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1 Theoretical justification of the algorithms

For this theorem, and all results that follow, all probabilities are stated with respect to the distri-
bution of the training data points (¢1,Y1),..., (t,,Y,) and the test data point (¢,+1,Y,+1) drawn
i.i.d. from an arbitrary distribution P, and we assume implicitly that the regression method m
is invariant to the ordering of the data—invariant to permutations. We will treat the sample size
n > 2 and the target coverage level a € [0, 1] as fixed throughout.

Proposition: The conformal jacknife prediction interval algorithms satisfies:

B(Yie1 € CO(t))} = 1 - 2a (1)

Consequence from Barber et al. (2021). The target in the inequality is 1 — « that is reached
often except in some non-trivial mathematical examples.

2 Matlab implementation of the algorithms

We implemented our CUQDynl and CUQDyn2 algorithms in Matlab. Parameter estimations were
formulated as the minimization of a least squares cost function subject the dynamics (described by
the model ODEs) and parameter bounds. These problems are non-convex and were solved using
a global hybrid method, enhanced scatter search (eSS) due to its good performance an robustness
(Villaverde et al., 2019). eSS is available in Matlab as part of the MEIGO optimization toolbox (Egea
et al., 2014). Our code also has dependencies with the the Optimization Toolbox and the Parallel
Computing Toolbox. The software for the methodology and the reproduction of the results is
available at Zenodo (10.5281/zenodo.13644870). All computations were carried out on a PC DELL
Precision 7920 workstation with dual Intel Xeon Silver 4210R processors.

3 Comparison with a Bayesian method

Bayesian methods are a classical approach for performing automated uncertainty quantifications
by estimating the posterior distribution P(6 | D,,), where 6 represents the parameter of interest
and D, = {X;}", denotes the observed data. The key components in Bayesian analysis are the
prior distribution P(6), which encapsulates our initial beliefs about 6, and the likelihood function
P(D,, | 0), which represents the probability of observing the data D,, given the parameter 6.

In many practical scenarios, computing the posterior distribution analytically is challenging.
Markov Chain provide Monte Carlo (MCMC) methods provides a general and powerful techniques
used to estimate the posterior distribution by generating samples from it. Notable MCMC algo-
rithms include Metropolis-Hastings and Gibbs sampling.

Nowadays, there are general software tools available for implementing Bayesian inference and
MCMC methods. One such tool is STAN. To use STAN, one writes a model in the STAN model-
ing language, which involves defining the data, parameters, and model (i.e., prior and likelihood).
STAN can be seamlessly integrated with R through the rstan package (Guo et al., 2020), allowing
users to perform Bayesian analyses within the R environment. The rstan package provides func-
tions to compile STAN models, fit them to data, and extract samples for posterior analysis. Our
implementations of the different case studies are also available in the Zenodo link above.



4 Case studies

Below, we present and discuss these case studies where we have considered synthetic datasets that
have been generated considering a noise model described by Equation (2).

gjkyi = yk(ti) + €k(ti) = mk(x(tz),e) + 6]m',i = 1, ceey Ny k= 1, e ,ny. (2)

For simplicity, we assumed the errors to be normally distributed, centered around the noise-free
data sample, and we have adopted a homoscedastic model, i.e. the variance remains constant across
each dimension of the dataset. More specifically,

gk,iNN(yk(ti)vaz,i)7 221,,77,, kzla”w”@/a (3)

where, for any i # j, ox; = 0% j = 0k = €pug, with pr, = > ", yr(t;)/n capturing the mean value of
state k, and e representing the percentage of added noise.

4.1 Case I: Logistic growth model

As our initial case study we considered the well-known logistic model (Tsoularis and Wallace, 2002),
governed by a single differential equation with two unknown parameters. This model is frequently
used in population growth and epidemic spread modeling.

j:zrx(l—%). (4)

Here, r represents the growth rate, and K denotes the carrying capacity. The initial condition
considered in the generation of the datasets was x(0) = 10. Additionally, the values of the param-
eters used were r = 0.1 and K = 100. The initial condition is assumed to be known across all case
studies considered. Since this logistic model has an analytical solution, it facilitates the comparison
of our methods’ performance with other established conformal methods for algebraic models, such
as the jackknife+ (Barber et al., 2021).

