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Abstract—This paper focuses on one of the recent concerns
that has arisen regarding the network softwarization, specifically,
traffic attestation in service chaining. The central focus of the
paper is the design, development, and evaluation of an implemen-
tation of Ordered Proof of Transit (OPoT) as a solution to validate
flow paths in the network. This solution uses Shamir’s Secret
Sharing (SSS) system to add metadata to each packet, updating
them at each node or service it traverses until reaching the
final destination. This method ensures the validation of services
traversed by the packet at the last crossing point, providing
an additional layer of security and preventing unauthorized
modifications to the flow of data traffic. We report here how
a programmable data plane, based on the P4 language, can be
used to provide OPoT features dynamically, according to user
and network policy requirements. Additionally, a controller will
be developed to configure the network nodes, execute OPoT, and
monitor the system state.
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I. INTRODUCTION

In recent years, the transformation of the network towards
SDN [1] and NFV has led to the development of new innova-
tive technologies but also new concerns regarding security.

On the one hand, P4 [2] has emerged as a significant
component in this transformation. P4 allows the programming
of network devices independently of the protocol. With P4,
engineers can define how network packets should be processed
and how routing decisions should be made. This has enabled
greater customization and adaptability in the behavior of net-
work devices. Furthermore, P4 also enhances the performance
of software-defined networks by enabling more efficient and
specific programming.

On the other hand, one of the main concerns in the network
evolution, where different services are deployed, is the path
taken by packets. Specifically, it is key to validate that the
flow travels through the services defined in a specific order,
as virtualized environments reduce visibility over the traffic
route.

Proof of Transit (PoT) proposes a solution to validate the
paths a flow takes in the network by sharing a small segment
of metadata added to each packet. This metadata is updated at
each node or service crossed along the path until reaching the
final destination. A central controller divides a secret into as

many parts as there are nodes participating in the system and
sends it through a secure channel, following Shamir’s Secret
Sharing Scheme (SSS) [3]. The set of secrets is managed by
the controller and applied by the verifying node, which is
the last one on the route. When the last node receives the
PoT data, it compares the received value with its secret to
validate whether the packet has followed the correct route. To
ensure the established order, Ordered Proof of Transit (OPoT)
is proposed in[4], which extends the PoT scheme by adding
symmetric masking between nodes.

In [4], apart from the OPoT conceptual definition some
security aspects are analyzed. RFC 9197 defines an IOAM
field to include PoT parameters to support path verification,
but not the ordered version. [5] proposes to employ quantum
technologies for key generation to support symmetric masking
between nodes. While [6] defines an alternative approach to
perform Proof of Transit in P4 by using PolKA [7], it does
not explicitly define a method for performing operations in a
specific order (OPoT) and uses Mersenne numbers to address
the lack of modulo operation in the P4 language.

In this paper, the authors propose a P4-based solution that
can increase the efficiency and versatility implementing OPoT
required functionalities.

The rest of the paper is organized as follows: Section
II discusses a pair of examples use cases where OPoT can
be used. The prototype implementation details are elaborated
in Section III. Section IV is dedicated to the validation of
our work, including testing scenarios and presents the results.
Finally, Section V concludes the paper and provides insights
into potential future work.

II. USE CASES

This section describes two possible use cases where the
developed framework of Ordered Proof of Transit can be
applied.

A. OPoT-Based VPN

This use case aims to address the problem currently af-
fecting most Virtual Private Network (VPN) services offered
by MPLS providers, both at Layer 2 in a VPLS and at Layer
3. When a client connects to a VPN, they must fully trust
the VPN MPLS provider, as the traffic is routed through the
VPN to its destination, and the client has no means to verify



if the traffic has been diverted, or altered the order, during this
process.

There might be instances where the provider incorrectly
provisions MPLS labels, potentially exposing sites of different
clients to other Provider Edge (PE) routers. Also, an error
in VPN route configuration could direct traffic through the
same PE but to different Customer Edge (CE) routers, also
exposing the traffic to other undesired clients. Moreover, to
ensure security or maintain compliance requirements, certain
organizations utilizing MPLS VPNs may necessitate a strict
ordering in packet delivery between their dispersed branches.

By implementing OPoT, clients can trust that their traffic
has passed through a specific set of nodes to reach its intended
destination and has not exited the VPN without their knowl-
edge. This requires activating PoT for any PE in the operator’s
network.

