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Abstract—Vision-based monitoring methods have been actively
studied in the construction industry as they can automatically
generate information related to progress, productivity, and safety.
3D reconstruction is key in such monitoring techniques, allowing
the inference of job-site context, the creation of digital coun-
terparts of physical spaces, and the comparisons between as-
designed and as-built conditions. However, 3D applications in
construction currently produce large volumes of unstructured
data and unusable point clouds, which are time-consuming to
convert into an interactive environment for Building Information
Modelling (BIM) or Digital Twins. While radiance field render-
ing methods are increasingly gaining traction, the adoption of
generated Neural Radiance Fields or Gaussian Splatting models
by digital construction technology is still tentative. This study in-
troduces a framework that uses Neural Radiance Fields (NeRFs)
to improve 3D inspection and maintenance on construction sites.
It merges NeRF’s high-resolution, real-time 3D modelling with
an interactive platform, facilitating detailed remote site analysis
and defect detection. The framework incorporates a custom
version of TurboNeRF, tailored specifically for construction site
inspections. Through this paper, we aim to highlight the potential
of combining 3D imaging technology, the use of drone imagery
and ontological models to improve construction site management
practices.

Index Terms—Digital Twin, Ontology, Remote Inspection, De-
fect Detection, Neural Radiance Field

I. INTRODUCTION

The construction industry is inextricably linked with
progress monitoring and site inspection. Construction progress
monitoring is highly significant, and its absence from a
construction project can lead to delays in project completion
as well as additional costs. Traditional methods of progress
monitoring require manual data entry, involving laborious
human effort, consuming considerable time and prone to
human error [1]. An accurate report can be beneficial, whether
produced during the course of the construction for its progress
or upon completion for maintenance purposes. In this way,
stakeholders stay informed about the project’s status, enabling
them to make crucial decisions [2].

Over the past few years, digital twins were introduced into
the construction field [3], showing their potential and gaining
significant recognition among the research community. Digital
twins are virtual replicas of physical objects that dynamically
exchange real-time data, enabling continuous interaction be-
tween the physical and digital environment. Thus, they stand as
one of the most empowering technologies for achieving asset
management, facilitating the ability to understand, monitor and
optimise the operations of real-world entities. The connection
between the physical and digital worlds enables data analysis,
progress monitoring and inspection to proactively identify
potential issues, prevent delays and efficiently manage projects
through simulations of current and future work. Digital twins
empower their potential through the interdisciplinary field of
computer vision, which serves as the means for computers to
understand visual information.

Computer Vision is closely connected to the engineering
and construction sector. In the past decade the rapid evolution
of Computer Vision based techniques has revolutionised the
construction progress monitoring and inspection processes,
offering invaluable support for strategic decision-making by
management [4]. So far, computer vision methods include
procedures such as data acquisition, processing, 3D recon-
struction and defect/damage detection, among others [5]. Tra-
ditional methods for data acquisition often involve expensive
hardware, such as LiDAR devices [6], and time consuming
tasks . Moreover, these methods typically result in unstructured
point clouds lacking precise geometry representation. Large
real-world complex environments such as construction sites
are difficult to replicate accurately. A multitude of factors
including variations in lighting, shading, and weather condi-
tions, can negatively impact 3D reconstruction methods that
rely on Structure from Motion (SfM) techniques [7]. As a
result, engineers today require inspection methods focusing
on effective maintenance activities to optimise the life-cycle
of infrastructures while minimising operational time and costs.



Accurate representation of complex scenes in 3D space
through remote inspection techniques is crucial for mainte-
nance activities. Recently, Neural Radiance Fields (NeRFs) [8]
have attracted significant interest for their ability to represent
volumetric scenes as a continuous function through a neural
network fed with 2D images and their corresponding camera
poses. The outcomes offer high-detail photo-realistic render-
ings, enabling the synthesis of novel views. Consequently, the
current research on NeRF interactive systems and applications
is limited, with scientists directing their focus toward address-
ing the lack of methods allowing stakeholders to interact with
the digital counterpart.