To evaluate the performance of our methods on this case study, we considered various scenarios
with different noise levels (0%, 1%, 5% and 10%) and dataset sizes (10, 20, 50 and 100 data points).
For each combination of noise level and dataset size, we generated 50 different synthetic datasets,
totaling 800 unique datasets. By generating multiple datasets for each scenario, we were able to
obtain a robust estimate of the methods’ behavior and assess their consistency across different
realizations of the data.

The comparative analysis of the logistic growth model, as shown in Figure 1, highlights the
robustness of the proposed methods CUQDyn1 and CUQDyn2 compared to conventional methodologies
such as the Bayesian approach implemented with STAN. For a 10-point synthetic dataset with a
10 percent noise level, the predictive regions obtained by both conformal methods showed good
coverage without requiring prior calibration of the models, unlike the Bayesian approach. Moreover,
both CUQDyn1 and CUQDyn2 yield predictive regions comparable to those generated by the jackknife+
method; however, in this particular case, the CUQDyn1 method shows superior performance.

In terms of computational efficiency, the conformal methods proved to be marginally faster than
STAN, even for a problem of this small size, with differences on the order of a few seconds. This
makes them more suitable for real-time applications.

To examine the marginal coverage P(Yy11 € C*(Xp11)) for a = 0.05,0.1,0.5 of our first algo-
rithm CUQDyn1, see Figure 2 for different signal noises and sample sizes. The figure indicates the
good empirical performance of our algorithm, achieving the desired nominal level in expectation.
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Figure 1: Comparative analysis of the Logistic model predictive regions. This figure presents the
95% predictive regions obtained from a 10-point dataset subjected to 10% noise. The left subplot
showcases results using four different methodologies: our two proposed methods (CUQDyn1 and
CUQDyn2), the original jackknife4+ method and a Bayesian approach implemented with STAN. The
right subplot shows the predictive region and the predicted model for the CUQDyn1 algorithm applied
to the same dataset.
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Figure 2: Boxplot of marginal coverage P(Y,+1 € éa(XnH)) for different sample sizes and o« = 0.05,
0.1, and 0.5 of our first algorithm, CUQDyn1, is presented for different noise levels (0%, 1%, 5%, and
10%) across different columns. The results remain very stable across all examined cases.
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4.2 Case II: Lotka-Volterra model

As a second case study, we considered a two species Lotka-Volterra model (Wangersky, 1978), often
referred to as the predator-prey model. This model provides a fundamental framework for studying
the dynamics between two interacting species. In its simplest form, it describes the interactions
between a predator species and a prey species through a set of coupled differential equations with
four unknown parameters:

&1 = z1(o — f2),

.CIUQ = —xg('y — 51’1)

()

Here, 1 and x5 represent the populations of the prey and predator, respectively. The parameters
«, B, v and § are positive constants representing the interactions between the two species. Specifi-
cally, this parameters dictate the growth rates and interaction strengths, capturing the essence of
biological interactions such as predation and competition. The initial conditions considered in the
generation of the datasets were x(0) = (10,5). Additionally, the values of the parameters used were
a=~v=0.5and 8 =4§=0.02.

For this case study we generated datasets with the same noise levels (0%, 1%, 5% and 10%) as
in the previous example and three different sizes (30, 60 and 120 points). Additionally, for each
combination of noise level and dataset size, we generated 50 different synthetic datasets, resulting
in a total of 600 unique datasets.

Figure 3 shows the results in a 30-point Lotka-Volterra dataset, indicating that the predictive
regions generated by the conformal methods and STAN are similar in terms of coverage. However,
as in the previous case, CUQDyn1 and CUQDyn2 offer the advantage of not requiring extensive hyper-
parameter tuning, while also being more computationally efficient. In this particular example, while
the bayesian method obtains results within a timeframe on the order of minutes, both conformal
methods achieve this in a significantly shorter span, on the order of seconds.

