parse, the presence of a mal-rule indi-
cates that the student needs to be given feedback (Bender et al. 2004, Flickinger
& Yu 2013, Morgado da Costa et al. 2016). A large-scale system implementing this
kind of computer-aided teaching has been developed by the Education Program
for Gifted Youth at Stanford University, using the ERG (Suppes et al. 2014). This
system has reached tens of thousands of elementary and middle school children,
and has been found to improve the school results of underachieving children.

Another way to use an implemented grammar is to automatically produce
teaching materials. Given a semantic representation, a grammar can generate
one or more sentences. Flickinger (2017) uses the ERG to produce practice ex-
ercises for a student learning first-order logic. For each exercise, the student is
presented with an English sentence and is supposed to write down the corre-
sponding first-order logical form. By using a grammar, the system can produce
syntactically varied questions and automatically evaluate the student’s answer.

4.2.2 NLP tasks

Much NLP work focuses on specific tasks, where a system is presented with some
input and required to produce an output, with a clearly-defined metric to deter-
mine how well the system performs. HPSG grammars have been used in a range
of such tasks, where the syntactic and semantic analyses provide useful features.

Information retrieval is the task of finding relevant documents for a given
query. For example, Schäfer et al. (2011) present a tool for searching the ACL
Anthology, using the ERG. Information extraction is the task of identifying use-
ful facts in a collection of documents. For example, Reiplinger et al. (2012) aim
to identify definitions of technical concepts from English text, in order to au-
tomatically construct a glossary. They find that using the ERG reduces noise
in the candidate definitions. Miyao et al. (2008) aim to identify protein-protein
interactions in the English biomedical literature, using Enju.

For these tasks, some linguistic phenomena are particularly important, such
as negation and hedging (including adverbs like possibly, modals like may, and
verbs of speculation like suggest). When it comes to identifying facts asserted
in a document, a clause that has been negated or hedged should be treated with
caution. MacKinlay et al. (2012) consider the biomedical domain, evaluating on
the BioNLP 2009 Shared Task (Kim et al. 2009), where they outperform previ-
ous approaches for negation, but not for speculation. Velldal et al. (2012) con-
sider negation and speculation in biomedical text, evaluating on the CoNLL 2010
Shared Task (Farkas et al. 2010), where they outperform previous approaches.

1201



Emily M. Bender & Guy Emerson

Packard et al. (2014) propose a general-purpose method for finding the scope of
negation in an MRS, evaluating on the *SEM 2012 Shared Task (Morante & Blanco
2012). They find that transforming the output of the ERG with a relatively simple
set of rules achieves high performance on this English dataset, and combining
this approach with a purely statistical system outperforms previous approaches.
Zamaraeva et al. (2018) use the ERG for negation detection and then use that
information to refine the (machine-learning) features in a system that classifies
English pathology reports, thereby improving system performance. A common
finding from these studies is that a system using the output of the ERG tends to
have high precision (items identified by the system tend to be correct) but low
recall (items are often overlooked by the system). One reason for low recall is
that the grammar does not cover all sentences in natural text. As we will see in
Section 4.2.3, recent work on robust parsing may help to close this coverage gap.

Negation resolution is also included in Oepen et al.’s (2017) Shared Task on Ex-
trinsic Parser Evaluation. As mentioned in Section 2.2.3, dependency graphs can
provide a useful tool in NLP tasks, and this shared task aims to evaluate the use of
dependency graphs (both semantic and syntactic) for three downstream applica-
tions: biomedical information extraction, negation resolution, and fine-grained
opinion analysis. Some participating teams use DM dependencies (Schuster et al.
2017, Chen et al. 2017). The results of this shared task suggest that, compared to
other dependency representations, DM is particularly useful for negation resolu-
tion.

Another task where dependency graphs have been used is summarization.
Most existing work on this task focuses on so-called extractive summarization:
given an input document, a system forms a summary by extracting short sections
of the input. This is in contrast to abstractive summarization, where a system
generates new text based on the input document. Extractive summarization is
limited, but widely used because it is easier to implement. However, Fang et al.
(2016) show how a wide-coverage grammar like the ERG makes it possible to
implement an abstractive summarizer with state-of-the-art performance. After
parsing the input document into logical propositions, the summarizer prunes the
set of propositions using a cognitively inspired model. A summary is then gener-
ated based on the pruned set of propositions. Because no text is directly extracted
from the input document, it is possible to generate a more concise summary.

Finally, no discussion of NLP tasks would be complete without including ma-
chine translation. A traditional grammar-based approach uses three grammars: a
grammar for the source language, a grammar for the target language, and a trans-
fer grammar, which converts semantic representations for the source language
to semantic representations for the target language (Oepen et al. 2007, Bond et
al. 2011). Translation proceeds in three steps: parse the source sentence, trans-

1202



25 Computational linguistics and grammar engineering

fer the semantic representation, and generate a target sentence. The transfer
grammar is needed both to find appropriate lexical items and also to convert se-
mantic representations when languages differ in how an idea might be expressed.
The difficulty in writing a transfer grammar that is robust enough to deal with
arbitrary input text means that statistical systems might be preferred. Horvat
(2017) explores the use of statistical techniques, skipping over the transfer stage:
a target-language sentence is generated directly from a semantic representation
for the source language. Goodman (2018) explores the use of statistical tech-
niques within the paradigm of parsing, transferring, and generating.

4.2.3 Data for machine learning

In Section 4.2.2, we described how HPSG grammars can be directly incorporated
into NLP systems. Another use of HPSG grammars in NLP is to generate data on
which a statistical system can be trained.

For example, one limitation of using an HPSG grammar in an NLP system is
that the grammar is unlikely to cover all sentences in the data (Flickinger et al.
2012). One way to overcome this coverage gap is to train a statistical system to
produce the same output as the grammar. The idea is that the trained system
will be able to generalize to sentences that the grammar does not cover. Oepen
et al. (2014), Oepen et al. (2015), and Oepen et al. (2019) present shared tasks
on semantic dependency parsing, including both DM dependencies and Enju
predicate-argument structures. As of 2015, the best-performing systems in these
shared tasks could already produce dependency graphs almost as accurately as
grammar-based parsers (for sentences where the grammar has coverage). Simi-
larly, Buys & Blunsom (2017) develop a parser for EDS and DMRS which performs
almost as well as a grammar-based parser, but has full coverage, and can run 70
times faster.

In fact, in more recent work, the difference in performance has been effectively
closed. Chen et al. (2018) consider parsing to EDS and DMRS graphs, and actu-
ally achieve slightly higher accuracy with their system, compared to a grammar-
based parser. Unlike the previous statistical approaches, Chen et al. do not just
train on the desired dependency graphs, but also use information in the phrase-
structure trees. They suggest that using this information allows their system to
learn compositional rules mirroring composition in the grammar, which thereby
allows their system to generalize better.

Another application of HPSG-derived dependency graphs is for distributional
semantics. Here, the aim is to learn the meanings of words from a corpus, ex-
ploiting the fact that the context of a word tells us something about its meaning.
This is known as the distributional hypothesis, an idea with roots in American

1203



Emily M. Bender & Guy Emerson

structuralism (Harris 1954) and British lexicology (Firth 1951, 1957). Most work
on distributional semantics learns a vector space model, where the meaning of
each word is represented as a point in a high-dimensional vector space (for an
overview, see Erk 2012 and Clark 2015). However, Emerson (2018) argues that
vector space models cannot capture various aspects of meaning, such as logical
structure, and phenomena like polysemy. Instead, Emerson presents a distribu-
tional model which can learn truth-conditional semantics, using a parsed corpus
like WikiWoods (see Section 4.1.4). This approach relies on the semantic analy-
ses given by a grammar, as well as the infrastructure to parse a large amount of
text.

Finally, there are also applications which use grammars not to parse, but to
generate. Kuhnle & Copestake (2018) consider the task of visual question an-
swering, where a system is presented with an image and a question about the
image, and must answer the question. This task requires language understand-
ing, reference resolution, and grounded reasoning, in a way that is relatively
well-defined. However, for many existing datasets, there are biases in the ques-
tions which mean that high performance can be achieved without true language
understanding. For this reason, there is increasing interest in artificial datasets,
which are controlled to make sure that high performance requires true under-
standing. Kuhnle & Copestake present ShapeWorld, a configurable system for
generating artificial data. The system generates an abstract representation of a
scene (colored shapes in different configurations), and then generates an image
and a caption based on this representation. The use of a broad-coverage grammar
is crucial in allowing the system to be configurable and scale across a variety of
syntactic constructions.

5 Linguistic insights

In Section 4.1 above, we described multiple ways in which computational meth-
ods can be used in the service of linguistic research, especially in testing linguis-
tic hypotheses. Here, we highlight a few ways in which grammar engineering
work in HPSG has turned up linguistic insights that had not previously been
discovered through non-computational means.33

5.1 Ambiguity

As discussed in Section 2.2.2, the scale of ambiguity has become clear now that
broad-coverage precision grammars are available. By taking both coverage and

33For similar reflections from the point of view of LFG, see King (2016).

1204



25 Computational linguistics and grammar engineering

precision seriously, it is possible to investigate it on a large scale, quantifying
the sources of ambiguity and the information needed to resolve it. For example,
Toutanova et al. (2002, 2005) found that in the Redwoods treebank (3rd Growth),
roughly half of the ambiguity was lexical, and half syntactic. They also showed
how combining sources of information (such as both semantic and syntactic in-
formation) is important for resolving ambiguity, and argue that using multiple
kinds of information in this way is consistent with probabilistic approaches in
psycholinguistics.

5.2 Long-tail phenomena

One of the strengths of HPSG as a theoretical framework is that it allows for the
analysis of both “core” and “peripheral” phenomena within a single, integrated
model. Indeed, by treebanking large corpora, it becomes possible to investigate
the extent to which a particular phenomenon could be considered “core” or “pe-
ripheral” within a language. Furthermore, by implementing large-scale gram-
mars across a range of languages, it also becomes possible to investigate the
extent to which a phenomenon could be considered “core” or “peripheral” across
languages (Müller 2014).

In fact, when working with actual data and large-scale grammars, it quickly
becomes apparent just how long the long-tail of “peripheral” phenomena is.
Furthermore, the sustained development of broad-coverage linguistic resources
makes it possible to bring into view more and more low-frequency phenomena
(or low-frequency variations on relatively high-frequency phenomena). A case
in point is the range of raising and control valence frames found in the ERG
(Flickinger 2000, 2011). As of the 2018 release, the ERG includes over 60 types
for raising and control predicates, including verbs, adjectives, and nouns, many
of which are not otherwise discussed in the syntactic literature. These include
such low-frequency types as the one for incumbent, which requires an expletive
it subject, an obligatory (up)on PP complement, and an infinitival VP comple-
ment, and which establishes a control relation between the object of on and the
VP’s missing subject:34

(8) It is incumbent on you to speak plainly.

5.3 Analysis-order effects

Grammar engineering means making analyses specific and then being able to
build on them. This has both benefits and drawbacks: on the one hand, it means

34Our thanks to Dan Flickinger for this example.

