
Closing the Sim-to-Real Gap: Enhancing
Autonomous Precision Landing of UAVs with

Detection-Informed Deep Reinforcement Learning

Charalambos Soteriou†[0009−0004−8502−9976], Christos
Kyrkou†[0000−0002−7926−7642], and Panayiotis S. Kolios†,‡[0000−0003−3981−993X]

†KIOS Research and Innovation Center of Excellence,
‡Computer Science Department,

University of Cyprus, Cyprus, University of Cyprus, Cyprus,
{soteriou.charalambos,kyrkou.christos,kolios.panayiotis}@ucy.ac.cy

https://www.kios.ucy.ac.cy/

Abstract. Autonomous precision landing of a UAV is a challenging task
relying on simultaneous target localization and control. It can not be per-
formed using GPS coordinates, due to limitations in the accuracy of the
technology. Control policies are fine-tuned in simulation before deploy-
ment but most simulators are equipped with low-quality graphics, posing
a challenge when utilizing vision based algorithms, intended to be im-
plemented in the real world. In this paper we showcase a joint computer
vision and reinforcement learning approach, in the photo-realistic sim-
ulator AirSim, to reduce the sim-to-real gap. Localization is performed
using the Yolov8 object detector and control using the PPO and LSTM-
PPO algorithms. We achieve a 94.25% and 94.86% success rate, over 1391
and 817 landings at three different simulated environments, respectively.

Keywords: Autonomous UAV landing · Reinforcement Learning · Photo-
realistic simulation · Object Detection

1 Introduction

Rotor propelled UAV’s such as quadrotors, have been proven to be extremely
useful in a plethora of applications such as surveying, mapping and monitoring
[15]. However they suffer from battery capacity restrictions, severely limiting
their flight time and by extend utility [30]. This limitation can be overcome by
using a portable charging station to recharge the drone and allow it to continue
its mission without having to return to its operator. Routine autonomous mis-
sions can be carried out based on GPS coordinates because they don’t require
precision less than 3m, which is the limit of GPS technology [6]. Landing on a
smaller surface however, cannot be carried out by relying on GPS accuracy. The
charging station would need to be identified and localized while simultaneously
a control policy dynamically maneuvers the drone on the target.

A control policy either explicitly models the dynamics of the system if the
equations of motion are known or approximates the dynamics for more com-
plex systems. In most cases directly modelling the dynamics is not possible and

2 C. Soteriou et al.

we have to resort to approximations. A common control approach is to use a
Proportional Interval Derivative (PID) controller which is a control loop mech-
anism that continuously calculates the difference between a desired value and
a measured process variable and correlates it through a proportional term, it’s
derivative and it’s integral [1]. Reinforcement Learning has also been proven to be
a promising control approach and is widely used in robotics [12]. In RL a policy
is learned while the agent interacts with its environment and receives a reward
signal for actions that help it achieve a predefined objective. At each timestep
the agent performs an action sampled from the policy and receives a reward
signal when the episode terminates. At the end of each episode the agents state
is reset. The optimal policy is the one that maximizes the cumulative reward
over the time horizon.

A major challenge in deploying control policies and particularly RL, is that
the policies are unstable during training and need to first be tuned in simulation
to avoid damaging the hardware. An ongoing challenge is therefore an effective
transition of the in-simulation-trained policy to real implementation, also known
as sim-to-real gap. To tackle this problem, various simulators have been proposed
that provide accurate physics models of robotic arms (e.g. PyBullet), multi-
joined-robots (e.g. MuJoCo) or vehicles (e.g. Gazebo). Although these simulators
accurately approximate the dynamics of these systems, they lack photo-realistic
graphics, restricting the implementation of computer vision tasks, in our case
that of target localization.

Object detection is a task in computer vision where an object is identified and
localized in an image. A popular approach on visually identifying the position
of a target is through the use of fiducial markers, such as Quick Response (QR)
[29] and Aruco Markers [9]. Markers offer the capability to use standardized
algorithms that translate observed patterns to distance measurements and out-
of-the-box implementation foregoing fine-tuning. This approach however, can
only be implemented on targets that have a marker attached to them and it
reduces real world applications [17].