In this paper, we propose an interactive framework that
leverages NeRF capabilities to enhance 3D inspection and
maintenance activities on construction sites. Specifically, we
develop an interactive framework that combines the benefits
of UAV-based data acquisition, high detailed realistic 3D
rendering produced by NeRF and defect detection to facili-
tate detailed remote site analysis and damage identification,
improving construction site management practices. Our inter-
active framework integrates an automated UAV visual data col-
lection, specifically designed for construction projects. In this
manner, a dataset suitable for an accurate 3D reconstruction
is provided. Subsequently, these data are fed into a custom
implementation of TurboNeRF [9] tailored for construction
infrastructures inspections, generating high-detailed real-time
3D renders within an interactive platform. We further extend
the framework’s applicability by enabling automated defect
detection, thereby empowering stakeholders to conveniently
and immediately inspect the project’s status. We demonstrate
our framework on a real highway bridge construction project.

II. RELATED WORK

The construction industry has long been struggling by the
lack of autonomous systems for management, monitoring,
maintenance and safety purposes. In the context of main-
tenance processes, traditional methods of civil infrastructure
status assessment typically require skilled inspectors for vi-
sual inspection, combined with appropriate decision-making
criteria. In this manner, the inspection turns into a tedious
and time-consuming task, posing even risks for inspectors’
safety. Thus, the scientific community has turned its attention
to the integration of computer vision techniques for remote
inspection within 3D reconstruction and defect detection, in an
attempt to evaluate the current infrastructure status, mitigating
risks, human effort and saving considerable time.

NeRFs have revolutionised the field of 3D computer graph-
ics since their emergence. Traditional methods involve storing
triangles or colour values for the complete voxel grid on disk,
leading to memory-related challenges. Contrary, NeRF enables
high precision 3D representation of intricate real-world scenes,
solely through neural network training. In comparison with
photogrammetric techniques which lead to sparse, unstructured
point clouds, NeRF methods learn to represent the scene
as a continuous function. Their advantage in representing a
colour’s point depends on the viewpoint, enabling for the

capture of diverse lighting effects such as reflections and
transparencies. These effects are commonly observed in the
construction sector, highlighting the importance of integrating
NeRF methods into construction activities [10].

In the study by Zhexiong Shang and Zhigang Shen, [11],
the authors explore the integration of Visual Simultaneous
Localisation and Mapping (SLAM) with Unmanned Aerial
Vehicles (UAVs) to facilitate real-time 3D mapping of con-
struction sites.The paper introduces a system architecture and
experimental setup designed to overcome accessibility issues
on construction sites through the use of UAVs, enabling the
capture of inaccessible areas from the air. Furthermore, these
near real-time capture methods often result in 3D point clouds
that face challenges in terms of data scale and structure.
Furthermore, information within the captured images is often
underused, thus representing a missed opportunity for seman-
tically enriched results.

Computer vision techniques are undoubtedly transforming
the construction industry by enabling the automatic generation,
analysis, and application of visual data throughout the life-
cycle of construction projects. Beyond 3D reconstruction and
digitisation of physical spaces, these technologies are emerg-
ing for inspection purposes [12]. Currently, in the field of
computer vision, many researchers have dedicated their effort
to developing image-based automatic non-destructive testing
(NDT) methods for contactless or even remote detection
systems. The majority of the initial approaches in literature
rely upon mature image processing techniques to detect de-
picted cracks and discriminate them from the background
[13]. Deep learning has greatly expanded the efficiency and
robustness of traditional vision-based defect detection for a
wide variety of visual defects, from cracks and delaminations
to corrosion [14]. A collection of studies has explored the use
of UAV-based visual data combined with detection techniques.
Decision-making algorithm that employs CNNs optimised for
the detection of cracks documented in [15]–[17].

Computer vision damage detection capabilities are improv-
ing fast, continuously enriching the semantic descriptions of
visualised scenes. In the construction domain, these semantic
descriptions need to be adequately interconnected with exist-
ing models of constructed assets, and combined with many
other information sources. For these reasons, Digital Twin
models are required to evolve flexibly, and allow domain-
agnostic enrichment. Thus, establishing digital twin models
driven by a combination of ontologies from different domains
is being increasingly considered, providing the backbone of
what are called ‘Semantic Digital Twins’ [18]. An ontology
is a computer-readable conceptualisation of some domain-
specific knowledge [19]. They are managed through Semantic
Web standards such as RDF [20] and OWL [21] , providing
graph-like data (knowledge graphs [22]) that are interoperable
and self-described to a computer. Semantic digital twins have
been already implemented in different projects at different
scales. The World Avatar project [23] carried out by the
Cambridge CARES group in Singapore, is an example of
implementation of a Semantic Digital Twin to improve city



management, while the Ashvin project [24] exemplifies their
use in platforms to manage individual assets [25].