This solution can be extended to Software-Defined Wide
Area Network (SD-WAN) and Secure Access Service Edge
(SASE) technologies, leveraging either MPLS or an over-
lay connectivity. Integrating OPoT verification into customer
premises equipment (CPEs) and providing associated metrics
in the SD-WAN client console will enhance the trustworthiness
of these solutions.

This use case holds many possibilities. For instance, if the
VPN has a security and monitoring system in place, PoT can
be used to verify that client traffic goes through this system,
enhancing the security of users within the VPN.

B. Multi-domain infrastructure verification and OPoT

Future vertical services supported by 6G will depend on
solutions that implement a certain degree of automation in the
network management plane to ensure smooth network slice
connectivity over different domains interconnected such as
public and non-public Radio Access Network (RAN), trans-
port, Edge, or cloud. Part of the management decision process
will involve an evaluation of the security and trust levels
of these network domains and the end-to-end connectivity
for these vertical services. Visibility and verification of how
network paths are established will become an essential feature
for critical services.

This use case proposes the use of OPoT to generate metrics
that assist in this management decision-making process in 6G.
An example could be a smart city application deployed across
several neighboring metropolitan areas, utilizing a 6G multi-
domain network slice neutral-host infrastructure. The deploy-
ment involves sensitive data, such as surveillance device data.
The public administration deploying the application requires
guarantees that the applications and data running over multiple
domains such as edge are those specified by contract, for
example domain providers with higher security and trust levels
for sensitive components and incorporating verifiable privacy
principles.

III. IMPLEMENTATION

A. Architecture

In this section, the architecture of the entire system is
explained. As shown in Figure 1, the system comprises four

elements: the P4 nodes, responsible for all the OPoT-related
logic (adding/removing headers, calculating parameters, and
sending metrics); the controller, in charge of configuring the
nodes with a P4 program containing the necessary OPoT
logic, as well as sending parameters for calculations performed
in the nodes; two hosts that generate and receive traffic,
which is verified by OPoT; and a collector whose task is to
process the metrics received by the nodes and send them to a
database for subsequent analysis. These elements are detailed
in section III-B.

Fig. 1: OPoT system architecture

The general workflow of the system is summarized as
follows:

1) The controller generates OPoT configuration and pa-
rameters to set up the nodes through gRPC messages
while initiating the OPoT service.

2) The controller starts the collector to receive metrics
from the nodes.

3) Once nodes are configured, the hosts begin sending
traffic. This traffic passes through the established path
of nodes, receiving specific treatment depending on
the packet position in the path.

4) Packets arrive at the ingress node defined by the
controller. The ingress node adds three headers to the
packet containing the calculated OPoT parameters.
Before sending it, the packet is encrypted with a mask
provided by the controller.

5) Then, middle nodes process the packets: extracting
the OPoT content by decrypting it with a mask,
calculating new parameters, and sending them again
encrypted to the next node.

6) Lastly, the egress node extracts the content, performs
OPoT calculations, and verifies their correctness.

7) If incorrect calculations are detected, the packet is
discarded. If correct, OPoT headers are removed, and
the packet is sent to the final host.

8) During this process, nodes send metrics every five
processed packets to a collector. These metrics in-
clude data like packet sequence number, RND and
CML values, or timestamps.

9) The collector processes the received packets and
sends them to a database.

From a data plane perspective, each switch operates follow-
ing the v1model architecture [8]. This means that every packet



reaching a switch configured with the P4 program is parsed
to obtain header data, verifies the checksum value present in
its headers, and enters a pipeline containing multiple match-
action tables computed based on the obtained values. After
making the necessary modifications to the processed packets,
a new checksum value calculation is performed on the headers
requiring it, and the packet is deparsed to send it to the next
node. Figure 2 summarizes this process.

Fig. 2: Flow that packet follows when reaching a P4 node

B. Components

1) Controller : The controller serves as the central entity
that manages and orchestrates network traffic, responsible
for the overall functioning of the OPoT system. It handles
the configuration of P4 nodes by generating specific OPoT
parameters based on the network topology. These are necessary
for the OPoT nodes to perform the calculation described in [4]:

CML = ((f1(xi)+f2(xi)+RND)∗LPCi)+CMLi−1(modp)

The list of parameters generated by the controller includes:

• Prime number p needed for performing all opera-
tions within the arithmetic field defined by the prime
number.