In contrast, deep learning computer vision algorithms can learn to classify
and localize an object based on image input and are implemented in many real-
world applications. You Only Look Once (YOLO) algorithms are object detec-
tors that perform detection and localization in a single stage [28]. As opposed
to other approaches that use proposal regions to focus on certain parts of the
image, YOLO splits the image into a grid cell and searches each cell for objects
at multiple scales by varying the stride and window size. This allows YOLO
to perform real-time inference speeds, faster than method based on proposal
regions, also known as two stage detectors [7].

Despite implementation challenges of computer vision approach such as it-
erative manual labelling of data and fine tuning, it makes no assumptions for
the presence of a marker. Furthermore, computer vision approaches, based on
convolutional neural networks, are considered state-of-the-art in real-time ob-
ject detection and can be used to localize a target from a high altitude, on a live
video stream, even on computationally restricted devices.

Enhancing Autonomous Precision Landing of UAVs 3

The existing autonomous landing approaches are trained in low-graphics sim-
ulators and use specialized markers to perform localization, restricting general-
ization when being implemented in the real world. In this paper, we shrink the
sim-to-real gap by;

– Implementing a novel approach to autonomous landing that mitigates the
sim-to-real gap by leveraging a Yolov8 detection algorithm within a photo-
realistic simulator, eliminating the need for specialized markers.

– Enhancing robustness by pre-training and validating the object detector us-
ing real-world images.

– Introducing a modular and detection-agnostic methodology, facilitating easy
generalization across various scenarios.

Our findings showcase that it is possible to perform precision landing with an
accuracy exceeding 94% in a photo-realistic simulator based on the Yolov8 object
detector and an RL control policy such as PPO or LSTM-PPO. The policy is
trained to centralize the target, regardless of detection id, dimensions or image
resolution, allowing for easy generalization to other tasks or new targets.

2 Related Work

An overview of various physics simulators that are used to train robotic agents
are presented in [5]. More specifically, it gives an overview of simulation soft-
ware used in the aerial robotics domain. The most popular simulators for aerial
robotics are; Gazebo [13], Webots [16], AirSim [25], jMAVSim and Flightmare
[27]. Gazebo is described to have limited rendering capabilities compared to
Unity and Unreal Engine. AirSim’s resource-intensiveness is it’s major drawback
compared to other simulators [13]. Flightmare combines a flexible physics engine
with the Unity rendering engine, creating a powerful simulator and seems to be
suited for deep reinforcement learning applications [27]. jMavSim [2] supports
only basic sensing and rendering and has been discontinued. Finally, Webots [16]
can support custom physics engine and integrate data from Open-Street Map to
create more realistic environments.

In their work [18] the authors introduced, PyBullet-Drones, a multi-agent
quadcopter simulator based on the PyBullet Physics engine that emphasises
the interface between the simulator and multi-agent RL frameworks. In table 1
they provide a thorough comparison of current aerial robotics simulators such
as AirSim, Flightmare and RotorS extension, CrazyS and their work. PyBullet-
Drones offers high parallelisation, steppable physics and it is very lightweight
but these feature come at the cost of rendering quality which is low. In com-
parison a quadrotor simulator based on ROS and Gazebo, RotorS [8], does not
come with ready-to-use RL interfaces and it’s dependency on Gazebo makes it a
subpar choice for vision-based learning applications. CrazyS [26] is an extension
of RotorS that is specifically targeted to the Bitcraze Crazyflie nano quadcopter,
but still suffers from the same limitations as RotorS. Another notable simulator,

4 C. Soteriou et al.

ETH’s Flightmare [27] build on top of the Unity game engine, provides photo-
realistic rendering and very fast, highly parallelised dynamics. It also implements
OpenAI Gym’s API to easily integrate single agent RL workflow but does not
support vision-based observations. Finally, AirSim [25] built on top of Unreal
Engine 4, is a very popular simulator and enjoys photo-realistic rendering but
suffers from elevated computational requirements.

Aerial robotic simulators, in conjunction with Reinforcement Learning con-
trol policies, are utilized to train policies in various UAV related tasks. In [10]
low-level control of a quadrotor was achieved, mapping states directly to actuator
commands, to stabilize a drone after being thrown mid-air at various orienta-
tions and speeds. The control policy is trained on fixed length trajectories with
inputs being the 3D-rotation matrix, position, angular and linear velocity vec-
tors. For this work the policy was trained in a simulation software developed by
the authors, named Robotic Artificial Intelligence (R.A.I.), and then tested in
a real environment. It employs a deterministic on-policy algorithm, using zero-
bias, zero-variance samples. A value and a policy network are trained, achieving
a 96 % success rate.