Accelerating damage detection and annotation workflows
through computer vision tools, and connecting the results
to vaster systems (Digital Twins) is a meaningful topic that
requires exploration.

III. FRAMEWORK DESCRIPTION

Fig. 1. Visualisation of the proposed visual-based framework for 3D in-
spection in maintenance activities. The process describes the transformation
of physical structure into digital replica. Collected data are processed and
registered into the ontology, where they are linked with damage detection
data, resulting in a detailed 3D site analysis.

The methodology for developing an operational image-
based Digital Twin for infrastructural structures, as proposed
in this study, is shown in Figure 1. The process begins with a
description of the physical structure in terms of geometry and
position in a georeferenced coordinate system. Drones scans
are used to obtain a large number of RGB images of the
physical structure, a volumetric rendering of the structure’s
radiance field, achieved through the employment of a custom
NeRF implementation based on Instant-NGP [26]. During
this step, a detailed CAD model of the structure can be
registered at the same georeferenced coordinate system that
is used during the drone flights for easier comparison with
the reconstructed 3D model. In parallel, a deep learning
algorithm analyses the RGB images to identify and categorise
construction defects. For the task of classifying defects and
damages, the You Only Look Once (YOLO) version 8 algo-
rithm, a real-time object detection system, was selected based
on the team’s prior research work. The type, position, and
size of the detected defects/damages are extracted from the
AI algorithms and mapped to the radiance field rendering in
a Blender interactive environment, thereby creating the first
version of the Digital Twin. Information on the position, type,
and size of defects/damages from the Digital Twin can be
used to determine if maintenance is needed on the physical
structure.To enable the integration and interoperability of the
detection results with the semantic digital twins, it is necessary
to create an ontology for storing the damaged areas patterns,
damage classification, related images, linking the damages to
their geometrical representation to the digital object. In our
study, data follow the Concrete Damage Ontology [27]

The Digital Twin can be updated, based on the new images.
In the future, the proposed Digital Twin can be used to

facilitate immersive inspection of the area even with VR
glasses using the VR plugin of Blender application to evaluate
its structural integrity.

Fig. 2. Concrete Damage Ontology (CDO). Visualisation using WebVOWL
tool [27]

A. Data collection

Data collection is a significant process for effective inspec-
tion of infrastructures. However, there are scenarios where
infrastructures are located on a large scale or at high-altitude,
making accessibility challenging. For this purpose, a UAV
operation was carefully designed with the intention of thor-
oughly covering the area. The integration of a high-resolution
camera into the UAV provided footage of the scene from
multiple perspectives, encompassing otherwise inaccessible
areas and offering a more unobstructed view of the site, while
minimising the requirement for human labour. The primary
objective is to create a comprehensive dataset consisting of
high-resolution images, detailing the target area from varying
viewing angles and altitudes. In this way, sufficient overlap of
images is ensured, which significantly enhances the accuracy
of 3D reconstruction.

The density of images is selected to ensure the necessary
overlap between the images, both vertically and horizontally.
The amount of overlap necessary for effective NeRF recon-
structions is not specified as a straightforward percentage or
metric; therefore, we adhered to the widely accepted guideline
for photogrammetry, which defines the minimum overlap
between the photos as 60%.

B. NeRF-based 3D Reconstruction

In photogrammetry involving a single camera, an object in a
real-world coordinate system is projected to a 2D image plane.
To restore the 3D information from 2D images, relationships



Fig. 3. Damage Topology Ontology (DOT) [28]. Visualisation using WebVOWL tool

between the image plane and real locations should be esti-
mated. Traditional methods employed voxel grids and polygon
meshes to store scenes, which were deemed inefficient. In
contrast, NeRFs utilise a neural network which is trained to
accurately represent the intricate details of a scene. To this
end, the creation of a comprehensive and information-rich
dataset is imperative. In the initial stage, the raw footage
is processed to extract sequential RGB frames. Emphasis is
directed towards determining the sampling frequency for frame
extraction, thereby ensuring the required amount of overlap.
Subsequently, the position and the orientation of each image
in 3D space are estimated via a process known as camera
pose estimation. In detail, through this process, the spatial
location (x, y, z) and viewing direction (θ, ϕ) of each point
are defined, constituting continuous 5D coordinate vectors.
Then, these vectors are mapped to a higher-dimensional space,
enabling the model to accurately represent high-frequency
scene content. The transformed vectors are fed as input into
the neural network, which learns to predict through training
process the corresponding view-dependent RGB colour (c)
and volume density (σ). This approach, enables each point
to be distinctly represented when observed from various per-
spectives, thereby enhancing the scene’s overall representation.
Once the network is trained, high-detailed photo-realistic 3D