1205



Emily M. Bender & Guy Emerson

that additional grammar engineering work can build directly on the results of
previous work. It also means that any additional grammar engineering work is
constrained by the work it is building on. Fokkens (2014) observes this phenom-
enon and notes that it introduces artifacts: the form an implemented grammar
takes is partially the result of the order in which the grammar engineer consid-
ered phenomena to implement. This is probably also true for non-computational
work, as theoretical ideas developed with particular phenomena (and, indeed,
languages) in mind influence the questions with which researchers approach ad-
ditional phenomena. Fokkens proposes that the methodology of meta-grammar
engineering can be used to address this problem: using her CLIMB methodol-
ogy, rather than deciding between analyses of a given phenomenon without in-
put from later-studied phenomena, the grammar engineer can maintain multiple
competing analyses through time and break free, at least partially, of the effects
of the timeline of grammar development. The central idea is that the grammar
writer develops a meta-grammar, like the Grammar Matrix customization system
(see Section 4.1.2), but for a single language. This customization system main-
tains alternate analyses of particular phenomena which are invoked via gram-
mar specifications so the different versions of the grammar can be compiled and
tested.

6 Summary

In this chapter, we have attempted to illuminate the landscape of computational
work in HPSG. We have discussed how HPSG as a theory supports computational
work, described large-scale computational projects that use HPSG, highlighted
some applications of implemented grammars in HPSG, and explored ways in
which computational work can inform linguistic research. This field is very ac-
tive and our overview is necessarily incomplete. Nonetheless, it is our hope that
the pointers and overview provided in this chapter will serve to help interested
readers connect with ongoing research in computational linguistics using HPSG.

Acknowledgments

We would like to thank Stephan Oepen for helpful comments on an early draft of
this chapter, Stefan Müller for detailed comments as volume editor and Elizabeth
Pankratz for careful copy editing.

1206



25 Computational linguistics and grammar engineering

References

Adolphs, Peter, Stephan Oepen, Ulrich Callmeier, Berthold Crysmann, Dan Flick-
inger & Bernd Kiefer. 2008. Some fine points of hybrid natural language pars-
ing. In Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani,
Jan Odijk, Stelios Piperidis & Daniel Tapias (eds.), Proceedings of the Sixth In-
ternational Conference on Language Resources and Evaluation (LREC’08), 1380–
1387. Marrakech, Morocco: European Language Resources Association (ELRA).
http://www.lrec-conf.org/proceedings/lrec2008/pdf/349_paper.pdf (10 Febru-
ary, 2021).

Alahverdzhieva, Katya & Alex Lascarides. 2010. Analysing speech and co-speech
gesture in constraint-based grammars. In Stefan Müller (ed.), Proceedings of
the 17th International Conference on Head-Driven Phrase Structure Grammar,
Université Paris Diderot, 6–26. Stanford, CA: CSLI Publications. DOI: 10.21248/
hpsg.2010.1.

Baayen, R. Harald, Richard Piepenbrock & Leon Gulikers. 1995. The CELEX lex-
ical database. Distributed by the Linguistic Data Consortium, University of
Pennsylvania. DOI: 10.35111/gs6s-gm48.

Baldridge, Jason, Sudipta Chatterjee, Alexis Palmer & Ben Wing. 2007. DotCCG
and VisCCG: Wiki and programming paradigms for improved grammar engi-
neering with OpenCCG. In Tracy Holloway King & Emily M. Bender (eds.),
Proceedings of the Grammar Engineering Across Frameworks (GEAF07) work-
shop (Studies in Computational Linguistics ONLINE 2), 5–25. Stanford, CA:
CSLI Publications. http://csli-publications.stanford.edu/GEAF/2007/ (11 Octo-
ber, 2024).

Baldwin, Timothy, John Beavers, Emily M. Bender, Dan Flickinger, Ara Kim &
Stephan Oepen. 2005. Beauty and the beast: What running a broad-coverage
precision grammar over the BNC taught us about the grammar — and the cor-
pus. In Stephan Kepser & Marga Reis (eds.), Linguistic evidence: Empirical, the-
oretical, and computational perspectives (Studies in Generative Grammar 85),
49–69. Berlin: Mouton de Gruyter. DOI: 10.1515/9783110197549.49.

Banarescu, Laura, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer & Nathan Schneider.
2013. Abstract Meaning Representation for sembanking. In Antonio Pareja-
Lora, Maria Liakata & Stefanie Dipper (eds.), Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Discourse, 178–186. Sofia, Bul-
garia: Association for Computational Linguistics (ACL). http : / /aclweb .org/
anthology/W13-2322 (23 February, 2021).

1207

http://www.lrec-conf.org/proceedings/lrec2008/pdf/349_paper.pdf
https://doi.org/10.21248/hpsg.2010.1
https://doi.org/10.21248/hpsg.2010.1
https://doi.org/10.35111/gs6s-gm48
http://csli-publications.stanford.edu/GEAF/2007/
https://doi.org/10.1515/9783110197549.49
http://aclweb.org/anthology/W13-2322
http://aclweb.org/anthology/W13-2322


Emily M. Bender & Guy Emerson

Bangalore, Srinivas & Aravind K. Joshi. 1999. Supertagging: An approach to al-
most parsing. Computational Linguistics 25(2). 237–265.

Bender, Emily M. 2008. Grammar engineering for linguistic hypothesis testing. In
Nicholas Gaylord, Alexis Palmer & Elias Ponvert (eds.), Computational linguis-
tics for less-studied languages (Texas Linguistics Society 10), 16–36. Stanford
CA: CSLI Publications ONLINE.

Bender, Emily M. 2016. Linguistic typology in natural language processing. Lin-
guistic Typology 20(3). 645–660. DOI: 10.1515/lingty-2016-0035.

Bender, Emily M., Scott Drellishak, Antske Fokkens, Laurie Poulson & Safiyyah
Saleem. 2010. Grammar customization. Research on Language & Computation
8(1). 23–72. DOI: 10.1007/s11168-010-9070-1.

Bender, Emily M., Dan Flickinger & Stephan Oepen. 2002. The Grammar Ma-
trix: An open-source starter-kit for the rapid development of cross-linguisti-
cally consistent broad-coverage precision grammars. In John Carroll, Nelleke
Oostdijk & Richard Sutcliffe (eds.), COLING-GEE ’02: Proceedings of the 2002
Workshop on Grammar Engineering and Evaluation, 8–14. Taipei, Taiwan: As-
sociation for Computational Linguistics. DOI: 10.3115/1118783.1118785.

Bender, Emily M., Dan Flickinger & Stephan Oepen. 2011. Grammar engineering
and linguistic hypothesis testing: Computational support for complexity in
syntactic analysis. In Emily M. Bender & Jennifer E. Arnold (eds.), Language
from a cognitive perspective: Grammar, usage, and processing: Studies in honor of
Tom Wasow (CSLI Lecture Notes 201), 5–29. Stanford, CA: CSLI Publications.

Bender, Emily M., Dan Flickinger, Stephan Oepen, Annemarie Walsh & Timothy
Baldwin. 2004. Arboretum: Using a precision grammar for grammar check-
ing in CALL. In Proceedings of the InSTIL Symposium on NLP and Speech Tech-
nologies in Advanced Language Learning Systems. Venice, Italy. http://faculty.
washington.edu/ebender/papers/arboretum.pdf (23 February, 2021).

Bender, Emily M., Sumukh Ghodke, Timothy Baldwin & Rebecca Dridan. 2012.
From database to treebank: Enhancing hypertext grammars with grammar en-
gineering and treebank search. In Sebastian Nordhoff (ed.), Electronic gram-
maticography (Language Documentaion & Conversation Special Publication
4), 179–206. Honolulu, HI: University of Hawai’i Press. http://hdl.handle.net/
10125/4535 (23 February, 2021).

Bender, Emily M., Michael Wayne Goodman, Joshua Crowgey & Fei Xia. 2013.
Towards creating precision grammars from interlinear glossed text: Inferring
large-scale typological properties. In Piroska Lendvai & Kalliopi Zervanou
(eds.), Proceedings of the 7thWorkshop on Language Technology for Cultural Her-
itage, Social Sciences, and Humanities, 74–83. Sofia, Bulgaria: Association for

1208

https://doi.org/10.1515/lingty-2016-0035
https://doi.org/10.1007/s11168-010-9070-1
https://doi.org/10.3115/1118783.1118785
http://faculty.washington.edu/ebender/papers/arboretum.pdf
http://faculty.washington.edu/ebender/papers/arboretum.pdf
http://hdl.handle.net/10125/4535
http://hdl.handle.net/10125/4535


25 Computational linguistics and grammar engineering

Computational Linguistics. http://aclweb.org/anthology/W13-2710 (23 Febru-
ary, 2021).

Boguraev, Bran, John Carroll, Ted Briscoe & Claire Grover. 1988. Software sup-
port for practical grammar development. In Dénes Vargha (ed.), Proceedings of
the 12th International Conference on Computational Linguistics (COLING), 54–
58. Budapest: International Committee on Computational Linguistics (ICCL).
http://www.aclweb.org/anthology/C88-1012 (17 March, 2021).

Bond, Francis, Sanae Fujita, Chikara Hashimoto, Kaname Kasahara, Shigeko
Nariyama, Eric Nichols, Akira Ohtani, Takaaki Tanaka & Shigeaki Amano.
2004. The Hinoki treebank: A treebank for text understanding. In Keh-Yih Su,
Jun’ichi Tsujii, Jong-Hyeok Lee & Oi Yee Kwong (eds.), Proceedings of the 1st In-
ternational Joint Conference on Natural Language Processing (IJCNLP) (Lecture
Notes in Artificial Intelligence 3248), 158–167. Hainan Island, China: Springer-
Verlag. DOI: 10.1007/978-3-540-30211-7_17.

Bond, Francis, Stephan Oepen, Eric Nichols, Dan Flickinger, Erik Velldal & Petter
Haugereid. 2011. Deep open-source machine translation. Machine Translation
25(2). 87–105. DOI: 10.1007/s10590-011-9099-4.

Borsley, Robert D. & Berthold Crysmann. 2024. Unbounded dependencies. In Ste-
fan Müller, Anne Abeillé, Robert D. Borsley & Jean- Pierre Koenig (eds.), Head-
Driven Phrase Structure Grammar: The handbook, 2nd revised edn. (Empirically
Oriented Theoretical Morphology and Syntax 9), 571–634. Berlin: Language
Science Press. DOI: 10.5281/zenodo.13644930.

Borsley, Robert D. & Stefan Müller. 2024. HPSG and Minimalism. In Stefan Mül-
ler, Anne Abeillé, Robert D. Borsley & Jean- Pierre Koenig (eds.), Head-Driven
Phrase Structure Grammar: The handbook, 2nd revised edn. (Empirically Ori-
ented Theoretical Morphology and Syntax 9), 1333–1411. Berlin: Language Sci-
ence Press. DOI: 10.5281/zenodo.13644972.

Boullier, Pierre. 1999. A cubic time extension of context-free grammars. Research
Report RR-3611. INRIA. https://hal.inria.fr/inria-00073067 (2 February, 2021).

Bouma, Gosse, Robert Malouf & Ivan A. Sag. 2001. Satisfying constraints on ex-
traction and adjunction. Natural Language & Linguistic Theory 19(1). 1–65. DOI:
10.1023/A:1006473306778.

Bouma, Gosse & Gertjan van Noord. 1998. Word order constraints on verb
clusters in German and Dutch. In Erhard W. Hinrichs, Andreas Kathol &
Tsuneko Nakazawa (eds.), Complex predicates in nonderivational syntax (Syn-
tax and Semantics 30), 43–72. San Diego, CA: Academic Press. DOI: 10.1163/
9780585492223_003.