• OPoT identifier: a unique identifier for a specific
node route where OPoT is configured. This parameter
will be sent to the ingress node.

• Service Index: defined by a number, it establishes the
position of an OPoT node in the route.

• Secret Polynomial f1(x) of degree n-1, where n
is the number of nodes in the scenario. n points
are generated from this polynomial and sent to each
respective node. Additionally, the constant term of
this polynomial is sent to the egress node. This term
serves as a verification key to confirm that the traffic
has passed through the designated OPoT nodes in the
configuration.

• Lagrange Polynomial Constants (LPC) derived
from the n calculated points. They are sent to each
node in the same manner as the points of the secret
polynomial.

• Public Polynomial f2(x) of degree n-1, where n
is the number of nodes in the scenario. n points

are generated from this polynomial and sent to each
respective node.

• XOR masks for implementing OPoT.

• Magic numbers: Since the P4 language has not
implemented modulo or division operations, necessary
for OPoT calculations, magic numbers [9] are used
to perform these operations. Therefore, the controller
sends magic numbers to all nodes to perform the
operations. The calculation of these magic numbers
varies depending on the generated prime number.

The controller, once the parameters are generated, compiles
the P4 program, establishes a secure gRPC channel using TLS
for parameter transmission, and configures the nodes through
the P4Runtime API to act as PoT nodes.

2) P4 Nodes : The P4 nodes are switches are in charge of
forwarding packets. These nodes are connected to a controller
via gRPC using the P4Runtime Control API. In this way, the
P4 nodes only need to run a P4Runtime server that listens to
the controller gRPC communications.

At this stage, there are three different types of P4 nodes,
depending on the rules installed in the switches:

Ingress node

It is the node that each packet encounters upon entering the
OPoT-enabled path. There are only two in the entire system,
one for each boundary. Depending on the traffic direction, a P4
node acts as either an ingress or egress node. The ingress node
is responsible for adding headers to the packet so that all other
nodes recognize it as an OPoT packet and apply the necessary
calculations. Specifically, this node performs an encapsulation
of the original IP packet. For this implementation, Network
Service Header (NSH) [10] has been selected. Here, a size of
16 bytes is specified for the Context Header, which carries the
OPoT parameters:

• RND (32 bits): it is a random value acting as the
independent term of the public polynomial. A different
value is calculated each time a packet enters the OPoT.
It is used by each node to compute the accumulated
value and compare it with the secret key in the final
node.

• CML (64 bits): it is the accumulated value resulting
from OPoT operations. Each node receives this value
from the previous node, except the ingress node, which
performs calculations without a previous accumulated
value.

• Sequence number (32 bits): this number identifies
each packet in the OPoT. It increments each time a
packet passes through the ingress node.

Figure 3 demonstrates how these headers are added and
how the packet is encapsulated.

Fig. 3: Packet encapsulation after ingress node processing



Regarding the OPoT, the ingress node needs to perform
several operations to construct the NSH header:

• Calculate the RND value randomly between one and
the prime number received from the controller.

• Compute the CML value using the parameters re-
ceived from the controller.

• Increment the sequence number by one to assign it to
the current packet. To achieve this, the P4 program
uses a register that initializes when the switch starts
and updates each time a packet enters the OPoT.

Once the Context Header is constructed with the three
parameters, it is encrypted using an upstream mask to perform
the OPoT. This same mask is only available to the adjacent
node. Consequently, only the next node in the OPoT sequence
can correctly decipher the packet. Finally, the output port is
set to send the packet to the next P4 node.

Middle Node

This node is responsible for forwarding packets to the sub-
sequent node. It neither adds nor removes any headers. There
can be as many middle nodes as required. Upon receiving a
packet, the values within the Context Header are deciphered
using the downstream mask provided by the controller. Using
these values, the node performs two distinct operations

• Compute the new CML with the values provided by
the controller and the RND and CML values from the
preceding node.

• Update the Service Index value.

Once these operations are executed, the metadata from the
Context Header is encrypted using the upstream mask, and the
packet is forwarded to the next node.

Egress node

The egress node performs the opposite of the ingress node.
Similar to the ingress node, there are only two egress nodes in
the system, one on each border. Firstly, the node extracts the
values from the context header and decrypts them using the
downstream mask. Subsequently, it executes two operations:

• Similar to the middle node, it computes the new CML
using the values provided by the controller and the
RND and CML values from the previous node.