In [19] a UAV framework is proposed to locate a missing human after a
natural disaster using an approximated RL policy to navigate to the target. The
state space is defined as the relative distance from the UAV to the nearest target
and the distances to the nearest obstacles in each direction; north, south, east and
west. The quadrotor navigation is achieved utilizing a PID in conjunction with
an approximated Q-learning algorithm to accelerate convergence. The policy is
trained in a MATLAB simulation, taking the vanilla Q-learning algorithm 160
episodes to find the optimal course trajectory while the function approximated
policy achieved that in 75 episodes. Real-world implementation is carried out on
Parrot AR Drone 2.0, using as observations the Motion Capture System from
Motion Analysis to provide the relative position with respect to the target and
obstacles.

The authors of [3] propose a novel method for learning robust visuomotor
policies, for real-world deployment, which can be trained purely with simulated
data. By taking cross-model observations in the form of raw camera data and
the drone’s relative orientation compared to a gate. The observations are repre-
sented in a low-dimensional embedding using variational-auto-encoders (VAE)
and boasts an improvement in performance compared to other end-to-end control
policies or purely supervised feature extractors. To perform these experiments
they first generate 300K pairs of 64x64 images along with the relative ground-
truth relative gate poses using AirSim [25].

Narrowing our scope, papers such as [21] and [20] achieve autonomous land-
ing of a quadrotor on a marker using a hierarchy of DQN networks. Initially the
quadrotor approaches the landing area and when the drone enters the landing
zone a different network is triggered to perform a descending maneuver. The
networks take as input four stacked, gray-scale images of 84×84 pixel resolution.
The observations are processed by the Double-DQN and produce discrete direc-

Enhancing Autonomous Precision Landing of UAVs 5

tion outputs. The policy is trained in the Gazebo simulator and utilized domain
randomization to better generalize to real scenarios.

The authors of [23] deploy a deep reinforcement learning policy to achieve
landing of a quadrotor on a moving platform. The policy is trained using the
RotorS UAV simulator build on Gazebo. The moving platform target has di-
mensions of 1.2m×1.2m and the DDPG algorithm is trained using as inputs
the ground truth relative positions, obtained from fiducial markers located on
the platform. Successful landing attempts range from 65.45% when the platform
is moving at a maximum velocity of 1.2 m/s, to 90.21% when the platform is
moving at a maximum velocity of 0.4 m/s.

In their paper [14] the authors achieve landing of a quadrotor on an inclined
platform using deep reinforcement learning. A PPO algorithm is trained in two
custom Gym-based environments using the roll and pitch angles, as well as the
position and velocity vectors, as observations. The authors then deploy a sparse
rewards and a tailored curriculum learning approach to achieve an in simulation
success rate of 93.3%. They directly transfer the learned policy from simula-
tion to reality, without techniques such as domain randomization, achieving a
performance of 86.7%.

Current aerial robotic approaches are using lightweight, but low graphics-
quality simulators to perform tasks such navigation, control, localization and
more. This in-turn limits the utilization of computer vision based algorithms.
More specifically for the autonomous landing task, it creates the necessity for
special type of markers to extrapolate distance and orientation to the landing
platform. Although this approach has been proven successful, allowing for faster
experimentation and simplification of the training pipeline, it is less generaliz-
able. In this paper we want to explore how we can learn reinforcement learning
control policies in simulation utilizing computer vision to localize our target,
without needing to modify the pipeline from simulation to real-world deploy-
ment, therefore reducing the simulation-to-reality gap.

3 Methodology

In this study we aim to train a UAV to autonomously land on a restricted
surface using a joint Computer Vision and Reinforcement Learning policy. We
are therefore interested in simulators that allow for an easy interface with the
OpenAI Gym API to formulate our task in a framework compatible with RL
algorithms and wrappers.