1209

http://aclweb.org/anthology/W13-2710
http://www.aclweb.org/anthology/C88-1012
https://doi.org/10.1007/978-3-540-30211-7_17
https://doi.org/10.1007/s10590-011-9099-4
https://doi.org/10.5281/zenodo.13644930
https://doi.org/10.5281/zenodo.13644972
https://hal.inria.fr/inria-00073067
https://doi.org/10.1023/A:1006473306778
https://doi.org/10.1163/9780585492223_003
https://doi.org/10.1163/9780585492223_003


Emily M. Bender & Guy Emerson

Bouma, Gosse & Gertjan van Noord. 2017. Increasing return on annotation in-
vestment: The automatic construction of a Universal Dependency Treebank
for Dutch. In Marie-Catherine de Marneffe, Joakim Nivre & Sebastian Schus-
ter (eds.), Proceedings of the NoDaLiDa 2017 workshop on Universal Dependen-
cies (UDW 2017), 19–26. Gothenburg, Sweden: Association for Computational
Linguistics. https://aclweb.org/anthology/W17-0403 (10 February, 2021).

Bouma, Gosse, Gertjan van Noord & Robert Malouf. 2001. Alpino: Wide-coverage
computational analysis of Dutch. In Walter Daelemans, Khalil Sima’an, Jorn
Veenstra & Jakub Zavrel (eds.), Computational linguistics in the Netherlands
2000: Selected papers from the Eleventh CLIN Meeting (Language and Comput-
ers 37), 45–59. Amsterdam: Rodopi. DOI: 10.1163/9789004333901_004.

Butt, Miriam, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi & Christian
Rohrer. 2002. The Parallel Grammar Project. In John Carroll, Nelleke Oost-
dijk & Richard Sutcliffe (eds.), Proceedings of COLING-2002 Workshop on Gram-
mar Engineering and Evaluation, 1–7. Taipei, Taiwan: Association for Compu-
tational Linguistics. DOI: 10.3115/1118783.1118786.

Butt, Miriam, Tracy Holloway King, María-Eugenia Niño & Frédérique Segond.
1999. A grammar writer’s cookbook (CSLI Lecture Notes 95). Stanford, CA: CSLI
Publications.

Buys, Jan & Phil Blunsom. 2017. Robust incremental neural semantic graph pars-
ing. In Regina Barzilay & Min-Yen Kan (eds.), Proceedings of the 55th annual
meeting of the Association for Computational Linguistics (volume 1: long pa-
pers), 1215–1226. Vancouver, Canada: Association for Computational Linguis-
tics. DOI: 10.18653/v1/P17-1112.

Callmeier, Ulrich. 2000. PET: A platform for experimentation with efficient HPSG
processing techniques. Natural Language Engineering 6(1). Special issue on
efficient processing with HPSG: Methods, systems, evaluation, 99–107. DOI:
10.1017/S1351324900002369.

Callmeier, Ulrich, Andreas Eisele, Ulrich Schäfer & Melanie Siegel. 2004. The
DeepThought core architecture framework. In Maria Teresa Lino, Maria Fran-
cisca Xavier, Fátima Ferreira, Rute Costa & Raquel Silva (eds.), Proceedings
of the 4th International Conference on Language Resources and Evaluation
(LREC), 1205–1208. Lisbon, Portugal: European Language Resources Associa-
tion (ELRA). http://www.lrec- conf.org/proceedings/lrec2004/pdf/603.pdf
(25 February, 2021).

Carroll, John Andrew. 1993. Practical unification-based parsing of natural lan-
guage. University of Cambridge. (Doctoral dissertation). https://www.cl.cam.
ac.uk/techreports/UCAM-CL-TR-314.ps.gz (17 February, 2021).

1210

https://aclweb.org/anthology/W17-0403
https://doi.org/10.1163/9789004333901_004
https://doi.org/10.3115/1118783.1118786
https://doi.org/10.18653/v1/P17-1112
https://doi.org/10.1017/S1351324900002369
http://www.lrec-conf.org/proceedings/lrec2004/pdf/603.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-314.ps.gz
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-314.ps.gz


25 Computational linguistics and grammar engineering

Carroll, John. 1994. Relating complexity to practical performance in parsing with
wide-coverage unification grammars. In James Pustejovsky (ed.), 32nd Annual
Meeting of the Association for Computational Linguistics, 287–294. Las Cruces,
NM: Association for Computational Linguistics.

Carroll, John, Ann Copestake, Dan Flickinger & Victor Poznański. 1999. An ef-
ficient chart generator for (semi-)lexicalist grammars. In Proceedings of the
7th European Workshop on Natural Language Generation (EWNLG’99), 86–95.
Toulouse, France.

Carter, David. 1997. The TreeBanker: A tool for supervised training of parsed
corpora. In Dominique Estival, Alberto Lavelli, Klaus Netter & Fabio Pianesi
(eds.), Proceedings of the 1997 ACL workshop on computational environments for
grammar development and linguistic engineering (ENVGRAM), 9–15. Madrid,
Spain: Association for Computational Linguistics (ACL). http://aclweb.org/
anthology/W97-1502 (23 February, 2021).

Chen, Yufei, Junjie Cao, Weiwei Sun & Xiaojun Wan. 2017. Peking at EPE 2017: A
comparison of tree approximation, transition-based and maximum subgraph
models for semantic dependency analysis. In Jari Björne, Gerlof Bouma, Jan
Buys, Filip Ginter, Richard Johansson, Emanuele Lapponi, Simon Mille, Joakim
Nivre, Stephan Oepen, Sebastian Schuster, Djamé Seddah, Weiwei Sun, Anders
Søgaard, Erik Velldal & Lilja Øvrelid (eds.), Proceedings of the 2017 Shared Task
on Extrinsic Parser Evaluation, at the Fourth International Conference on Depen-
dency Linguistics and the 15th International Conference on Parsing Technologies,
60–64. Pisa, Italy: Nordic Language Processing Laboratory. http://svn.nlpl.eu/
epe/2017/public/proceedings.pdf (30 March, 2021).

Chen, Yufei, Weiwei Sun & Xiaojun Wan. 2018. Accurate SHRG-based semantic
parsing. In Iryna Gurevych & Yusuke Miyao (eds.), Proceedings of the 56th An-
nual Meeting of the Association for Computational Linguistics (volume 1: long
papers), 408–418. Melbourne, Australia: Association for Computational Lin-
guistics. DOI: 10.18653/v1/P18-1038.

Chomsky, Noam. 1963. Formal properties of grammars. In R. Duncan Luce, Robert
R. Bush & Eugene Galanter (eds.), Handbook of mathematical psychology, 323–
418. New York, NY: John Wiley & Sons.

Chomsky, Noam. 1995. The Minimalist Program (Current Studies in Linguistics
28). Cambridge, MA: MIT Press. DOI: 10 .7551/mitpress/9780262527347 .001 .
0001.

Clark, Stephen. 2015. Vector space models of lexical meaning. In Shalom Lappin
& Chris Fox (eds.), The handbook of contemporary semantic theory, 2nd edn.

1211

http://aclweb.org/anthology/W97-1502
http://aclweb.org/anthology/W97-1502
http://svn.nlpl.eu/epe/2017/public/proceedings.pdf
http://svn.nlpl.eu/epe/2017/public/proceedings.pdf
https://doi.org/10.18653/v1/P18-1038
https://doi.org/10.7551/mitpress/9780262527347.001.0001
https://doi.org/10.7551/mitpress/9780262527347.001.0001


Emily M. Bender & Guy Emerson

(Blackwell Handbooks in Linguistics), 493–522. London, UK: Wiley-Blackwell.
DOI: 10.1002/9781118882139.ch16.

Clark, Stephen & James R. Curran. 2004. The importance of supertagging for
wide-coverage CCG parsing. In COLING 2004: Proceedings of the 20th Interna-
tional Conference on Computational Linguistics, 282–288. Geneva, Switzerland:
COLING. http://aclweb.org/anthology/C04-1041 (10 February, 2021).

Cooper, Robin & Jonathan Ginzburg. 2015. Type theory with records for natural
language semantics. In Shalom Lappin & Chris Fox (eds.), The handbook of
contemporary semantic theory, 2nd edn. (Blackwell Handbooks in Linguistics),
375–407. Oxford, UK: Wiley-Blackwell. DOI: 10.1002/9781118882139.ch12.

Copestake, Ann. 2002a. Definitions of typed feature structures. In Stephan
Oepen, Dan Flickinger, Jun-ichi Tsujii & Hans Uszkoreit (eds.), Collaborative
language engineering: A case study in efficient grammar-based processing (CSLI
Lecture Notes 118), 227–230. Stanford, CA: CSLI Publications.

Copestake, Ann. 2002b. Implementing typed feature structure grammars (CSLI
Lecture Notes 110). Stanford, CA: CSLI Publications.

Copestake, Ann. 2009. Slacker semantics: Why superficiality, dependency and
avoidance of commitment can be the right way to go. In Alex Lascarides, Claire
Gardent & Joakim Nivre (eds.), Proceedings of the 12th Conference of the Euro-
pean Chapter of the ACL (EACL 2009), 1–9. Athens, Greece: Association for
Computational Linguistics. https : / /www.aclweb .org /anthology/E09- 1000
(10 February, 2021).

Copestake, Ann, Guy Emerson, Michael Wayne Goodman, Matic Horvat, Alexan-
der Kuhnle & Ewa Muszyńska. 2016. Resources for building applications
with Dependency Minimal Recursion Semantics. In Nicoletta Calzolari, Khalid
Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente Maegaard,
Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk & Stelios Piperidis
(eds.), Proceedings of the 10th International Conference on Language Resources
and Evaluation (LREC 2016), 1240–1247. Portorož, Slovenia: European Lan-
guage Resources Association (ELRA). https://www.aclweb.org/anthology/L16-
1197 (17 March, 2021).

Copestake, Ann, Dan Flickinger, Carl Pollard & Ivan A. Sag. 2005. Minimal Re-
cursion Semantics: An introduction. Research on Language and Computation
3(2–3). 281–332. DOI: 10.1007/s11168-006-6327-9.

Crysmann, Berthold. 2003. On the efficient implementation of German verb
placement in HPSG. In Ruslan Mitkov (ed.), Proceedings of RANLP 2003, 112–
116. Borovets, Bulgaria: Bulgarian Academy of Sciences.

1212

https://doi.org/10.1002/9781118882139.ch16
http://aclweb.org/anthology/C04-1041
https://doi.org/10.1002/9781118882139.ch12
https://www.aclweb.org/anthology/E09-1000
https://www.aclweb.org/anthology/L16-1197
https://www.aclweb.org/anthology/L16-1197
https://doi.org/10.1007/s11168-006-6327-9


25 Computational linguistics and grammar engineering

Davis, Anthony R., Jean-Pierre Koenig & Stephen Wechsler. 2024. Argument
structure and linking. In Stefan Müller, Anne Abeillé, Robert D. Borsley & Jean-
 Pierre Koenig (eds.), Head-Driven Phrase Structure Grammar: The handbook,
2nd revised edn. (Empirically Oriented Theoretical Morphology and Syntax
9), 335–390. Berlin: Language Science Press. DOI: 10.5281/zenodo.13645100.

de Kok, Daniël, Barbara Plank & Gertjan van Noord. 2011. Reversible stochastic
attribute-value grammars. In Dekang Lin, Yuji Matsumoto & Rada Mihalcea
(eds.), Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies, 194–199. Portland, OR: Asso-
ciation for Computational Linguistics. http://aclweb.org/anthology/P11-2034
(10 February, 2021).

De Kuthy, Kordula. 2024. Information structure. In Stefan Müller, Anne Abeillé,
Robert D. Borsley & Jean- Pierre Koenig (eds.), Head-Driven Phrase Structure
Grammar: The handbook, 2nd revised edn. (Empirically Oriented Theoretical
Morphology and Syntax 9), 1111–1149. Berlin: Language Science Press. DOI:
10.5281/zenodo.13644998.