4.3 Case III: Isomerization of a-Pinene

As a third case study, we examined the a-pinene isomerization model. The isomerization process of
a-pinene is significant in industry, especially in the production of synthetic fragrances and flavors.
These complex biochemical reactions can be effectively modeled using a system of five differential
equations with five unknown parameters. The resulting kinetic model has been a classical example
in the analysis of multiresponse data (Box et al., 1973). The kinetic equations encapsulate the
transformation dynamics of a-pinene into its various isomers through a series of reaction steps:

1 = —(p1 + p2)z1,

To = P11,
&3 = pax1 — (p3 + pa)x3 + P55, (6)
$4 = p3x3,

T5 = PaT3 — P5T5.

In the equations above, each p; € [0,1], i« = 1,...,5 represents a different rate of reaction,
defining the conversion speed from one isomer to another. The initial conditions considered in the
generation of the datasets were xz(0) = (100,0,0,0,0). Additionally, the values of the parameters
used were p = (5.93e — 05,2.96e — 05,2.05¢ — 05,2.75¢ — 04,4.00e — 05). The dataset generation
procedure for this case study mirrored that used for the Logistic model, employing the same noise
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Figure 3: Comparative analysis of the Lotka-Volterra model predictive regions. This figure presents
the 95% predictive regions obtained from a 30-point dataset subjected to 10% noise. The two left
subplots showcase results using three different methodologies: our two proposed methods (CUQDyn1
and CUQDyn2) and a Bayesian approach implemented with STAN. The two right subplots show the
predictive region and the predicted model for the CUQDyn2 algorithm applied to the same dataset.



Table 2: Numerical results corresponding to the comparative analysis of the Lotka-Volterra model
predictive regions for the first state. This table presents the 95% lower and upper predictive bounds
(LPB and UPB, respectively) obtained for each time point (¢) in a 30-point dataset subjected to
10% noise. The observed data (y) and the true state value (zpom) are also shown. The results
are reported for three methodologies: the proposed CUQDyn1 and CUQDyn2 methods and a Bayesian
method implemented with STAN.
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1.000e+01
1.627e+01
2.597e+01
3.373e+01
5.374e+01
7.607e+01
7.493e+01
4.005e+-01
1.435e+01
6.658e-+00
1.580e+00
6.848e-+00
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4.250e+4-00
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1.000e+01
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1.000e+01
9.535e+00
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1.000e+01
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5.921e+01
8.075e+4-01
8.418e+-01
4.461e+4-01
1.821e4-01
1.096e+-01
9.122e+00
8.800e+-00
9.187e+00
1.021e+4-01
1.203e+4-01
1.504e+01
1.988e+-01
2.755e+01
3.942e+01
5.696e+01
7.888e+-01
8.738e+01
5.032e+01
1.950e+4-01
1.128e+01
9.166e-+00
8.736e+-00
9.043e4-00
9.964e+00
1.165e+-01
1.445e+4-01

1.000e+01
1.022e+-01
1.832e+01
3.069e+01
4.837e+01
6.965e+01
7.317e+01
3.364e+01
7.415e+00
6.027e-01
-1.310e+00
-1.494e+00
-1.257e+00
-1.349e-01
1.878e+00
4.873e+00
9.879e4-00
1.756e+01
2.959e+01
4.771e+4-01
6.851e+01
7.399e+01
3.616e+-01
8.841e+00
1.022e+4-00
-1.097e4-00
-1.860e+-00
-1.317e+00
-2.282e-01
1.641e+4-00
4.792e4-00

1.000e+01
1.984e+01
2.832e+01
4.046e+-01
5.925e+01
8.039e+01
8.386e+-01
4.447e4-01
1.762e+01
1.044e+01
8.689e+00
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1.140e+01
1.448e+01




Table 3: Numerical results corresponding to the comparative analysis of the Lotka-Volterra model
predictive regions for the second state. This table presents the 95% lower and upper predictive
bounds (LPB and UPB, respectively) obtained for each time point () in a 30-point dataset sub-
jected to 10% noise. The observed data (y) and the true state value (x,om) are also shown. The
results are reported for three methodologies: the proposed CUQDynl and CUQDyn2 methods and a
Bayesian method implemented with STAN.
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5.456e+-00
1.208e+-01
3.702e+01
7.820e4-01
7.709e+01
5.556e+01
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1.176e+01
6.021e+00
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8.952e+00
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4.468e+-01
3.087e+-01
2.185e+01
1.611e+4-01
1.251e+4-01