• It compares the calculated CML with the sum of the
RND value and the validation key (independent term
of the secret polynomial). If the values match, it means
that the packet has traversed the entire OPoT path, and
the packet is accepted. If they do not match, the packet
is instantly discarded.

If the packet is accepted, the egress node undoes the
encapsulation by removing the headers added previously at
the ingress node (Figure 4).

3) Collector : The collector is the component responsible
for gathering information about the network state. The OPoT
node sends periodic metrics about processed packets, which
are collected by this component. For this purpose, a collector
is deployed within the same subnet as the controller.

Fig. 4: Packet decapsulation after egress node treatment

Firstly, the OPoT nodes generate and send packets with
metrics through the interface connected to the collector. Met-
rics are generated using the P4 clone function, which dupli-
cates processed OPoT packets to modify and process them
as metric packets. This process occurs when the egress node
discards a packet or periodically if the packets are accepted,
to prevent network congestion.

Secondly, the collector extracts information from these
packets for processing, and finally, the resulting metrics are
stored in an Influx database [11] connected to the collector.

IV. VALIDATION

This section details the different OPoT implementation
scenarios, along with the tests conducted to validate its correct
operation and measure its performance.

A. Scenarios

Various scenarios have been defined based on the nature of
the tests performed. For basic functional tests, a basic linear
topology scenario with four nodes has been used, as shown
in section III-A. Additionally, linear scenarios with a greater
number of nodes have been defined for performance tests.
Finally, tests have been conducted in a malicious scenario that
includes an additional malicious node that does not perform
the OPoT. This node acts as an external agent that captures
traffic between two OPoT nodes. Specifically, the external
agent impersonates an intermediate node by bypassing the
traffic, as shown in figure 5.

This scenario serves as a test to demonstrate how the
system behaves when the traffic does not follow the expected
path, caused by a malicious agent or a configuration error.

Fig. 5: Malicious scenario

B. Results

Initially, a scenario is created with four nodes configured
to perform OPoT. Subsequently, to verify the system proper



functioning, several packets are transmitted from host 1 to host
2. Accessing the Influx database allows retrieval of metrics
related to the transmission, as described in section III-B3.

After the initial test of the four-node scenario, a similar
test is conducted in the malicious scenario. However, in this
case, packets do not reach their destination (Table I).

time CML Dropped RND Sequence
Number

Service
Index

Switch
IP

0 11 0 58 0 3 10.0.0.11
3 57 0 58 0 2 10.0.0.12
6 13 1 58 0 0 10.0.0.14

1004 7 1 27 1 0 10.0.0.14
2004 37 1 48 2 0 10.0.0.14
3003 21 1 10 3 0 10.0.0.14
4004 51 1 31 4 0 10.0.0.14

TABLE I: Malicious scenario stored metrics

Each packet received by the output node is marked as
“dropped”. The cause of this behaviour lies in the presence of
a malicious node acting as a middle node, with IP 10.0.0.13,
but not correctly performing the OPoT calculations. Therefore,
when the packets reach the egress node, it discards them, and
host 2 never receives them. The other nodes in the network
continue generating metrics every five packets, except for the
middle node, which never receives any packets.

Performance tests

Several tests have been conducted to measure the system
performance. Initially, the performance of the scenario is com-
pared to an equivalent scenario but with P4 nodes configured
for basic packet forwarding without OPoT functionality. Then,
the frequency of metric generation and transmission to the
collector is changed. Finally, the performance is measured by
modifying the number of nodes operating with OPoT.

1) Performance compared to the scenario without OPoT:
It is crucial to determine the impact on performance caused
by OPoT compared to normal traffic behavior. To assess this,
latency and throughput are measured in a scenario with four
nodes, where each node is configured with a P4 program to
operate based on basic forwarding behavior (Figure 6).

Fig. 6: Latency comparison

Latency introduced in the forwarding scenario is 11.2
milliseconds, whereas in the OPoT scenario, it reaches 21.7
ms. This represents a 93% latency increase, nearly doubling
the initial value. Moreover, the latency variance is higher in the
OPoT scenario than in the forwarding scenario. This is due to
metric generation, occurring every five packets, requiring more

processing time than the usual OPoT processing. This metric
generation performance behavior will be further analyzed when
changing the frequency of this event. Regarding throughput,
the use of OPoT results in a 58% reduction in throughput.
In the case of UDP, the impact is more noticeable, with
throughput reduced by 82%.