Dellert, Johannes, Kilian Evang & Frank Richter. 2010. Kahina, a debugging frame-
work for logic programs and TRALE. Presentation at the 17th International Con-
ference on Head-Driven Phrase Structure Grammar, Université Paris Diderot.

Dellert, Johannes, Kilian Evang & Frank Richter. 2013. Kahina: A hybrid trace-
based and chart-based debugging system for grammar engineering. In Denys
Duchier & Yannick Parmentier (eds.), Proceedings of the workshop on high-level
methodologies for grammar engineering @ESSLLI2013, 75–86. Düsseldorf.

Drellishak, Scott. 2009. Widespread but not universal: Improving the typological
coverage of the Grammar Matrix. University of Washington. (Doctoral disser-
tation).

Dridan, Rebecca. 2013. Ubertagging: Joint segmentation and supertagging for En-
glish. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu &
Steven Bethard (eds.), Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing (EMNLP), 1201–1212. Seattle, WA: Association
for Computational Linguistics (ACL). http://aclweb.org/anthology/D13-1120
(10 February, 2021).

Emerson, Guy. 2018. Functional distributional semantics: Learning linguistically
informed representations from a precisely annotated corpus. University of Cam-
bridge. (Doctoral dissertation). https://www.repository.cam.ac.uk/bitstream/
handle/1810/284882/thesis.pdf (2 February, 2021).

Engdahl, Elisabet & Enric Vallduví. 1996. Information packaging in HPSG. In
Claire Grover & Enric Vallduví (eds.), Studies in HPSG (Edinburgh Working Pa-

1213

https://doi.org/10.5281/zenodo.13645100
http://aclweb.org/anthology/P11-2034
https://doi.org/10.5281/zenodo.13644998
http://aclweb.org/anthology/D13-1120
https://www.repository.cam.ac.uk/bitstream/handle/1810/284882/thesis.pdf
https://www.repository.cam.ac.uk/bitstream/handle/1810/284882/thesis.pdf


Emily M. Bender & Guy Emerson

pers in Cognitive Science 12), 1–32. Edinburgh: Centre for Cognitive Science,
University of Edinburgh. ftp://ftp.cogsci.ed.ac.uk/pub/CCS-WPs/wp-12.ps.gz
(10 February, 2021).

Erk, Katrin. 2012. Vector space models of word meaning and phrase meaning: A
survey. Language and Linguistics Compass 6(10). 635–653. DOI: 10.1002/lnco.
362.

Fang, Yimai, Haoyue Zhu, Ewa Muszyńska, Alexander Kuhnle & Simone Teufel.
2016. A proposition-based abstractive summariser. In Yuji Matsumoto &
Rashmi Prasad (eds.), Proceedings of COLING 2016, the 26th International Con-
ference on Computational Linguistics: Technical Papers, 567–578. Osaka, Japan:
The COLING 2016 Organizing Committee. http://aclweb.org/anthology/C16-
1055 (2 February, 2021).

Farkas, Richárd, Veronika Vincze, György Móra, János Csirik & György Szarvas.
2010. The CoNLL-2010 shared task: Learning to detect hedges and their scope
in natural language text. In Richárd Farkas, Veronika Vincze, György Szarvas,
György Móra & János Csirik (eds.), Proceedings of the 14th conference on com-
putational natural language learning (CoNNL): Shared task, 1–12. Uppsala, Swe-
den: Association for Computational Linguistics. http://aclweb.org/anthology/
W10-3001 (3 February, 2021).

Firth, John Rupert. 1951. Modes of meaning. Essays and Studies 4. 118–149. Reprint
as: Modes of meaning. In Papers in linguistics, 190–215. Oxford: Oxford Univer-
sity Press, 1957.

Firth, John Rupert. 1957. A synopsis of linguistic theory 1930–1955. In John Ru-
pert Firth (ed.), Studies in linguistic analysis (Special Volume of the Philological
Society), 1–32. London, UK: Blackwell Publishers Ltd.

Flickinger, Daniel Paul. 1987. Lexical rules in the hierarchical lexicon. Stanford
University. (Doctoral dissertation).

Flickinger, Dan. 2000. On building a more efficient grammar by exploiting types.
Natural Language Engineering 6(1). Special issue on efficient processing with
HPSG: Methods, systems, evaluation, 15–28. DOI: 10.1017/S1351324900002370.

Flickinger, Dan. 2011. Accuracy vs. robustness in grammar engineering. In Emily
M. Bender & Jennifer E. Arnold (eds.), Language from a cognitive perspective:
Grammar, usage, and processing: Studies in honor of Tom Wasow (CSLI Lecture
Notes 201), 31–50. Stanford, CA: CSLI Publications.

Flickinger, Dan. 2017. Generating English paraphrases from logic. In Martijn
Wieling, Martin Kroon, Gertjan van Noord & Gosse Bouma (eds.), From se-
mantics to dialectometry: Festschrift in honor of John Nerbonne (Tributes 32),
99–107. Rickmansworth: College Publications.

1214

ftp://ftp.cogsci.ed.ac.uk/pub/CCS-WPs/wp-12.ps.gz
https://doi.org/10.1002/lnco.362
https://doi.org/10.1002/lnco.362
http://aclweb.org/anthology/C16-1055
http://aclweb.org/anthology/C16-1055
http://aclweb.org/anthology/W10-3001
http://aclweb.org/anthology/W10-3001
https://doi.org/10.1017/S1351324900002370


25 Computational linguistics and grammar engineering

Flickinger, Dan, Jan Tore Lønning, Helge Dyvik, Stephan Oepen & Francis Bond.
2005. SEM-I rational MT: Enriching deep grammars with a semantic interface
for scalable machine translation. In Proceedings of Machine Translation Sum-
mit X, 165–172. Phuket, Thailand: Asia-Pacific Association for Machine Trans-
lation.

Flickinger, Dan, Stephan Oepen & Emily M. Bender. 2017. Sustainable develop-
ment and refinement of complex linguistic annotations at scale. In Nancy Ide
& James Pustejovsky (eds.), Handbook of linguistic annotation, 353–377. Dor-
drecht: Springer. DOI: 10.1007/978-94-024-0881-2_14.

Flickinger, Dan, Stephan Oepen & Gisle Ytrestøl. 2010. Wikiwoods: Syntacto-
semantic annotation for English Wikipedia. In Nicoletta Calzolari, Khalid
Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike
Rosner & Daniel Tapias (eds.), Proceedings of the Seventh International Con-
ference on Language Resources and Evaluation (LREC’10), 1665–1671. Valletta,
Malta: European Language Resources Association (ELRA). http://www.lrec-
conf.org/proceedings/lrec2010/pdf/432_Paper.pdf (10 February, 2021).

Flickinger, Daniel, Carl Pollard & Thomas Wasow. 1985. Structure-sharing in lex-
ical representation. In William C. Mann (ed.), Proceedings of the 23rd Annual
Meeting of the Association for Computational Linguistics, 262–267. Chicago,
IL: Association for Computational Linguistics. DOI: 10 . 3115 / 981210 . 981242.
(17 February, 2021).

Flickinger, Dan, Carl Pollard & Thomas Wasow. 2024. The evolution of HPSG.
In Stefan Müller, Anne Abeillé, Robert D. Borsley & Jean- Pierre Koenig (eds.),
Head-Driven Phrase Structure Grammar: The handbook, 2nd revised edn. (Em-
pirically Oriented Theoretical Morphology and Syntax 9), 47–92. Berlin: Lan-
guage Science Press. DOI: 10.5281/zenodo.13645008.

Flickinger, Dan & Jiye Yu. 2013. Toward more precision in correction of gram-
matical errors. In Hwee Tou Ng, Joel Tetreault, Siew Mei Wu, Yuanbin Wu
& Christian Hadiwinoto (eds.), Proceedings of the 17th conference on computa-
tional natural language learning (CoNLL): Shared task, 68–73. Sofia, Bulgaria:
Association for Computational Linguistics. http://aclweb.org/anthology/W13-
3609 (17 March, 2021).

Flickinger, Dan, Yi Zhang & Valia Kordoni. 2012. DeepBank: A dynamically anno-
tated treebank of the Wall Street Journal. In Iris Hendrickx, Sandra Kübler &
Kiril Simov (eds.), Proceedings of the 11th International Workshop on Treebanks
and Linguistic Theories (TLT), 85–96. Lisbon, Portugal: University of Lisbon.
http://tlt11.clul.ul.pt/ProceedingsTLT11.tgz (17 March, 2021).

1215

https://doi.org/10.1007/978-94-024-0881-2_14
http://www.lrec-conf.org/proceedings/lrec2010/pdf/432_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/432_Paper.pdf
https://doi.org/10.3115/981210.981242
https://doi.org/10.5281/zenodo.13645008
http://aclweb.org/anthology/W13-3609
http://aclweb.org/anthology/W13-3609
http://tlt11.clul.ul.pt/ProceedingsTLT11.tgz


Emily M. Bender & Guy Emerson

Fokkens, Antske Sibelle. 2014. Enhancing empirical research for linguistically mo-
tivated precision grammars. Department of Computational Linguistics, Univer-
sität des Saarlandes. (Doctoral dissertation).

Friedman, Joyce, Thomas H. Bredt, Robert W. Doran, Bary W. Pollack &
Theodore S. Martner. 1971. A computer model of Transformational Grammar
(Mathematical Linguistics and Automatic Language Processing 9). New York,
NY: Elsevier.

Gazdar, Gerald & Geoffrey K. Pullum. 1985. Computationally relevant properties
of natural languages and their grammars. NewGeneration Computing 3(3). 237–
306. DOI: 10.1007/BF03037123. Reprint as: Computationally relevant properties
of natural languages and their grammars. In Walter J. Savitch, Emmon Bach,
William Marsh & Gila Safran-Naveh (eds.), The formal complexity of natural
language (Studies in Linguistics and Philosophy 33), 387–437. Berlin: Springer,
1987. DOI: 10.1007/978-94-009-3401-6_17.

Georgi, Ryan Alden. 2016. From Aari to Zulu: Massively multilingual creation of
language tools using interlinear glossed text. University of Washington. (Doc-
toral dissertation). http://hdl.handle.net/1773/37168 (24 February, 2021).

Ghodke, Sumukh & Steven Bird. 2010. Fast query for large treebanks. In Ron Ka-
plan, Jill Burstein, Mary Harper & Gerald Penn (eds.), Human language tech-
nologies: The 2010 annual conference of the north American chapter of the Associ-
ation for Computational Linguistics, 267–275. Los Angeles, CA: Association for
Computational Linguistics. http://aclweb.org/anthology/N10-1034 (24 Febru-
ary, 2021).

Ginzburg, Jonathan. 2012. The interactive stance: Meaning for conversation (Ox-
ford Linguistics). Oxford: Oxford University Press.

Godard, Danièle & Pollet Samvelian. 2024. Complex predicates. In Stefan Mül-
ler, Anne Abeillé, Robert D. Borsley & Jean- Pierre Koenig (eds.), Head-Driven
Phrase Structure Grammar: The handbook, 2nd revised edn. (Empirically Ori-
ented Theoretical Morphology and Syntax 9), 443–518. Berlin: Language Sci-
ence Press. DOI: 10.5281/zenodo.13645043.

Goodman, Michael Wayne. 2018. Semantic operations for transfer-based machine
translation. University of Washington. (Doctoral dissertation). https://digital.
lib.washington.edu/researchworks/bitstream/handle/1773/42432/Goodman_
washington_0250E_18405.pdf (31 March, 2021).