Table 1: PyBullet and other Simulators
Simulators Physics Engine Rendering

Engine Language Synchro/Steppable
Physics & Rendering

RGB, Depth and
Segmentation Views

Multiple
Vehicles Gym API Multi-agent

Gym-like API
PyBullet-drones PyBullet OpenGL3 Python ✓ ✓ ✓ ✓ ✓
AirSim Ad hoc Unity C++ ✓ ✓ ✓ W/o Vision ✗

Flightmare FastPhysicsEngine UE4 C++ ✗ ✓ ✓ ✗ ✗

CrazyS Gazebo OGRE C++ ✓ No Segmentation ✗ ✗ ✗

6 C. Soteriou et al.

The table 1 found in [18] demonstrates important features that differentiate
available simulation software. Out of all the simulators only PyBullet-drones and
AirSim could be operated using Python. AirSim, Unity ML-agents, Gazebo and
Webots seem to have the largest community support [18] with AirSim offering
a well structured documentation as well. Flightmare and ML-agents simulators
both based on Unity offer semi-realistic graphics whereas the only simulator
that offered photo-realistic graphics was AirSim, based on the Unreal Engine.
Since the end-goal of this work is to impose as little assumptions as possible
when transferring the policy from simulation to the real world only these three
simulators could realistically be considered. When deciding between AirSim and
Unity ML-agents or Flightmare, we chose AirSim as the graphics quality of
Unreal Engine was superior to Unity, it was very well documented with an API
written in Python and had a bigger active community supporting the project.

3.1 Dataset

To generate our training dataset for the object detector we performed several
flights with the DJI Mavic-Air 2 model and captured top-down videos from the
drone at various locations. Then we extracted frames from the videos, at a fixed
rate, to generate a dataset with images of the portable charging station depicted
at 1 and 2. We then used the Albumentations library to augment the original
1600 images, generating an additional 3200 images for training. After testing
our algorithm on the validation set and ensuring its validity, we further collected
1200 more top-down images of the landing pad from within the simulation at
various altitudes and applied similar augmentations to those images using the
same library.

Fig. 1: Landing pad Fig. 2: Landing pad

Enhancing Autonomous Precision Landing of UAVs 7

3.2 Experimental Setup

A city-like environment was installed in Unreal Engine through Epic Games Mar-
ketplace and imported as content in the Blocks environment. We then created a
custom object in the environment using the tile object template and changed its
texture to be that of a top-down landing pad image based on a high-definition
image we imported from our dataset. In an increasing background complexity
manner, we have placed landing pads at a baseball field Figure (3a), a con-
struction site Figure (3b) and a roadway Figure (3c) to further demonstrate the
generalizability of our object detector.

(a) Baseball field background (b) Construction site background

(c) Roadway background

Fig. 3: Landing pad at various backgrounds

To localize the landing pad we have chosen the Yolov8 algorithm as it is the
latest iteration of the YOLO architecture and achieves state-of-the-art results in
real time inference, as well as utilizing an anchor-free design [11]. After training
on a mixture of real and simulated data (fig. 4) for 30 epochs we achieve a
map@0.5 of 98.9%. We later validated the performance of our detector on an
out-of-sample video to ensure robustness (fig. 5).

3.3 Algorithms

Having validated the object detector we had to decide on a control policy. We
chose a Reinforcement Learning approach as it generalizes better to the un-
predictable dynamics of the real world. OpenAI gym environments offer the
ability to formulate problems in a Reinforcement Learning framework [4]. We

8 C. Soteriou et al.

Fig. 4: Training data Fig. 5: Validation video sample

subsequently, register a custom Gym environment that allows us to take image
observations as inputs and select discrete actions as output.

We make use of out-of-the-box implementation of single-agent algorithms,
particularly PPO and LSTM-PPO, offered by [22]. Proximal Policy Optimiza-
tion (PPO) is an actor-critic policy that compares the probability of an action
to be sampled under the current policy over the old policy and increases the
probability of the action in the current state if the reward is positive or reduces
the probability of the action in the current state if the reward is negative. To
prevent the policy from changing too drastically, it utilizes a clipping function,
similarly to trust regions, to limit how much the policy parameters are updated.
[24]

PPO:

LCLIP (θ) = Êt[min(rt(θ) ∗ Ât, clip(rt(θ), 1− ϵ, 1 + ϵ) ∗ Ât)] (1)

rt(θ) =
πθ(at|st)

πθold(at|st)
(2)

A PPO policy cannot correlate consecutive observations unless the observa-
tions are provided in a stacked manner or the policy is augmented with temporal-
aware modules such as an LSTM module. LSTM-PPO optimizes the same ob-
jective function as PPO outlined by (1)

3.4 Reward function

There are two approaches to guide the agent to the desired objective. A sparse
reward approach; a reward is given only when the objective is achieved and a
dense reinforcement signal, that is given additionally to the terminal reward at
each time step, to nudge the agent towards the objective faster.