Throughput (kbps) Forwarding OPoT Decrease
TCP 585 243 58%
UDP 2970 522,5 82%

TABLE II: Throughput stadistics

The observed performance loss indicates that this tech-
nology cannot be universally applied to every packet but
rather by sampling or selecting those flows or applications
where the use of OPoT is critical. This loss is considered
to be due to the mathematical calculations performed in the
OPoT table depicted in figure 2. Additionally, these tests have
been conducted in virtual environments without any hardware
acceleration. It is expected that implementing this on Tofino
[12] switches will improve performance.

2) Performance based on metric generation frequency:
For this test, the frequency at which nodes generate and send
metrics to the controller is altered to verify its impact on
system performance. It is important to note that the output
node is not discarding any packets in this test. If this node were
to discard any packets, the measurements would be altered, as
when the output node discards a packet, additional metrics are
generated.

(a) Latency (b) Throughput TCP

Fig. 7: Performance based on metric generation frequency

Both graphs (Figure 7) exhibit a logarithmic trend, where
the system performance significantly diminishes at higher
frequencies but stabilizes at lower frequencies. Based on these
results, the delay introduced by the metric generation process
can be estimated. Consequently, it is recommended to use
values between five and ten metrics, where there is a better
balance between performance and metric collection.

3) Performance based on the number of nodes in the sce-
nario: Lastly, these measurements are conducted to evaluate
the impact of the number of nodes in the OPoT process.
Figure 8 displays the results ranging from four to ten nodes.

It is noticeable that all graphs follow a linear trend,
emphasizing UDP throughput values, where the decrease in
performance is more pronounced than with TCP. The necessary
analysis of the number of required nodes is facilitated by this
linear behavior.



(a) Latency (b) Throughput

Fig. 8: Performance based on number of scenario nodes

V. CONCLUSIONS

In this paper, a system for dynamically verifying the routes
taken by traffic in the network has been developed. This system
has been validated by constructing various scenarios in which
different measurements have been conducted. OPoT is a very
interesting solution for solving problems of this nature, and
with the P4 language, we have been able to implement, with
varying levels of difficulty, all the operations required by
OPoT, confirming the viability of the solution.

Although the development primary focus was always on
the data plane, the project objectives expanded to program the
control plane and use a standard for sending OPoT parameters
through a secure channel. Additionally, the inclusion of the
metrics system posed a challenge in development, but once
resolved, it enhances the solution functionality through system
state monitoring.

Finally, various validation tests have been conducted to
verify the system proper functioning and measure its perfor-
mance. The results allow us to conclude that implementing
this solution in an environment where might be needed, is
viable. Nevertheless, it is important to consider that using
OPoT has a significant impact on network traffic performance
and comes with some limitations. Therefore, this prototype is
useful for networks where flows do not require high bandwidth
and where there is not a large number of hops.

A. Future Lines

Regarding future research directions, the top two priorities
are to migrate this solution to the Tofino architecture [12]
implemented by Intel’s intelligent switches and to integrate it
to an existing open-source controller such as ETSI TeraFlow
SDN [13]. These developments represent an improvement in
the performance achieved in packet processing within OPoT,
enhancing the system’s capabilities and outcomes.

Moreover, OPoT technology is very well positioned as
a source of trustworthiness of networks infrastructures. The
authors plan to study OPoT measurements integration with
trustworthiness and reputation engines to generate trust evalu-
ation for the providers of networks segments and nodes.

Furthermore, another improvement to be implemented in
the future is to establish a secure channel for metrics trans-
mission. Several solutions have been proposed to address
this, such as using masks to encrypt information, which is
resource-intensive as it requires continuous modification to
prevent attackers from deciphering the content. There is also
consideration for using transport-level security protocols like
DTLS [14] or network-level security like IPsec [15].

Lastly, as the collected metric information is stored in a
database, the goal is to integrate this information into data
models that allow for a more comprehensive and detailed view
of the system, facilitating monitoring, analysis, optimization,
and informed decision-making. This leads to improved perfor-
mance, efficiency and scalability of the system.
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