Harris, Zellig Sabbetai. 1954. Distributional structure. Word 10(2-3). 146–162.
Reprint as: Distributional structure. In Henry Hiz (ed.), Papers on syntax (Stud-
ies in Linguistics and Philosophy 14), 3–22. Dordrecht: D. Reidel Publishing
Company, 1981. DOI: 10.1007/978-94-009-8467-7_1.

1216

https://doi.org/10.1007/BF03037123
https://doi.org/10.1007/978-94-009-3401-6_17
http://hdl.handle.net/1773/37168
http://aclweb.org/anthology/N10-1034
https://doi.org/10.5281/zenodo.13645043
https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/42432/Goodman_washington_0250E_18405.pdf
https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/42432/Goodman_washington_0250E_18405.pdf
https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/42432/Goodman_washington_0250E_18405.pdf
https://doi.org/10.1007/978-94-009-8467-7_1


25 Computational linguistics and grammar engineering

Hashimoto, Chikara, Francis Bond, Takaaki Tanaka & Melanie Siegel. 2008. Semi-
automatic documentation of an implemented linguistic grammar augmented
with a treebank. Language Resources and Evaluation 42(2). 117–126. DOI: 10 .
1007/s10579-008-9065-9.

Hellan, Lars & Dorothee Beermann. 2014. Inducing grammars from IGT. In Zyg-
munt Vetulani & Joseph Mariani (eds.), Human language technology challenges
for computer science and linguistics (Lecture Notes in Computer Science 8387),
538–547. Cham: Springer. DOI: 10.1007/978-3-319-08958-4_44.

Herring, Joshua. 2016. Grammar construction in the Minimalist Program. Indiana
University. (Doctoral dissertation).

Hershcovich, Daniel, Marco Kuhlmann, Stephan Oepen & Tim O’Gorman. 2019.
Mtool. The Swiss Army Knife of meaning representation. https://github.com/
cfmrp/mtool (2 March, 2021).

Hopcroft, John E. & Jeffrey D. Ullman. 1969. Formal languages and their relation
to automata (Computer Science and Information Processing). Addison-Wesley
Publishing Company.

Horvat, Matic. 2017. Hierarchical statistical semantic translation and realization.
University of Cambridge. (Doctoral dissertation). http://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-913.pdf (23 March, 2021).

Hudson, Richard. 2024. HPSG and Dependency Grammar. In Stefan Müller, Anne
Abeillé, Robert D. Borsley & Jean- Pierre Koenig (eds.), Head-Driven Phrase
Structure Grammar: The handbook, 2nd revised edn. (Empirically Oriented The-
oretical Morphology and Syntax 9), 1531–1580. Berlin: Language Science Press.
DOI: 10.5281/zenodo.13645023.

Ivanova, Angelina, Stephan Oepen, Lilja Øvrelid & Dan Flickinger. 2012. Who did
what to whom?: A contrastive study of syntacto-semantic dependencies. In Fei
Xia Nancy Ide (ed.), Proceedings of the 6th Linguistic Annotation Workshop, 2–
11. Jeju, Republic of Korea: Association for Computational Linguistics. http :
//aclweb.org/anthology/W12-3602 (30 March, 2021).

Jäger, Gerhard & James Rogers. 2012. Formal language theory: Refining the
Chomsky Hierarchy. Philosophical Transactions of the Royal Society B: Biologi-
cal Sciences 367(1598). 1956–1970. DOI: 10.1098/rstb.2012.0077.

Johnson, Mark. 1988. Attribute-value logic and the theory of grammar (CSLI Lec-
ture Notes 16). Stanford, CA: CSLI Publications.

Joshi, Aravind K. 1987. Introduction to Tree Adjoining Grammar. In Alexis Man-
aster-Ramer (ed.), The mathematics of language, 87–114. Amsterdam: John Ben-
jamins Publishing Co. DOI: 10.1075/z.35.07jos.

1217

https://doi.org/10.1007/s10579-008-9065-9
https://doi.org/10.1007/s10579-008-9065-9
https://doi.org/10.1007/978-3-319-08958-4_44
https://github.com/cfmrp/mtool
https://github.com/cfmrp/mtool
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-913.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-913.pdf
https://doi.org/10.5281/zenodo.13645023
http://aclweb.org/anthology/W12-3602
http://aclweb.org/anthology/W12-3602
https://doi.org/10.1098/rstb.2012.0077
https://doi.org/10.1075/z.35.07jos


Emily M. Bender & Guy Emerson

Kasami, Tadao, Hiroyuki Seki & Mamoru Fujii. 1989. Generalized context-free
grammars and multiple context-free grammars. Systems and Computers in
Japan 20(7). 43–52. DOI: 10.1002/scj.4690200705.

Kay, Martin. 1963. Rules of interpretation: An approach to the problem of com-
putation in the semantics of natural language. In Cicely M. Popplewell (ed.),
Proceedings of IFIP Congress 62, 318–21. Munich, Germany: North-Holland Pub-
lishing Company.

Kay, Martin. 1973. The MIND system. In Randall Rustin (ed.), Courant Computer
Science Symposium 8: Natural language processing. Monterey, CA: Algorith-
mics Press.

Kim, Jin-Dong, Tomoko Ohta, Sampo Pyysalo, Yoshinobu Kano & Jun’ichi Tsujii.
2009. Overview of BioNLP’09 shared task on event extraction. In Jun’ichi Tsu-
jii (ed.), Proceedings of the Workshop on Current Trends in Biomedical Natural
Language Processing (BioNLP): Shared Task, 1–9. Boulder, CO: Association for
Computational Linguistics. http://aclweb.org/anthology/W09-1401 (23 March,
2021).

King, Tracy Holloway. 2016. Theoretical linguistics and grammar engineering
as mutually constraining disciplines. In Doug Arnold, Miriam Butt, Berthold
Crysmann, Tracy Holloway-King & Stefan Müller (eds.), Proceedings of the
joint 2016 conference on Head-driven Phrase Structure Grammar and Lexical
Functional Grammar, Polish Academy of Sciences, Warsaw, Poland, 339–359.
Stanford, CA: CSLI Publications.

King, Tracy Holloway, Martin Forst, Jonas Kuhn & Miriam Butt. 2005. The fea-
ture space in parallel grammar writing. Research on Language and Computation
3(2). Special Issue on Shared Representations in Multilingual Grammar Engi-
neering, 139–163. DOI: 10.1007/s11168-005-1295-z.

Koenig, Jean-Pierre & Frank Richter. 2024. Semantics. In Stefan Müller, Anne
Abeillé, Robert D. Borsley & Jean- Pierre Koenig (eds.), Head-Driven Phrase
Structure Grammar: The handbook, 2nd revised edn. (Empirically Oriented The-
oretical Morphology and Syntax 9), 1067–1109. Berlin: Language Science Press.
DOI: 10.5281/zenodo.13644931.

Kouylekov, Milen & Stephan Oepen. 2014. RDF triple stores and a custom
SPARQL front-end for indexing and searching (very) large semantic networks.
In Lamia Tounsi & Rafal Rak (eds.), Proceedings of the 25th International Con-
ference on Computational Linguistics (COLING), system demonstrations, 90–94.
Dublin, Ireland: Dublin City University & Association for Computational Lin-
guistics. http://aclweb.org/anthology/C14-2020 (4 March, 2021).

1218

https://doi.org/10.1002/scj.4690200705
http://aclweb.org/anthology/W09-1401
https://doi.org/10.1007/s11168-005-1295-z
https://doi.org/10.5281/zenodo.13644931
http://aclweb.org/anthology/C14-2020


25 Computational linguistics and grammar engineering

Kruyt, Johanna G & MWF Dutilh. 1997. A 38 million words Dutch text corpus
and its users. Lexikos 7. 229–244.

Kubota, Yusuke. 2024. HPSG and Categorial Grammar. In Stefan Müller, Anne
Abeillé, Robert D. Borsley & Jean- Pierre Koenig (eds.), Head-Driven Phrase
Structure Grammar: The handbook, 2nd revised edn. (Empirically Oriented The-
oretical Morphology and Syntax 9), 1413–1477. Berlin: Language Science Press.
DOI: 10.5281/zenodo.13645065.

Kuhnle, Alexander & Ann Copestake. 2018. Deep learning evaluation using deep
linguistic processing. In Yonatan Bisk, Omer Levy & Mark Yatskar (eds.), Pro-
ceedings of the Workshop on Generalization in the Age of Deep Learning, 17–23.
New Orleans, LA: Association for Computational Linguistics. DOI: 10.18653/
v1/W18-1003.

Letcher, Ned. 2018. Discovering syntactic phenomena with and within precision
grammars. University of Melbourne. (Doctoral dissertation).

Levinson, Stephen C. 2006. Deixis. In Laurence Horn & Gergory Ward (eds.), The
handbook of pragmatics (Blackwell Handbooks in Linguistics), 97–121. Malden,
MA: Blackwell. DOI: 10.1002/9780470756959.ch5.

Lücking, Andy, Kirsten Bergman, Florian Hahn, Stefan Kopp & Hannes Rieser.
2010. The Bielefeld speech and gesture alignment corpus (SaGA). In Nicoletta
Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios
Piperidis, Mike Rosner & Daniel Tapias (eds.), Proceedings of the Seventh In-
ternational Conference on Language Resources and Evaluation (LREC’10), 92–
98. Valletta, Malta: European Language Resources Association (ELRA). https:
//www.aclweb.org/anthology/events/lrec-2010/ (13 April, 2021).

MacKinlay, Andrew, David Martinez & Timothy Baldwin. 2012. Detecting mod-
ification of biomedical events using a deep parsing approach. BMC Medical
Informatics and Decision Making 12(Supplement 1). Proceedings of the ACM
5th International Workshop on Data and Text Mining in Biomedical Informat-
ics (DTMBio 2011), S4. DOI: 10.1186/1472-6947-12-S1-S4.

Marcus, Mitchell P., Beatrice Santorini & Mary Ann Marcinkiewicz. 1993. Build-
ing a large annotated corpus of English: The Penn Treebank. Computational
Linguistics 19(2). Special Issue on Using Large Corpora: II, 313–330. https : / /
www.aclweb.org/anthology/J93-2004 (7 April, 2021).

Marimon, Montserrat. 2013. The Spanish DELPH-IN grammar. Language Re-
sources and Evaluation 47(2). 371–397. DOI: 10.1007/s10579-012-9199-7.

Marimon, Montserrat. 2015. Tibidabo: A syntactically and semantically anno-
tated corpus of Spanish. Corpora 10(3). 259–276.

1219

https://doi.org/10.5281/zenodo.13645065
https://doi.org/10.18653/v1/W18-1003
https://doi.org/10.18653/v1/W18-1003
https://doi.org/10.1002/9780470756959.ch5
https://www.aclweb.org/anthology/events/lrec-2010/
https://www.aclweb.org/anthology/events/lrec-2010/
https://doi.org/10.1186/1472-6947-12-S1-S4
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://doi.org/10.1007/s10579-012-9199-7


Emily M. Bender & Guy Emerson

Matsuzaki, Takuya, Yusuke Miyao & Jun’ichi Tsujii. 2007. Efficient HPSG parsing
with supertagging and CFG-filtering. In Manuela M. Veloso (ed.), Proceedings
of the 20th International Joint Conference on Artificial Intelligence, 1671–1676.
Hyderabad, India: Association for the Advancement of Artificial Intelligence
(AAAI). https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-270.pdf (24 March,
2021).

Melnik, Nurit. 2007. From “hand-written” to computationally implemented
HPSG theories. Research on Language and Computation 5(2). 199–236. DOI:
10.1007/s11168-007-9028-0.