rendering is provided.
In order to incorporate NeRF capabilities with a semantic

digital twin, TurboNeRF was applied, a custom NeRF im-
plementation integrated into the interactive Blender platform.
TurboNeRF is based on Instant-NGP [26], leveraging multi-
resolution position hash encoding to achieve fast training of
large scenes.

C. Defect Detection

The scope of defect/damage detection on construction sur-
faces is covered either by the category of semantic segmenta-
tion or by the category of object detection. Given the recent
progress in YOLO-based object detection algorithms, which
include benefits such as high classification accuracy and real-
time throughput , we applied object detection to the task at
hand. Incoming images originated from drone footage using a
high-resolution camera, reinforcing the requirement for highly
efficient neural networks. A YOLO-based architecture was
chosen, for simplicity and due to the high network throughput
and the availability of open-source implementations in com-
mon machine-learning libraries.

In order to enable the detector’s output interoperability
and integration into semantic digital twins, an ontology that
explains the output data should be created and published, or
the output data should conform to an existing ontology. In



this study, data are mapped to the existing Concrete Damage
Ontology (CDO) [27], as depicted in Figure 2. The ontology
allows modelling the three classes currently identified by the
detector, i.e. cracks, spalling and corrosion stains due to steel
reinforcement degradation.

D. Integration of the defect detection tool with Semantic
Digital Twins

The process for integrating the defect detection into our
Blender-incorporated interactive Digital Twin tool unfolds in
the following steps. Initially, damages are detected via the
automated AI network, allowing for the estimation of the
localisation of the damage in pixel coordinates as long as the
camera’s position in the 3D space. This information then is
combined to registered the identified damages within the 3D
virtual space. The real world images are combined with the 3D
digital space, creating a cohesive digital representation. The
key element in this process is calculating the camera position
information using the images captured from a camera and
synthesising 3D virtual volumetric spaces using the position
information. As a final step, this synthesised information is
encoded according to the ontology. The CDO ontology is
directly linked to another ontology, the Damage Topology
Ontology (DOT) [28]. The DOT ontology (see Fig. 3) allows
modelling damaged areas, patterns, as well as to relate them to
inspection processes and inspection-related data. It also allows

linking the damages to their detected geometrical represen-
tation, as well as to pictures and built element models. This
integration allows for a structured representation of detected
defects, their exact locations, and dimensions within the digital
twin framework. By mapping the spatial and visual data to the
ontology, we enable seamless information flow between data
processing tools and semantic digital twins, which, through
RDF graphs, can link damage graphs to models of processes
and built products, and many other models representing the
asset’s context.

IV. VISUAL INTERFACE

In this section, the deployment of the proposed framework
for vision-based 3D inspection for maintenance activities is
presented in detail. Specifically, the developed framework was
tested over a highway overpass located in the Metropolitan
Area of Barcelona. The main object was to generate a 3D
representation of one of the bridge pillars while simultaneously
identifying any potential damages. Given the peculiarity of
the bridge, spanning over railway lines and rivers, with an
estimated length of 846 meters, manual inspection or data
acquisition using hand-held devices would substantially dimin-
ish the effectiveness and efficiency of inspection process. This
would lead to increased scanning time, human effort and costs.
Considering the aforementioned challenges, we deem that the
data acquisition and defect detection in an automated manner,
coupled with the 3D representation of the construction site
for remote inspection and maintenance activities, constitute a
semantic digital twin that facilitates efficient and meaningful
analysis of the infrastructure.

(a) (b)

Fig. 4. (a) Initial framework visualisation: Results of the camera poses
estimation in 3D space. (b) Results of 3D render after 65k training steps

In detail, data collection is conducted with the use of a
DJI Mavic Pro UAV model. Through a meticulously planned
operation, the UAV’s trajectory was optimised to cover the
scene from diverse perspectives, distances, and altitudes. Con-
sequently, a high-resolution video capturing the target from
multiple viewing angles was created, with a resolution of
8000 × 6000. In order to compose a dataset conducive to
subsequent 3D reconstruction process, 135 RGB frames were
extracted and then resized to 1500×1000, striking on balance
between dataset size and overlap. Next, camera poses and in-
trinsic camera parameters were estimated, utilising COLMAP
[29] Structure from Motion tool.