Enhancing Autonomous Precision Landing of UAVs 9

A dense reward signal provides frequent feedback to the agent and speeds
up training, ensuring that the state space that stimulates learning is reached
no matter how limited it might be. On the other hand auxiliary rewards given
to the agent could lead to unpredictable behaviours that are followed when the
agent avoids the terminal state to maximize it’s cumulative reward by exploiting
those signals.

In our setup if the drone is airborne and the reward shaping is in use, then the
drone receives a tiny reward for each timestep that is within landing distance in
the xy-plane from the platform, otherwise it receives a small penalty. When the
UAV lands if the landing occurred within the precision landing zone it receives
a positive reward of at least +1 otherwise a -1 reward.

R =

t=T∑
t=0

rt (3)

Out of bounds or time limit

rterminal = −1, |r| > bounds and t > 120 (4)

Reward Shaping

rt =

{
1× 10−2 , |r| ≤ pz

−1× 10−2 , otherwise
(5)

Landing reward

rterminal =

{
1, |r| ≤ pz

−min(0.2 ∗ |r|, 1), otherwise
(6)

where pz is the precision zone radius.

3.5 Pre-processing Steps

The observations received from the environment are pre-processed to be trans-
formed to a distance metric from the image centre and passed to the RL policy as
a feature vector. The policy selects an action to be performed by the quadrotor
agent and an associated reward with said action.

Initial experiments with a single frame resulted in policies that failed to
generalize when tested on multiple environments. To compensate for this, frame-
stacking was implemented and a recurrent version of PPO was used to enhance
the temporal nature of the captured data.

At previous stages of experimentation we were utilizing RGB images of 640×
640 or 416 × 416 resolution, similar to our dataset. The image resolution was
later reduced to 320 × 320 as detection performance did not deteriorate and it
increased overall simulation speed, leading to reduced training time.

To transform the normalized object coordinates, captured in the video stream,
to an objective that could be optimized we followed a series of essential pre-
processing steps. We had set a preferred detection flag that prioritized the inner

10 C. Soteriou et al.

target whenever possible to increase precision from the target centre and subse-
quently selected the one with the highest confidence score. We then subtracted
the coordinates of the bounding box centre from the image centre coordinates
and produced a euclidean distance in the x-y plane.

x̃ =
xc

width
, ỹ =

yc
height

, z̃ =
zt
z0

x̂ = (x̃− 0.5) · scaling
ŷ = (ỹ − 0.5) · scaling

d =
√

x̂2 + ŷ2

(7)

Eq. (7) demonstrates the transformation of bounding boxes to a distance
metric. xc represents the x-coordinate of the bounding-box centre which is nor-
malized by dividing by the image width. Similarly, yc is the y-coordinate of the
bounding-box centre divided by the image height. The height of the drone is
normalized by dividing the current height of the drone zt by the initial height
z0; the height where the landing maneuver was initiated. Subsequently, we cal-
culate the distance between the normalized bounding box coordinates and the
image centre coordinates by multiplying the remainder with the scaling factor,
a value that was empirically found to correspond to the ratio of UE4 distance
units and centimeters. Finally, we derive the euclidean distance from the target
centre in the xy-plane.

Another issue that had to be addressed was that of partial and missing ob-
servations due to detection failures. This resulted in policies not generalizing
well enough. To address partial observations, we relabelled the landing pad with
bounding boxes only outlining the inner portion of the landing pad. To im-
prove tracking performance, a ByteTrack tracker was additionally attached to
the Yolov8 object detector.

In addition, whenever our tracking pipeline failed to produce a detection
we used previous observations along with the distance travelled, given it’s last
action and its duration, to better estimate the new bounding box coordinates,
according to the linear motion equations Eq. (8).

at−1 =
[
Vx, Vy, Vz

]T
x = Vx · t · scaling
y = Vy · t · scaling

(8)

at−1 corresponds to the action taken during the last time step, t denotes the
duration of our last action and the scaling factor is an empirically derived con-
stant that corresponds to the ratio between UE4 distance units and cm. These
values are added to the last known distance between bounding box and image
centre.