Meurers, W. Detmar, Gerald Penn & Frank Richter. 2002. A web-based in-
structional platform for contraint-based grammar formalisms and parsing. In
Dragomir Radev & Chris Brew (eds.), Effective tools andmethodologies for teach-
ing NLP and CL: Proceedings of the workshop held at 40th Annual Meeting of the
Association for Computational Linguistics. Philadelphia, PA, 19–26. Ann Arbor,
MI: Association for Computational Linguistics. DOI: 10.3115/1118108.1118111.

Miyao, Yusuke, Takashi Ninomiya & Jun’ichi Tsujii. 2005. Corpus-oriented gram-
mar development for acquiring a Head-Driven Phrase Structure Grammar
from the Penn Treebank. In Keh-Yih Su, Jun’ichi Tsujii, Jong-Hyeok Lee &
Oi Yee Kwong (eds.), Natural language processing IJCNLP 2004 (Lecture Notes
in Artificial Intelligence 3248), 684–693. Berlin: Springer-Verlag. DOI: 10.1007/
978-3-540-30211-7_72.

Miyao, Yusuke, Rune Sætre, Kenji Sagae, Takuya Matsuzaki & Jun’ichi Tsujii.
2008. Task-oriented evaluation of syntactic parsers and their representations.
In Johanna D. Moore, Simone Teufel, James Allan & Sadaoki Furui (eds.), Pro-
ceedings of the 46th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, 46–54. Columbus, OH: Association for
Computational Linguistics. http://aclweb.org/anthology/P08-1006 (2 Febru-
ary, 2021).

Miyao, Yusuke & Jun’ichi Tsujii. 2008. Feature forest models for probabilistic
HPSG parsing. Computational Linguistics 34(1). 35–80. DOI: 10.1162/coli.2008.
34.1.35.

Morante, Roser & Eduardo Blanco. 2012. *SEM 2012 shared task: Resolving the
scope and focus of negation. In Eneko Agirre, Johan Bos, Mona Diab, Suresh
Manandhar, Yuval Marton & Deniz Yuret (eds.), Proceedings of *SEM 2012: The
1st Joint Conference on Lexical and Computational Semantics, 265–274. Mon-
tréal, Canada: Association for Computational Linguistics. http://aclweb.org/
anthology/S12-1035 (24 March, 2021).

1220

https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-270.pdf
https://doi.org/10.1007/s11168-007-9028-0
https://doi.org/10.3115/1118108.1118111
https://doi.org/10.1007/978-3-540-30211-7_72
https://doi.org/10.1007/978-3-540-30211-7_72
http://aclweb.org/anthology/P08-1006
https://doi.org/10.1162/coli.2008.34.1.35
https://doi.org/10.1162/coli.2008.34.1.35
http://aclweb.org/anthology/S12-1035
http://aclweb.org/anthology/S12-1035


25 Computational linguistics and grammar engineering

Morgado da Costa, Luis, Francis Bond & Xiaoling He. 2016. Syntactic well-
formedness diagnosis and error-based coaching in computer assisted language
learning using machine translation. In Hsin-Hsi Chen, Yuen-Hsien Tseng, Vin-
cent Ng & Xiaofei Lu (eds.), Proceedings of the 3rd Workshop on Natural Lan-
guage Processing Techniques for Educational Applications (NLPTEA 2016), 107–
116. Osaka, Japan: The COLING 2016 Organizing Committee. http://aclweb.
org/anthology/W16-4914 (24 March, 2021).

Müller, Stefan. 1996. The Babel-System: An HPSG fragment for German, a parser,
and a dialogue component. In Peter Reintjes (ed.), Proceedings of the Fourth
International Conference on the Practical Application of Prolog, 263–277. London:
Practical Application Company.

Müller, Stefan. 1999. Deutsche Syntax deklarativ: Head-Driven Phrase Structure
Grammar für das Deutsche (Linguistische Arbeiten 394). Tübingen: Max Nie-
meyer Verlag. DOI: 10.1515/9783110915990.

Müller, Stefan. 2004a. Example sentences and making them useful for theoretical
and computational linguistics. Paper presented at the DGfS Jahrestagung: AG
Empirische Fundierung der Modellbildung in der Syntax.

Müller, Stefan. 2004b. Continuous or discontinuous constituents? A comparison
between syntactic analyses for constituent order and their processing systems.
Research on Language and Computation 2(2). Special Issue on Linguistic Theory
and Grammar Implementation, 209–257. DOI: 10.1023/B:ROLC.0000016785.
49729.d7.

Müller, Stefan. 2007. Head-Driven Phrase Structure Grammar: Eine Einführung.
1st edn. (Stauffenburg Einführungen 17). Tübingen: Stauffenburg Verlag.

Müller, Stefan. 2009. A Head-Driven Phrase Structure Grammar for Maltese. In
Bernard Comrie, Ray Fabri, Beth Hume, Manwel Mifsud, Thomas Stolz & Mar-
tine Vanhove (eds.), Introducing Maltese linguistics: Papers from the 1st Inter-
national Conference on Maltese Linguistics (Bremen/Germany, 18–20 October,
2007) (Studies in Language Companion Series 113), 83–112. Amsterdam: John
Benjamins Publishing Co. DOI: 10.1075/slcs.113.10mul.

Müller, Stefan. 2014. Kernigkeit: Anmerkungen zur Kern-Peripherie-Unterschei-
dung. In Antonio Machicao y Priemer, Andreas Nolda & Athina Sioupi (eds.),
Zwischen Kern und Peripherie (studia grammatica 76), 25–39. Berlin: de Gruyter.
DOI: 10.1524/9783050065335.25.

Müller, Stefan. 2015. The CoreGram project: Theoretical linguistics, theory de-
velopment and verification. Journal of Language Modelling 3(1). 21–86. DOI:
10.15398/jlm.v3i1.91.

1221

http://aclweb.org/anthology/W16-4914
http://aclweb.org/anthology/W16-4914
https://doi.org/10.1515/9783110915990
https://doi.org/10.1023/B:ROLC.0000016785.49729.d7
https://doi.org/10.1023/B:ROLC.0000016785.49729.d7
https://doi.org/10.1075/slcs.113.10mul
https://doi.org/10.1524/9783050065335.25
https://doi.org/10.15398/jlm.v3i1.91


Emily M. Bender & Guy Emerson

Müller, Stefan. 2019. Grammatical theory: From Transformational Grammar to con-
straint-based approaches. 3rd edn. (Textbooks in Language Sciences 1). Berlin:
Language Science Press. DOI: 10.5281/zenodo.3364215.

Müller, Stefan. 2024a. HPSG and Construction Grammar. In Stefan Müller, Anne
Abeillé, Robert D. Borsley & Jean- Pierre Koenig (eds.), Head-Driven Phrase
Structure Grammar: The handbook, 2nd revised edn. (Empirically Oriented The-
oretical Morphology and Syntax 9), 1581–1637. Berlin: Language Science Press.
DOI: 10.5281/zenodo.13645036.

Müller, Stefan. 2024b. Constituent order. In Stefan Müller, Anne Abeillé, Robert
D. Borsley & Jean- Pierre Koenig (eds.), Head-Driven Phrase Structure Grammar:
The handbook, 2nd revised edn. (Empirically Oriented Theoretical Morphology
and Syntax 9), 391–441. Berlin: Language Science Press. DOI: 10.5281/zenodo.
13644960.

Müller, Stefan & Masood Ghayoomi. 2010. PerGram: A TRALE implementation
of an HPSG fragment of Persian. In Proceedings of 2010 IEEE International Mul-
ticonference on Computer Science and Information Technology – Computational
Linguistics Applications (CLA’10). Wisła, Poland, 18–20 October 2010, vol. 5, 461–
467. Wisła, Poland: Polish Information Processing Society.

Müller, Stefan & Walter Kasper. 2000. HPSG analysis of German. In Wolfgang
Wahlster (ed.), Verbmobil: Foundations of speech-to-speech translation (Artificial
Intelligence), 238–253. Berlin: Springer-Verlag. DOI: 10.1007/978-3-662-04230-
4_17.

Müller, Stefan & Janna Lipenkova. 2013. ChinGram: A TRALE implementation of
an HPSG fragment of Mandarin Chinese. In Huei-ling Lai & Kawai Chui (eds.),
Proceedings of the 27th Pacific Asia Conference on Language, Information, and
Computation (PACLIC 27), 240–249. Taipei, Taiwan: Department of English,
National Chengchi University.

Müller, Stefan & Bjarne Ørsnes. 2015. Danish in Head-Driven Phrase Structure
Grammar. Ms. Freie Universität Berlin. To be submitted to Language Science
Press. Berlin.

Muszyńska, Ewa. 2016. Graph- and surface-level sentence chunking. In He He,
Tao Lei & Will Roberts (eds.), Proceedings of the ACL 2016 Student Research
Workshop, 93–99. Berlin, Germany: Association for Computational Linguistics.
DOI: 10.18653/v1/P16-3014.

Nivre, Joakim, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan
Hajic, Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty & Daniel Zeman. 2016. Universal Dependencies
v1: A multilingual treebank collection. In Nicoletta Calzolari, Khalid Choukri,

1222

https://doi.org/10.5281/zenodo.3364215
https://doi.org/10.5281/zenodo.13645036
https://doi.org/10.5281/zenodo.13644960
https://doi.org/10.5281/zenodo.13644960
https://doi.org/10.1007/978-3-662-04230-4_17
https://doi.org/10.1007/978-3-662-04230-4_17
https://doi.org/10.18653/v1/P16-3014


25 Computational linguistics and grammar engineering

Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente Maegaard, Joseph Mar-
iani, Helene Mazo, Asuncion Moreno, Jan Odijk & Stelios Piperidis (eds.), Pro-
ceedings of the 10th International Conference on Language Resources and Evalua-
tion (LREC 2016), 1659–1666. Portorož, Slovenia: European Language Resources
Association (ELRA). https://www.aclweb.org/anthology/L16-1262 (9 March,
2021).

Oepen, Stephan. 2001. [incr tsdb()] — Competence and performance laboratory. User
manual. Technical Report. Saarbrücken, Germany: COLI.

Oepen, Stephan, Omri Abend, Jan Hajič, Daniel Hershcovich, Marco Kuhlmann,
Tim O’Gorman, Nianwen Xue, Jayeol Chun, Milan Straka & Zdeňka Urešová.
2019. MRP 2019: Cross-framework meaning representation parsing. In Stephan
Oepen, Omri Abend, Jan Hajic, Daniel Hershcovich, Marco Kuhlmann, Tim
O’Gorman & Nianwen Xue (eds.), Proceedings of the shared task on cross-frame-
work meaning representation parsing at the 2019 conference on natural language
learning, 1–27. Hong Kong: Association for Computational Linguistics. DOI:
10.18653/v1/K19-2001.

Oepen, Stephan & Daniel P. Flickinger. 1998. Towards systematic grammar profil-
ing: Test suite technology ten years after. Journal of Computer Speech and Lan-
guage 12(4). Special Issue on Evaluation, 411–435. DOI: 10.1006/csla.1998.0105.

Oepen, Stephan, Dan Flickinger, Kristina Toutanova & Christopher D. Manning.
2004. LinGO Redwoods: A rich and dynamic treebank for HPSG. Research on
Language and Computation 2(4). 575–596. DOI: 10.1007/s11168-004-7430-4.

Oepen, Stephan, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Silvie Cinková,
Dan Flickinger, Jan Hajic & Zdenka Uresova. 2015. SemEval 2015 task 18: Broad-
Coverage semantic dependency parsing. In Preslav Nakov, Torsten Zesch,
Daniel Cer & David Jurgens (eds.), Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), 915–926. Denver, CO: Association
for Computational Linguistics. DOI: 10.18653/v1/S15-2153.