5.060e4+00 2.266e-01 1.031e4-01

5.000e+00
-2.394e-+00
-2.830e+00
-2.512e+00
-6.879e-01
6.165e+00
3.252e+01
7.439%e+01
7.230e+01
5.027e+01
3.113e+01
1.798e+01
9.467e+00
4.086e+-00
7.399¢-01
-1.292e+00
-2.445e+00
-2.940e+00
-2.732e400
-1.227e+00
4.578e+00
2.740e+4-01
7.193e+01
7.556e+01
5.317e+01
3.316e+01
1.930e+01
1.029e+-01
4.582e+00
1.029e+4-00
-1.136e-+00

5.000e+00
1.019e+4-01
9.755e+00
1.007e+01
1.190e+-01
1.875e+01
4.510e+4-01
8.697e+01
8.488e+01
6.286e+01
4.371e+01
3.056e+01
2.205e+01
1.667e+01
1.333e+01
1.129e+01
1.014e+01
9.645e+00
9.853e-+00
1.136e+01
1.716e+01
3.998e+01
8.452e+01
8.814e+01
6.576e+01
4.575e+01
3.188e+01
2.288e+01
1.717e+01
1.361e+01
1.145e+-01

5.000e+00
-1.270e+00
-1.996e+00
-1.394e+00
5.693e-02
7.167e+00
3.298e+01
7.480e+01
7.263e+01
95.121e+01
3.188e+01
1.900e+-01
1.030e+01
4.917e+00
1.946e+4-00
-2.094e-01
-1.033e+00
-1.793e+00
-1.505e+00
2.618e-01
6.865e+00
3.055e+01
7.272e+01
7.390e+01
5.213e+01
3.307e+01
1.956e+-01
1.096e+01
5.093e+00
2.178e4-00
7.373e-02

5.000e+00
8.999e+-00
8.629e+00
8.545e+4-00
1.060e+01
1.778e+01
4.470e+01
8.636e+01
8.453e+401
6.225e+01
4.271e+01
2.969e+01
2.094e+01
1.561e+01
1.230e+01
1.021e+01
9.236e4-00
8.531e4-00
9.062e+-00
1.056e+01
1.730e+01
4.150e+01
8.509e+01
8.533e+401
6.339e+01
4.380e+01
3.038e+01
2.153e+4-01
1.595e4-01
1.252e4-01
1.025e+-01




levels and dataset sizes. Although we generated synthetic datasets to assess the method’s behavior,
we illustrated this behavior with a real dataset from Box et al. (1973).

Figure 4 shows the resulting regions of the isomerization of a-Pinene by applying the different
algorithms to the 9-point real dataset. The results are once again consistent between both conformal
algorithms and closely align with the regions obtained using STAN. In terms of computational cost,
the conformal algorithms are notably more efficient, requiring less than a minute to compute the
regions, whereas the Bayesian approach takes several minutes.
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Figure 4: Comparative analysis of the a-pinene isomerization model predictive regions. This figure
presents the 95% predictive regions obtained from a 9-point real dataset. It showcases the regions
for the first two states obtained by using three different methodologies: our two proposed methods
(CUQDyn1 and CUQDyn2) and a Bayesian approach implemented with STAN.

4.4 Case I'V: NFKB signaling pathway

The Nuclear Factor Kappa-light-chain-enhancer of activated B cells (NFKB) signaling pathway
plays a key role in the regulation of immune response, inflammation and cell survival. This path-
way is activated in response to various stimuli, including cytokines, stress and microbial infections,
leading yo the transcription of target genes involved in immune and inflammatory responses. Here
we consider the dynamics of this pathway as described by a system of differential equations (Lip-

niacki et al., 2004):
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Table 4: Numerical results corresponding to the comparative analysis of the a-pinene isomerization
model predictive regions for the first state. This table displays the observed data (y) alongside the
95% lower and upper predictive bounds (LPB and UPB, respectively) calculated for each time
point (¢) in a 9-point real dataset. The results are reported for three methodologies: the proposed
CUQDyn1 and CUQDyn2 methods and a Bayesian method implemented with STAN.