To transform between in-simulation units and real distances we use the real
measurements of the landing pad which were 48× 48 cm for the inner part and

Enhancing Autonomous Precision Landing of UAVs 11

96 × 96 cm when accounting for the outer frame as well and the in simulation
distance of the landing pad. A ratio of 4.48 is obtained when matching cm to
in-simulation distance units. Any distance less than 68cm in the xy-plane is
considered to be a successful landing. This cutoff point was selected to match
the ratio of UE units to real dimensions multiplied by the landing distances in
UE units.

4 Experiments and Results

The experimental setup is visualized by figure 6. At each timestep the AirSim
simulator issues an API call through the use of its python client to request
an RGB Image from the Unreal Engine environment. The image observation is
then passed to the Yolov8 detector and the ByteTrack tracker [31] to extract
normalized bounding boxes of observations.

We spawn the drone at a random distance between -3 and 3 units of the
inner target for both x and y. The limits visually map to just outside the size of
the landing pad. Subsequently, we takeoff until we reach a height of 8 units. We
monitor each policy’s success rate every 100 episodes and allow for the policies to
converge before interrupting training and evaluating their performance. LSTM-
PPO and PPO algorithm have different average episode lengths but training
converge around 20K-25K episodes. We save the weights of the network peri-
odically and then select the one with the best performance during it’s last 100
episodes.

Fig. 6: Experimental Setup

To ensure the reliability of the object detector and minimize the sim-to-real
gap, the Yolov8 algorithm was trained on a mixture of real and augmented data
generated both in-simulation and real environments and validated in footage

12 C. Soteriou et al.

Fig. 7: CDF and PDF of landing distance

taken from real flights. The detector achieves an average map@50 of 0.989% for
both inner and outer landing targets.

In our experiments we randomly alternate between the three available en-
vironments for a total of 1391 and 817 landings for the PPO and LSTM-PPO
algorithms. We experiment with PPO and LSTM-PPO algorithms, as they are
amongst the state-of-the-art RL policies. We reach a landing success rate of
94.25% and 94.86% respectively. The mean landing distance is 44+/−17 cm and
45+/−19 cm.

Fig. 7 displays the cumulative and probability density functions of the landing
distance to the target centre. The distance is measured as the centre of the drone
to the centre of the platform. The cumulative density function demonstrates
that 94.25% of landings occur at a distance less than 68 cm. The probability
distribution function highlights the distance at which the UAV is more probable
to land from the platform centre. The highest PDF is around the mean landing
distance of 44+/−17 and 45+/−19 cm for each algorithm.

Fig. 8 demonstrates the trajectory from a single run that the UAV takes to
land at the landing pad. The initial stages of the trajectory are characterized by
a seamless flow, gradually transitioning into circular maneuvers as the UAV
approaches its target. Implementing an appropriate objective that gradually
decreases the velocity as the UAV nears the landing area would enhance the
overall smoothness of its trajectory.

5 Discussion

In our experiments before training the RL control policy, we first trained and val-
idated the object detector using real-world top-down images collected from drone
flights. Once it demonstrated satisfactory performance in real-world scenarios,
we further validated its effectiveness in simulated environments. Our results in-
dicate that pretrained object detectors can be used as components withing a
control policy learning framework. This approach allows to remove any assump-

Enhancing Autonomous Precision Landing of UAVs 13

Fig. 8: Landing trajectory

tions on the appearance and the localization of the target when moving from
simulation to the real world.

Importantly the learned policy from the fixed object detection model man-
aged to provide robust results and perform autonomous precision landing in
three different simulated environments. This is particularly important in order
to train policies when targets are not fixed and have different characteristics
and are distorted by lighting, occlusions, or viewpoint variations. The learned
policies are also more robust to varying altitudes which is often the case in UAV
scenarios.

Moreover, the integration of an object detector alongside a robust tracking
methodology has been devised to effectively decouple policy learning from feature
extraction within a reinforcement learning framework. In doing so, it permits
the RL algorithm to operate on normalized bounding boxes of the target, with
a vector of observations, irrespective of the image’s quality, the target’s size or
detection ID. This showcases the modular capabilities of the proposed pipeline.
For instance the detector could be replaced by another model to perform the
same task on a different target and then used the same RL policy, or train the
RL policy on a new objective using the same detector to perform a different task

14 C. Soteriou et al.

or substitute object detection with a different vision-based algorithm altogether
such as segmentation.