Oepen, Stephan, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Dan Flickinger,
Jan Hajic, Angelina Ivanova & Yi Zhang. 2014. SemEval 2014 task 8: Broad-
Coverage semantic dependency parsing. In Preslav Nakov & Torsten Zesch
(eds.), Proceedings of the 8th International Workshop on Semantic Evaluation
(SemEval 2014), 63–72. Dublin, Ireland: Association for Computational Linguis-
tics. DOI: 10.3115/v1/S14-2008.

Oepen, Stephan & Jan Tore Lønning. 2006. Discriminant-based MRS banking. In
Nicoletta Calzolari, Khalid Choukri, Aldo Gangemi, Bente Maegaard, Joseph
Mariani, Jan Odijk & Daniel Tapias (eds.), Proceedings of the 5th International
Conference on Language Resources and Evaluation (LREC’06), 1250–1255. Genoa,

1223

https://www.aclweb.org/anthology/L16-1262
https://doi.org/10.18653/v1/K19-2001
https://doi.org/10.1006/csla.1998.0105
https://doi.org/10.1007/s11168-004-7430-4
https://doi.org/10.18653/v1/S15-2153
https://doi.org/10.3115/v1/S14-2008


Emily M. Bender & Guy Emerson

Italy: European Language Resources Association (ELRA). http : / /www.lrec-
conf.org/proceedings/lrec2006/pdf/364_pdf.pdf (7 April, 2021).

Oepen, Stephan, Klaus Netter & Judith Klein. 1998. tsnlp — Test Suites for Nat-
ural Language Processing. In John Nerbonne (ed.), Linguistic databases (CSLI
Lecture Notes 77), 13–36. Stanford, CA: CSLI Publications.

Oepen, Stephan, Lilja Øvrelid, Jari Björne, Richard Johansson, Emanuele Lapponi,
Filip Ginter & Erik Velldal. 2017. The 2017 Shared Task on Extrinsic Parser Eval-
uation: Towards a reusable community infrastructure. In Jari Björne, Gerlof
Bouma, Jan Buys, Filip Ginter, Richard Johansson, Emanuele Lapponi, Simon
Mille, Joakim Nivre, Stephan Oepen, Sebastian Schuster, Djamé Seddah, Wei-
wei Sun, Anders Søgaard, Erik Velldal & Lilja Øvrelid (eds.), Proceedings of
the 2017 Shared Task on Extrinsic Parser Evaluation, at the Fourth International
Conference on Dependency Linguistics and the 15th International Conference on
Parsing Technologies, 1–16. Pisa, Italy: Nordic Language Processing Laboratory.
http://svn.nlpl.eu/epe/2017/public/proceedings.pdf (30 March, 2021).

Oepen, Stephan, Erik Velldal, Jan Tore Lønning, Paul Meurer, Victoria Rosén &
Dan Flickinger. 2007. Towards hybrid quality-oriented machine translation:
On linguistics and probabilities in MT. In Andy Way & Barbara Gawronska
(eds.), Proceedings of 11th Conference on Theoretical and Methodological Issues
in Machine Translation (Skövde University Studies in Informatics), 144–153.
Skövde, Sweden: University of Skövde.

Oostdijk, Nelleke. 2000. The Spoken Dutch Corpus: Overview and first evalua-
tion. In Gavrilidou Maria, Carayannis George, Markantonatou Stella & Gre-
gory Steinhauer (eds.), Proceedings of the 2nd International Conference on Lan-
guage Resources and Evaluation (LREC’00). Athens, Greece: European Lan-
guage Resources Association (ELRA). http : / / lrec - conf . org / proceedings /
lrec2000/pdf/110.pdf (24 March, 2021).

Packard, Woodley. 2015. Full forest treebanking. University of Washington. (MA
thesis).

Packard, Woodley, Emily M. Bender, Jonathon Read, Stephan Oepen & Rebecca
Dridan. 2014. Simple negation scope resolution through deep parsing: A se-
mantic solution to a semantic problem. In Kristina Toutanova & Hua Wu
(eds.), Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), 69–78. Baltimore, MD: Association
for Computational Linguistics. DOI: 10.3115/v1/P14-1007. https://www.aclweb.
org/anthology/P14-1000 (10 February, 2021).

Penn, Gerald. 2004. Balancing clarity and efficiency in typed feature logic
through delaying. In Donia Scott (ed.), Proceedings of the 42nd Meeting of the

1224

http://www.lrec-conf.org/proceedings/lrec2006/pdf/364_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/364_pdf.pdf
http://svn.nlpl.eu/epe/2017/public/proceedings.pdf
http://lrec-conf.org/proceedings/lrec2000/pdf/110.pdf
http://lrec-conf.org/proceedings/lrec2000/pdf/110.pdf
https://doi.org/10.3115/v1/P14-1007
https://www.aclweb.org/anthology/P14-1000
https://www.aclweb.org/anthology/P14-1000


25 Computational linguistics and grammar engineering

Association for Computational Linguistics (ACL’04), 239–246. Barcelona, Spain:
Association for Computational Linguistics. DOI: 10.3115/1218955.1218986.

Petrick, Stanley Roy. 1965. A recognition procedure for Transformational Gram-
mars. Massachusetts Institute of Technology. Dept. of Modern Languages.
(Doctoral dissertation). http://hdl.handle.net/1721.1/13013 (2 February, 2021).

Pollard, Carl & Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar (Studies
in Contemporary Linguistics 4). Chicago, IL: The University of Chicago Press.

Ranta, Aarne. 2009. The GF resource grammar library. Linguistic Issues in Lan-
guage Technology 2(2). 1–62. http://journals.linguisticsociety.org/elanguage/
lilt/article/download/214/214-501-1-PB.pdf (6 April, 2021).

Reape, Mike. 1994. Domain union and word order variation in German. In John
Nerbonne, Klaus Netter & Carl Pollard (eds.), German in Head-Driven Phrase
Structure Grammar (CSLI Lecture Notes 46), 151–198. Stanford, CA: CSLI Pub-
lications.

Reiplinger, Melanie, Ulrich Schäfer & Magdalena Wolska. 2012. Extracting glos-
sary sentences from scholarly articles: A comparative evaluation of pattern
bootstrapping and deep analysis. In Rafael E. Banchs (ed.), Proceedings of the
ACL-2012 special workshop on rediscovering 50 years of discoveries, 55–65. Jeju
Island, Korea: Association for Computational Linguistics. http://aclweb.org/
anthology/W12-3206 (24 March, 2021).

Rentier, Gerrit. 1994. Dutch cross serial dependencies in HPSG. In Makoto Nagao
(ed.), Proceedings of COLING 94, 818–822. Kyoto, Japan: Association for Compu-
tational Linguistics. http://www.aclweb.org/anthology/C94-2130 (18 August,
2020).

Richter, Frank. 2024. Formal background. In Stefan Müller, Anne Abeillé, Robert
D. Borsley & Jean- Pierre Koenig (eds.), Head-Driven Phrase Structure Grammar:
The handbook, 2nd revised edn. (Empirically Oriented Theoretical Morphology
and Syntax 9), 93–131. Berlin: Language Science Press. DOI: 10.5281/zenodo.
13645007.

Rohde, Douglas L.T. 2005. Tgrep2 user manual, version 1.15. http://www.cs.cmu.
edu/afs/cs.cmu.edu/project/cmt-55/OldFiles/lti/Courses/722/Spring-08/Penn-
tbank/Tgrep2/tgrep2_manual.pdf (24 March, 2021).

Schabes, Yves, Anne Abeillé & Aravind K. Joshi. 1988. Parsing strategies with ‘lex-
icalized’ grammars: Application to Tree Adjoining Grammars. Technical Report
MS-CIS-88-65. University of Pennsylvania Department of Computer & Infor-
mation Science.

Schäfer, Ulrich, Bernd Kiefer, Christian Spurk, Jörg Steffen & Rui Wang. 2011. The
ACL anthology searchbench. In Sadao Kurohashi (ed.), Proceedings of the 49th

1225

https://doi.org/10.3115/1218955.1218986
http://hdl.handle.net/1721.1/13013
http://journals.linguisticsociety.org/elanguage/lilt/article/download/214/214-501-1-PB.pdf
http://journals.linguisticsociety.org/elanguage/lilt/article/download/214/214-501-1-PB.pdf
http://aclweb.org/anthology/W12-3206
http://aclweb.org/anthology/W12-3206
http://www.aclweb.org/anthology/C94-2130
https://doi.org/10.5281/zenodo.13645007
https://doi.org/10.5281/zenodo.13645007
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-55/OldFiles/lti/Courses/722/Spring-08/Penn-tbank/Tgrep2/tgrep2_manual.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-55/OldFiles/lti/Courses/722/Spring-08/Penn-tbank/Tgrep2/tgrep2_manual.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-55/OldFiles/lti/Courses/722/Spring-08/Penn-tbank/Tgrep2/tgrep2_manual.pdf


Emily M. Bender & Guy Emerson

Annual Meeting of the Association for Computational Linguistics: Human Lan-
guage Technologies, systems demonstrations, 7–13. Portland, OR: Association for
Computational Linguistics. https://www.aclweb.org/anthology/P11-4002.pdf
(10 February, 2021).

Schäfer, Ulrich, Hans Uszkoreit, Christian Federmann, Torsten Marek & Yajing
Zhang. 2008. Extracting and querying relations in scientific papers. In Andreas
R. Dengel, Karsten Berns, Thomas M. Breuel, Frank Bomarius & Thomas R.
Roth-Berghofer (eds.), KI 2008: Advances in artificial intelligence (Lecture Notes
in Computer Science 5243), 127–134. Berlin: Springer.

Schmidt, Thomas. 2012. EXMARaLDA and the FOLK tools. In Nicoletta Calzo-
lari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard,
Joseph Mariani, Asuncion Moreno, Jan Odijk & Stelios Piperidis (eds.), Proceed-
ings of the Eighth International Conference on Language Resources and Evalua-
tion, LREC 2012, 236–240. Istanbul, Turkey: ELRA. http://www.lrec-conf.org/
proceedings/lrec2012/pdf/529_Paper.pdf (10 March, 2021).

Schuster, Sebastian, Éric Villemonte de La Clergerie, Marie Candito, Benoît
Sagot, Christopher D. Manning & Djamé Seddah. 2017. Paris and Stanford
at EPE 2017: Downstream evaluation of graph-based dependency representa-
tions. In Jari Björne, Gerlof Bouma, Jan Buys, Filip Ginter, Richard Johans-
son, Emanuele Lapponi, Simon Mille, Joakim Nivre, Stephan Oepen, Sebastian
Schuster, Djamé Seddah, Weiwei Sun, Anders Søgaard, Erik Velldal & Lilja
Øvrelid (eds.), Proceedings of the 2017 Shared Task on Extrinsic Parser Evaluation,
at the Fourth International Conference on Dependency Linguistics and the 15th
International Conference on Parsing Technologies, 47–59. Pisa, Italy: Nordic Lan-
guage Processing Laboratory. http://svn.nlpl.eu/epe/2017/public/proceedings.
pdf (30 March, 2021).

Siegel, Melanie, Emily M. Bender & Francis Bond. 2016. Jacy: An implemented
grammar of Japanese (CSLI Studies in Computational Linguistics 16). Stanford,
CA: CSLI Publications.

Slayden, Glenn C. 2012. Array TFS storage for unification grammars. University
of Washington. (MA thesis).