CUQDyn1 CUQDyn2 STAN

t Yy LPB UPB LPB UPB LPB UPB

0 1.054e+02 1.054e+02 1.054e4+02 1.054e+02 1.054e+02 1.054e+02 1.054e+402
1230  1.063e+02 7.266e+01 1.169e+02 7.162e+01 1.167e+02 7.814e+01 1.115e+402
3060 5.875e+01 5.875e+01 1.030e+02 5.702e+01 1.020e4+02 6.308e+01 9.701e+01
4920  7.023e+01 4.670e4+01 9.091e+01 4.450e+01 8.953e+01 5.110e+01 8.633e+01
7800  5.161e+01 3.149e+01 7.570e+01 2.888e+01 7.391e+01 3.624e4+01 7.128e+01
10680 3.350e+01 1.965e+01 6.385e+01 1.691e+01 6.194e+01 2.364e+01 5.830e+01
15030 2.510e+01 6.523e4+00 5.073e+01 3.894e+00 4.892e+01 9.418e+00 4.676e+01
22620 1.388e+01 -7.284e+00 3.693e+01 -9.388e+00 3.564e4+01 -2.531e+00 3.148e+01
36420 5.688e+00 -1.763e+01 2.658e+01 -1.883e+01 2.620e+01 -1.103e+01 2.096e+01

Table 5: Numerical results corresponding to the comparative analysis of the a-pinene isomerization
model predictive regions for the second state. This table displays the observed data (y) alongside
the 95% lower and upper predictive bounds (LPB and UPB, respectively) calculated for each time
point (¢) in a 9-point real dataset. The results are reported for three methodologies: the proposed
CUQDyn1 and CUQDyn2 methods and a Bayesian method implemented with STAN.

CUQDyn1 CUQDyn2 STAN

t Yy LPB UPB LPB UPB LPB UPB

0 2.769e-01  2.769e-01  2.769e-01  2.769e-01  2.769e-01  2.769e-01  2.769e-01
1230  5.842e+00 4.078e-01  1.589e+01 -3.424e+00 1.970e+01 8.377e-01  1.593e+01
3060  2.101e+01 1.059e+01 2.608e+01 6.730e+00 2.985e+01 1.020e4+01 2.511e+01
4920  2.542e+01 1.934e+01 3.482e+01 1.543e+01 3.855e+01 1.792e+01 3.353e+401
7800  3.314e+01 3.024e+01 4.573e+01 2.621e+01 4.933e+01 2.855e+01 4.330e+01
10680 4.389e+01 3.862e+01 5.410e+01 3.444e+01 5.756e+01 3.669e+01 5.201e+01
15030 4.814e+01 4.729e+01 6.321e+01 4.333e+01 6.645e+01 4.547e+01 6.119e+01
22620 5.705e4+01 5.611e+01 7.253e+01 5.231e+01 7.543e4+01 5.487e+01 7.025e+01
36420 7.378e+01 6.237e+01 7.918e+01 5.897e+01 8.209e+01 6.217e4+01 7.745e+01
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Table 6: Numerical results corresponding to the comparative analysis of the a-pinene isomerization
model predictive regions for the third state. This table displays the observed data (y) alongside
the 95% lower and upper predictive bounds (LPB and UPB, respectively) calculated for each time
point (¢) in a 9-point real dataset. The results are reported for three methodologies: the proposed
CUQDyn1 and CUQDyn2 methods and a Bayesian method implemented with STAN.