6 Conclusion

In this paper we have demonstrated that it is possible to perform precision
landing of a UAV with a joined computer vision and reinforcement learning
policy without relying on specific markers. We aimed to minimize assumptions
that would differentiate the simulated environment from the real world as much
as possible, therefore we used a pre-trained object detector that was validated on
footage collected from drone flights at various backgrounds. We further ensured
its robustness by training and testing on a mixture of real and simulated images.
We formulate the object detection output in a way that can be utilized by a
reinforcement learning algorithm enable them to work together. Because of the
modular design of the proposed approach we were able to only train the RL
control policy whilst keeping the object detector’s parameters unchanged. As
future work we aim to perform more experiments in the real-world to validate
the learned policies and further investigate the sim-to-real potential.

Acknowledgements

This work is supported by the European Union (i. ERC, URANUS, No. 101088124,
and ii. Horizon 2020 Teaming, KIOS CoE, No. 739551). This work is also sup-
ported from the Government of the Republic of Cyprus through the Cyprus
Deputy Ministry of Research, Innovation and Digital Policy.

References

1. Ang, K.H., Chong, G., Li, Y.: Pid control system analysis, design, and technol-
ogy. IEEE Transactions on Control Systems Technology 13(4), 559–576 (2005).
https://doi.org/10.1109/TCST.2005.847331

2. Babushkin, A.: jmavsim. https://github.com/PX4/jMAVSim (2013)
3. Bonatti, R., Madaan, R., Vineet, V., Scherer, S.A., Kapoor, A.: Learning controls

using cross-modal representations: Bridging simulation and reality for drone racing.
CoRR abs/1909.06993 (2019), http://arxiv.org/abs/1909.06993

4. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym (2016)

5. Collins, J., Chand, S., Vanderkop, A., Howard, D.: A review of physics
simulators for robotic applications. IEEE Access 9, 51416–51431 (2021).
https://doi.org/10.1109/ACCESS.2021.3068769

6. Djuknic, G.M., Richton, R.E.: Geolocation and assisted gps. Computer 34(2), 123–
125 (2001)

7. Du, L., Zhang, R., Wang, X.: Overview of two-stage object detection algorithms.
In: Journal of Physics: Conference Series. vol. 1544, p. 012033. IOP Publishing
(2020)

Enhancing Autonomous Precision Landing of UAVs 15

8. Furrer, F., Burri, M., Achtelik, M., Siegwart, R.: Robot Operating System (ROS):
The Complete Reference (Volume 1), chap. RotorS—A Modular Gazebo MAV Sim-
ulator Framework, pp. 595–625. Springer International Publishing, Cham (2016).
https://doi.org/10.1007/978-3-319-26054-9_23

9. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., Marín-
Jiménez, M.: Automatic generation and detection of highly reliable
fiducial markers under occlusion. Pattern Recognition 47(6), 2280–
2292 (2014). https://doi.org/https://doi.org/10.1016/j.patcog.2014.01.005,
https://www.sciencedirect.com/science/article/pii/S0031320314000235

10. Hwangbo, J., Sa, I., Siegwart, R., Hutter, M.: Control of a quadrotor with reinforce-
ment learning. IEEE Robotics and Automation Letters 2(4), 2096–2103 (2017).
https://doi.org/10.1109/LRA.2017.2720851

11. Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., NanoCode012, Kwon,
Y., Michael, K., TaoXie, Fang, J., imyhxy, Lorna, Yifu, Z., Wong, C.,
V, A., Montes, D., Wang, Z., Fati, C., Nadar, J., Laughing, UnglvK-
itDe, Sonck, V., tkianai, yxNONG, Skalski, P., Hogan, A., Nair, D., Stro-
bel, M., Jain, M.: ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime
Instance Segmentation (Nov 2022). https://doi.org/10.5281/zenodo.7347926,
https://doi.org/10.5281/zenodo.7347926

12. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research 32(11), 1238–1274 (2013)

13. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566). vol. 3, pp. 2149–2154
vol.3 (2004). https://doi.org/10.1109/IROS.2004.1389727

14. Kooi, J.E., Babuska, R.: Inclined quadrotor landing using deep reinforcement learn-
ing. CoRR abs/2103.09043 (2021), https://arxiv.org/abs/2103.09043

15. Liu, P., Chen, A.Y., Huang, Y.N., Han, J.Y., Lai, J.S., Kang, S.C., Wu, T.H.,
Wen, M.C., Tsai, M.H., et al.: A review of rotorcraft unmanned aerial vehicle
(uav) developments and applications in civil engineering. Smart Struct. Syst 13(6),
1065–1094 (2014)

16. Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced
Robotics Systems 1(1), 39–42 (2004), http://www.ars-journal.com/International-
Journal-of- Advanced-Robotic-Systems/Volume-1/39-42.pdf

17. Morar, A., Moldoveanu, A., Mocanu, I., Moldoveanu, F., Radoi, I.E.,
Asavei, V., Gradinaru, A., Butean, A.: A comprehensive survey of in-
door localization methods based on computer vision. Sensors 20(9)
(2020). https://doi.org/10.3390/s20092641, https://www.mdpi.com/1424-
8220/20/9/2641

18. Panerati, J., Zheng, H., Zhou, S., Xu, J., Prorok, A., Schoellig, A.P.: Learn-
ing to fly - a gym environment with pybullet physics for reinforcement
learning of multi-agent quadcopter control. CoRR abs/2103.02142 (2021),
https://arxiv.org/abs/2103.02142

19. Pham, H.X., La, H.M., Feil-Seifer, D., Van Nguyen, L.: Reinforcement learning
for autonomous uav navigation using function approximation. In: 2018 IEEE In-
ternational Symposium on Safety, Security, and Rescue Robotics (SSRR). pp. 1–6
(2018). https://doi.org/10.1109/SSRR.2018.8468611

20. Polvara, R., Patacchiola, M., Hanheide, M., Neumann, G.: Sim-to-real quadrotor
landing via sequential deep q-networks and domain randomization. Robotics 9(1)
(2020). https://doi.org/10.3390/robotics9010008, https://www.mdpi.com/2218-
6581/9/1/8

16 C. Soteriou et al.

21. Polvara, R., Patacchiola, M., Sharma, S.K., Wan, J., Manning, A., Sutton, R.,
Cangelosi, A.: Autonomous quadrotor landing using deep reinforcement learning.
CoRR abs/1709.03339 (2017), http://arxiv.org/abs/1709.03339

22. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research 22(268), 1–8 (2021), http://jmlr.org/papers/v22/20-1364.html

23. Rodriguez-Ramos, A., Sampedro, C., Bavle, H., Moreno, I.G., Campoy, P.:
A deep reinforcement learning technique for vision-based autonomous multi-
rotor landing on a moving platform. In: 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). pp. 1010–1017 (2018).
https://doi.org/10.1109/IROS.2018.8594472

24. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Prox-
imal policy optimization algorithms. CoRR abs/1707.06347 (2017),
http://arxiv.org/abs/1707.06347

25. Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim: High-fidelity visual and
physical simulation for autonomous vehicles. CoRR abs/1705.05065 (2017),
http://arxiv.org/abs/1705.05065

26. Silano, G., Aucone, E., Iannelli, L.: CrazyS: A Software-In-The-Loop Plat-
form for the Crazyflie 2.0 Nano-Quadcopter. In: 2018 26th Mediterranean
Conference on Control and Automation (MED). pp. 352–357 (Jun 2018).
https://doi.org/10.1109/MED.2018.8442759

27. Song, Y., Naji, S., Kaufmann, E., Loquercio, A., Scaramuzza, D.: Flightmare: A
flexible quadrotor simulator. In: Proceedings of the 2020 Conference on Robot
Learning. pp. 1147–1157 (2021)

28. Terven, J., Cordova-Esparza, D.: A comprehensive review of yolo: From yolov1 to
yolov8 and beyond. arXiv preprint arXiv:2304.00501 (2023)

29. Tiwari, S.: An introduction to qr code technology. In: 2016 Interna-
tional Conference on Information Technology (ICIT). pp. 39–44 (2016).
https://doi.org/10.1109/ICIT.2016.021

30. Zhang, J., Campbell, J.F., Sweeney II, D.C., Hupman, A.C.: Energy
consumption models for delivery drones: A comparison and assess-
ment. Transportation Research Part D: Transport and Environment 90,
102668 (2021). https://doi.org/https://doi.org/10.1016/j.trd.2020.102668,
https://www.sciencedirect.com/science/article/pii/S1361920920308531

31. Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu, W.,
Wang, X.: Bytetrack: Multi-object tracking by associating every detection box. In:
European Conference on Computer Vision. pp. 1–21. Springer (2022)