Solberg, Lars Jørgen. 2012. A corpus builder for Wikipedia. University of Oslo.
(MA thesis). https://www.duo.uio.no/bitstream/handle/10852/34914/thesis.pdf
(23 March, 2021).

Stabler, Edward. 1997. Derivational minimalism. In C. Retoré (ed.), Logical aspects
of computational linguistics (Lecture Notes in Computer Science 1328), 68–95.
Berlin: Springer-Verlag. DOI: 10.1007/BFb0052152.

1226

https://www.aclweb.org/anthology/P11-4002.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/529_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/529_Paper.pdf
http://svn.nlpl.eu/epe/2017/public/proceedings.pdf
http://svn.nlpl.eu/epe/2017/public/proceedings.pdf
https://www.duo.uio.no/bitstream/handle/10852/34914/thesis.pdf
https://doi.org/10.1007/BFb0052152


25 Computational linguistics and grammar engineering

Steedman, Mark & Jason Baldridge. 2011. Combinatory Categorial Grammar. In
Robert D. Borsley & Kersti Börjars (eds.), Non-transformational syntax: Formal
and explicit models of grammar: A guide to current models, 181–224. Oxford:
Wiley-Blackwell. DOI: 10.1002/9781444395037.ch5.

Suppes, Patrick, Tie Liang, Elizabeth E. Macken & Daniel P. Flickinger. 2014. Pos-
itive technological and negative pre-test-score effects in a four-year assess-
ment of low socioeconomic status K-8 student learning in computer-based
math and language arts courses. Computers & Education 71. 23–32. DOI: 10 .
1016/j.compedu.2013.09.008.

Sygal, Yael & Shuly Wintner. 2011. Towards modular development of typed uni-
fication grammars. Computational Linguistics 37(1). 29–74. DOI: 10.1162/coli_
a_00035.

Torr, John. 2019. Wide-coverage statistical parsing with Minimalist Grammars. Ed-
inburgh University. (Doctoral dissertation). http://hdl.handle.net/1842/36215
(1 February, 2020).

Toutanova, Kristina, Christopher D. Manning, Dan Flickinger & Stephan Oepen.
2005. Stochastic HPSG parse disambiguation using the Redwoods corpus. Re-
search on Language & Computation 3(1). 83–105. DOI: 10.1007/s11168-005-1288-
y.

Toutanova, Kristina, Christopher D. Manning, Stuart M. Shieber, Dan Flickinger
& Stephan Oepen. 2002. Parse disambiguation for a rich HPSG grammar. In
Proceedings of the 1st workshop on treebanks and linguistic theories (TLT), 253–
263. Sozopol, Bulgaria: BulTreeBank Group. http : / / bultreebank . org / wp -
content/uploads/2017/05/paper17.pdf (16 March, 2021).

Tsuruoka, Yoshimasa, Yusuke Miyao & Jun’ichi Tsujii. 2004. Towards efficient
probabilistic HPSG parsing: Integrating semantic and syntactic preference
to guide the parsing. In Ronald Kaplan, M. Johnson, Aravind Joshi, David
McAllester, Yusuke Miyao, Stephan Oepen, Stefan Riezler, Jun’ichi Tsujii &
Hans Uszkoreit (eds.), Proceedings of the IJCNLP workshop beyond shallow
analyses: Formalisms and statistical modeling for deep analyses. Hainan island,
China: Association for Computational Linguistics.

van der Beek, Leonoor, Gosse Bouma, Rob Malouf & Gertjan van Noord. 2002.
The Alpino Dependency Treebank. In Mariët Theune, Anton Nijholt & Hendri
Hondorp (eds.), Computational linguistics in the Netherlands 2001: Selected pa-
pers from the Twelfth CLIN Meeting (Language and Computers: Studies in Dig-
ital Linguistics 45), 8–22. Amsterdam: Rodopi. DOI: 10.1163/9789004334038_
003.

1227

https://doi.org/10.1002/9781444395037.ch5
https://doi.org/10.1016/j.compedu.2013.09.008
https://doi.org/10.1016/j.compedu.2013.09.008
https://doi.org/10.1162/coli_a_00035
https://doi.org/10.1162/coli_a_00035
http://hdl.handle.net/1842/36215
https://doi.org/10.1007/s11168-005-1288-y
https://doi.org/10.1007/s11168-005-1288-y
http://bultreebank.org/wp-content/uploads/2017/05/paper17.pdf
http://bultreebank.org/wp-content/uploads/2017/05/paper17.pdf
https://doi.org/10.1163/9789004334038_003
https://doi.org/10.1163/9789004334038_003


Emily M. Bender & Guy Emerson

van Noord, Gertjan. 2006. At last parsing is now operational. In Piet Mertens, Cé-
drick Fairon, Anne Dister & Patrick Watrin (eds.), Actes de la 13ème conférence
sur le Traitement Automatique des Langues Naturelles (TALN), 20–42. Leuven,
Belgium: l’Association pour Traitement Automatique des Langues (ATALA).
https://aclanthology.org/2006.jeptalnrecital-invite.2 (23 March, 2022).

van Noord, Gertjan, Gosse Bouma, Frank Van Eynde, Daniël de Kok, Jelmer van
der Linde, Ineke Schuurman, Erik Tjong Kim Sang & Vincent Vandeghinste.
2013. Large scale syntactic annotation of written Dutch: Lassy. In Peter Spyns
& Jan Odijk (eds.), Essential speech and language technology for Dutch: Results
by the STEVIN programme (Theory and Applications of Natural Language Pro-
cessing), 147–164. Berlin: Springer. DOI: 10.1007/978-3-642-30910-6_9.

van Noord, Gertjan & Robert Malouf. 2005. Wide coverage parsing with stochas-
tic attribute value grammars. Unpublished draft. An earlier version was pre-
sented at the IJCNLP workshop Beyond Shallow Analyses: Formalisms and
statistical modeling for deep analyses.

Velldal, Erik. 2009. Empirical realization ranking. University of Oslo, Department
of Informatics. (Doctoral dissertation).

Velldal, Erik, Lilja Øvrelid, Jonathon Read & Stephan Oepen. 2012. Speculation
and negation: Rules, rankers, and the role of syntax. Computational Linguistics
38(2). 369–410. DOI: 10.1162/COLI_a_00126.

Wahlster, Wolfgang (ed.). 2000. Verbmobil: Foundations of speech-to-speech trans-
lation (Artificial Intelligence). Berlin: Springer-Verlag. DOI: 10.1007/978-3-662-
04230-4.

Waldron, Benjamin, Ann Copestake, Ulrich Schäfer & Bernd Kiefer. 2006. Pre-
processing and tokenisation standards in DELPH-IN tools. In Nicoletta Cal-
zolari, Khalid Choukri, Aldo Gangemi, Bente Maegaard, Joseph Mariani, Jan
Odijk & Daniel Tapias (eds.), Proceedings of the Fifth International Conference
on Language Resources and Evaluation (LREC’06), 2263–2268. Genoa, Italy: Eu-
ropean Language Resources Association (ELRA). http://www.lrec-conf.org/
proceedings/lrec2006/pdf/214_pdf.pdf (4 March, 2021).

Wax, David. 2014. Automated grammar engineering for verbal morphology. Uni-
versity of Washington. (MA thesis).

Weir, David J. 1992. A geometric hierarchy beyond context-free languages. Theo-
retical Computer Science 104(2). 235–261. DOI: 10.1016/0304-3975(92)90124-X.

Xia, Fei & William D. Lewis. 2007. Multilingual structural projection across inter-
linear text. In Candace Sidner, Tanja Schultz, Matthew Stone & ChengXiang
Zhai (eds.), Proceedings of the 6th Conference of the North American Chapter

1228

https://aclanthology.org/2006.jeptalnrecital-invite.2
https://doi.org/10.1007/978-3-642-30910-6_9
https://doi.org/10.1162/COLI_a_00126
https://doi.org/10.1007/978-3-662-04230-4
https://doi.org/10.1007/978-3-662-04230-4
http://www.lrec-conf.org/proceedings/lrec2006/pdf/214_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/214_pdf.pdf
https://doi.org/10.1016/0304-3975(92)90124-X


25 Computational linguistics and grammar engineering

of the Associaton for Computational Linguistics (NAACL), long papers, 452–459.
Rochester, NY: Association for Computational Linguistics.

Ytrestøl, Gisle, Dan Flickinger & Stephan Oepen. 2009. Extracting and annotat-
ing Wikipedia sub-domains: Towards a new eScience community resource. In
Frank Van Eynde, Anette Frank, Koenraad De Smedt & Gertjan van Noord
(eds.), Proceedings of the 7th International Workshop on Treebanks and Linguis-
tic Theories (TLT), 185–197. Groningen, The Netherlands: Utrecht University.
https://dspace.library.uu.nl/handle/1874/296811 (23 March, 2021).

Zamaraeva, Olga, Kristen Howell & Emily M. Bender. 2019. Handling cross-cut-
ting properties in automatic inference of lexical classes: A case study of Chin-
tang. In Antti Arppe, Jeff Good, Mans Hulden, Jordan Lachler, Alexis Palmer,
Lane Schwartz & Miikka Silfverberg (eds.), Proceedings of the 3rd workshop on
the use of computational methods in the study of endangered languages (Compu-
tEL), 28–38. Honululu, HI: Association for Computational Linguistics. https:
//www.aclweb.org/anthology/W19-6005 (16 March, 2021).

Zamaraeva, Olga, Kristen Howell & Adam Rhine. 2018. Improving feature ex-
traction for pathology reports with precise negation scope detection. In Emily
M. Bender, Leon Derczynski & Pierre Isabelle (eds.), Proceedings of the 27th
International Conference on Computational Linguistics (COLING), 3564–3575.
Santa Fe, NM: Association for Computational Linguistics. http://aclweb.org/
anthology/C18-1302 (23 March, 2021).

Zamaraeva, Olga, František Kratochvíl, Emily M. Bender, Fei Xia & Kristen How-
ell. 2017. Computational support for finding word classes: A case study of Abui.
In Antti Arppe, Jeff Good, Mans Hulden, Jordan Lachler, Alexis Palmer & Lane
Schwartz (eds.), Proceedings of the 2nd Workshop on the Use of Computational
Methods in the Study of Endangered Languages (ComputEL), 130–140. Honululu,
HI: Association for Computational Linguistics. DOI: 10.18653/v1/W17-0118.

Zhang, Yi & Hans-Ulrich Krieger. 2011. Large-scale corpus-driven PCFG approx-
imation of an HPSG. In Harry Bunt, Joakim Nivre & Özlem Çetinoglu (eds.),
Proceedings of the 12th International Conference on Parsing Technologies, 198–
208. Dublin, Ireland: Association for Computational Linguistics. http://aclweb.
org/anthology/W11-2923 (10 February, 2021).

Zwicky, Arnold M., Joyce Friedman, Barbara C. Hall & Donald E. Walker. 1965.
The MITRE syntactic analysis procedure for Transformational Grammars. In
Robert W. Rector (ed.), AFIPS conference proceedings: 1965 – fall joint computer
conference, vol. 27, 317–326. Washington, D.C.: Spartan Books. DOI: 10 .1145/
1463891.1463928.

1229

https://dspace.library.uu.nl/handle/1874/296811
https://www.aclweb.org/anthology/W19-6005
https://www.aclweb.org/anthology/W19-6005
http://aclweb.org/anthology/C18-1302
http://aclweb.org/anthology/C18-1302
https://doi.org/10.18653/v1/W17-0118
http://aclweb.org/anthology/W11-2923
http://aclweb.org/anthology/W11-2923
https://doi.org/10.1145/1463891.1463928
https://doi.org/10.1145/1463891.1463928