CUQDyn1 CUQDyn2 STAN

t Y LPB UPB LPB UPB LPB UPB

0 1.409e-01 1.409e-01 1.409e-01 1.409e-01 1.409e-01 1.409e-01 1.409e-01
1230 3.441e+00 1.535e+00 4.463e+00 1.253e+00 4.796e+00 1.515e+00 4.380e+00
3060  5.622e4+00 3.709e+00 6.887e+00 3.584e+00 7.127e+00 3.656e+00 6.776e+00
4920  5.316e+00 4.615e4+00 7.918e+00 4.583e+00 8.125e+00 4.601e+00 7.730e+00
7800  6.977e+00 4.858¢+00 8.217e+00 4.869e+00 8.411e+00 5.025e4+00 8.063e+00
10680 7.298e+00 4.590e+00 7.931e4+00 4.574e+00 8.117e4+00 4.936e+00 8.036e+00
15030 5.795e+00 4.021e+00 7.303e+00 3.928¢+00 7.470e+00 4.595e+00 7.635e+00
22620 5.169e4+00 3.261e+00 6.461e+00 3.055e4+00 6.598e+00 3.885e+00 7.048e+00
36420 4.175e4+00 2.608e+00 5.748¢+00 2.346e+00 5.889e+00 3.215e4+00 6.627e+00

Table 7: Numerical results corresponding to the comparative analysis of the a-pinene isomerization
model predictive regions for the fourth state. This table displays the observed data (y) alongside
the 95% lower and upper predictive bounds (LPB and UPB, respectively) calculated for each time
point (¢) in a 9-point real dataset. The results are reported for three methodologies: the proposed
CUQDyn1 and CUQDyn2 methods and a Bayesian method implemented with STAN.

CUQDyn1 CUQDyn2 STAN

t Yy LPB UPB LPB UPB LPB UPB

0 3.034e-02  3.034e-02  3.034e-02  3.034e-02  3.034e-02  3.034e-02  3.034e-02
1230 6.992e-02 -1.359e+00 1.482e+00 -1.283e+00 1.411e+00 -9.063e-01 1.103e+00
3060  1.027e-01 -1.237e+00 1.604e+00 -1.156e+00 1.539e+00 -8.984e-01 1.143e+00
4920  5.430e-01 -1.065e+00 1.776e+00 -9.783e-01 1.716e+00 -5.551e-01 1.485e+-00
7800  5.887e-01  -7.679e-01 2.073e+00 -6.727e-01  2.022e+00 -1.521e-01 1.784e+00
10680 9.356e-01  -4.725e-01  2.368e+00 -3.696e-01  2.325e+00 8.084e-02  2.190e+00
15030 1.468e+00 -6.209e-02 2.779e+00 5.318e-02  2.747e+00 6.100e-01  2.711e+00
22620 1.443e+00 5.493e-01  3.390e4+00 6.911e-01  3.385e+00 1.312e+00 3.652e+00
36420 4.301e+00 1.460e+00 4.301e+00 1.662e+00 4.356e+00 2.578e+400 5.056e+00

13



Table 8: Numerical results corresponding to the comparative analysis of the a-pinene isomerization
model predictive regions for the fifth state. This table displays the observed data (y) alongside the
95% lower and upper predictive bounds (LPB and UPB, respectively) calculated for each time
point (¢) in a 9-point real dataset. The results are reported for three methodologies: the proposed

CUQDyn1 and CUQDyn2 methods and a Bayesian method implemented with STAN.

CUQDyn1 CUQDyn2 STAN

t Yy LPB UPB LPB UPB LPB UPB

0 3.252e-02  3.252e-02  3.252e-02  3.252e-02  3.252e-02  3.252e-02  3.252e-02
1230 4.046e-01 -4.002e4+00 5.192e+00 -3.748¢+00 4.940e+00 -1.514e+00 2.666e+00
3060 3.011e4+00 -1.894e+00 7.300e+00 -1.668e+00 7.020e+00 6.917e-01  4.812e+00
4920 4.136e+00 9.374e-01  1.013e+01 1.051e4+00 9.739e+00 3.127e+00 7.557e+00
7800  9.308e+00 5.485e+00 1.468e+01 5.285e+00 1.397e+01 7.238e+00 1.173e+01
10680 1.277e+01 9.528e+00 1.872e4+01 8.952e+00 1.764e+01 1.078e+01 1.542e+401
15030 1.797e+01 1.426e+01 2.345e¢4+01 1.315e+01 2.184e+01 1.484e+01 1.935e+01
22620 2.250e+01 1.917e+01 2.837e+01 1.743e+01 2.612e4+01 1.895e¢+01 2.370e+01
36420 2.232e+01 2.212e+01 3.152e+01 2.008e+01 2.877e4+01 2.142e4+01 2.650e+01