Once the dataset was created, then is fed as input to the
TurboNeRF model. The first part of the framework visible to
the user presents the camera poses in 3D space (see Fig 4a).
When start training button is executed, each pixel’s colour
and density within the bounding scene are optimised. Also
framework enable pausing the training at any point to evaluate
the ongoing results. Figure 4b illustrates a comprehensive
training after 65k steps.

Then, the framework is extended with a custom add-on,
developed inside Blender’s interface, named Defect Detection,
as shown in Figure 5. This addition offers an automated
method for defect detection and also interacts with the 3D
render. Upon selecting the Defect Detection custom add-on,
a menu with various operations is presented, providing users
with flexibility and control. Initially, user can navigate through
the 3D space and select any camera to view the scene from
the corresponding perspective. Within the first option, called
visualize image, the scene is split, with the left half

expanding to display a window containing the correspond-
ing real image, while the right half continues to display the 3D
render, showing the perspective of the selected camera in the
3D scene. In the second panel, named Damage Detection, two
additional buttons are available. The first one, called Detect
Damage, activates the damage detection algorithm. Upon
execution, the real-time object detection method YOLOv8 is
applied, identifying the position, size, and type of defects or
damages. In our specific case, the types of defects/damages



Fig. 5. Illustration of damage detection extension. Top right: Newly generated collection of cameras capturing detected defects. Bottom right: Type of damage
highlighted. Left half: Exact location of defect/damage outlined in red polygon. Right half: Corresponding camera view in 3D virtual space.

include cracks, delamination, and corrosion stains. After the
completion of the detection process, the specific type and
pixel-wise localisation of the damage are encoded using the
CDO and DOT ontologies, linking them with the spatial
location of the cameras in 3D virtual space. At the same time,
within Blender’s interface, a new collection is dynamically
generated, called Damage Detection Cameras, encompassing
all the cameras capturing one or more detected defects or
damages. Each defect’s type is visually represented to the
user through the corresponding camera’s properties, in the field
named damage type. Finally, when selecting a camera from
the newly generated collection, Show Detected Damage
operation activates this linkage, illustrating the precise location
of the defect/damage. Specifically, in the left half is depicted
the real image, with the affected area outlined by a red
polygon for easy identification. Simultaneously, the 3D render
automatically adjusts its viewpoint, providing a corresponding
view of the detected area within the immersive 3D virtual
environment.

Overall, our framework provides a continuous exchange of
data and information facilitated through the mapping of visual
and spatial data within the ontology.

V. CONCLUSION

In this paper, we propose a framework for a tool for
detecting and localising defects through an interactive 3D
model of a construction site built from 2D images taken
by a DJI commercial UAV. The framework also provides a
method to integrate the detected defects into semantic Digital
Twins. The Instant-NeRF algorithm in Blender trains the 3D
rendering, estimating camera parameters and building a radi-

ance field representation. Additionally, image data processed
by a semantic segmentation Unet detector provides semantic
and geometrical defect descriptions. Defects detected conform
to a defect-specific domain ontology, the Concrete Damage
Ontology, which enables relating damages with data from
other knowledge domains, making it easier for managers to un-
derstand the condition of built assets and make better-informed
decisions. Moreover, the automated framework emphasises on
human-centric features, avoiding time-consuming and risky
manual inspections, highlighting worker security and satis-
faction. We examine how this framework is used to manage
defect detection processes carried out in the field, as well as
how it helps automating the inspection information flow using
computer vision-based automatic defect detection methods in
a real bridge located in Barcelona. As this research is at a
conceptual level, we need to validate the proposed system and
prototype with more construction domain data. Our machine
vision-based Defect Inspection System overcomes significant
limitations for use on construction sites by integrating with
existing BIM tools to simplify creating defect management
information and providing markers for defect localisation
and classification. Future research will assess the practical
applicability of our system in the construction field, focusing
on efficiency and effectiveness. We also aim to expand the
scope of our research by incorporating quantitative results,
evaluating the detected defects in the virtual environment with
ground truth data, thus given a more comparative analysis
with existing methods. This work, showcasing the workflow
and functionality, aims to shift from current reactive defect
management practices in the construction industry to a more
proactive approach.
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