IKKn = kprod — kdeg - IKKn
—Tr-kl1-IKKn,
IKKa=Tr-k1-IKKn—k3-IKKa
—Tr-k2-I1KKa- A20 — kdeg - IKKa
—a2-IKKa-IkBa +1t1-IKKalkBa
—a3-IKKa-IkBaNFkB
+t2- IKKalkBaNFkB,
IKKi=Fk3-IKKa+Tr-k2-IKKa - A20
— kdeg - IK K1,
IKKalkBa=a2-IKKa-IkBa —t1-IKKalkBa,
IKKalkBaNFkB = a3-IKKa - IkBaNFkB
—t2-IKKalkBaNFkB,
NFkB = c6a - [IkBaNFkB — al - NFkB - I[kBa
+t2-IKKalkBaNFkB — il - NFkB,
NFkBn =il -kv- NFkB —al - IkBan - NFkBn,
A20 = ¢4 - A20t — ¢5 - A20,
A20t = ¢2 4 ¢1 - NFkBn — ¢3 - A20t,
IkBa = —a2-IKKa - IkBa
—al-IkBa- NFkB
+cda - IkBat — cba - IkBa —ila - IkBa
+ ela - IkBan,
IkBan = —al - TkBan - NFkBn +ila - kv - IkBa
—ela- kv - IkBan,
IkBat = c2a + clla4- NFkBn — c3a - IkBat,
IkBaNFkB = al - IkBa- NFkB — c6a - [kBaNFkB

—a3-IKKa-1kBaNFkB
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In agreement with the scenario considered by , we assume that the available measurements are
determined by the observation function m : R'® — RS, which is defined as follows:

m(-) =(NFkBn, IkBa + IkBaNFkB, A20t, -
IKKn+IKKa+ IKKi, IKKa, IkBat).

Out of the system of 15 equations, only 6 observables, defined by the function m, are available.
The parameter values used in the generation of the datasets are as follows:

al = be — 01, a2 = 2e — 01, tl =1le — 01,
ad = le + 00, t2 = le — 01, cla = 5e — 07,
c2a = Oe + 00, c3a = 4e — 04, cd4a = be — 01,
cha = le — 04, cba = 2e — 05, cl = b5e — 07,

c2 = 0e + 00, c3 = 4e — 04, c4 = be — 01,
ch = 3e — 04, kl = 2.5e — 03, k2 =1e — 01,
k3 = 1.5¢ — 03, kprod = 2.5e — 05, kdeg = 1.25e¢ — 04,
kv = 5e 4 00, il = 2.5e — 03, e2a = le — 02,
ila=1e — 03, ela = 5e — 04, clec = 5e — 07,
c2¢c = 0e + 00, c3c = 4e — 04.

It should be noted that in this problem, which involves 29 unknown parameters and 15 state
variables, we only have access to 6 observable outputs. This discrepancy between the number of
parameters and the available observables presents a challenge in the context of parameter identi-
fiability, and is very commmon in systems biology applications. Identifiability refers to the ability
to uniquely determine the model parameters based on the available data. When a system lacks
identifiability, inferring unique parameter values from observable data becomes challenging, if not
impossible. However, as mentioned in the introduction, by characterizing the impact of this lack of
identifiability using appropriate uncertainty quantification (UQ) methods, it might still be possible
to make useful predictions.

The dataset generation process was the same that the one used in the previous case studies.
Both methods based on conformal inference yield results that are in close agreement with each
other. However, in this case, the computational benefits of our conformal strategies are especially
pronounced. The CUQDyn1 and CUQDyn2 algorithms can compute the regions in just a few minutes,
whereas the Bayesian approach requires several hours to accomplish the same task.
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