
C/C++ Atomics Application Binary Interface
Standard for the Arm® 64-bit Architecture

2024Q1

Date of Issue: 19th August 2024

1 Preamble

1.1 Abstract
This document describes the C/C++ Atomics Application Binary Interface for the Arm 64-bit architecture.
This document lists the valid mappings from C/C++ Atomic Operations to sequences of AArch64
instructions. For further information on the memory model, refer to §B2 of the Arm Architecture
Reference Manual [ARMARM].

1.2 Keywords
C++, C, Application Binary Interface, ABI, AArch64, C++ ABI, generic C++ ABI, Atomics, Concurrency

1.3 Latest release and defects report
Please check C/C++ Atomics Application Binary Interface Standard for the Arm 64-bit Architecture for the
latest release of this document.

Please report defects in this specification to the issue tracker page on GitHub.

2

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

https://developer.arm.com/documentation/ddi0487/latest
https://github.com/ARM-software/abi-aa
https://github.com/ARM-software/abi-aa/issues

1.4 Acknowledgement
This ABI was written as part of Luke Geeson’s PhD on testing the compilation of concurrent C/C++ with
assistance from Wilco Dijkstra from Arm's Compiler Teams.

It is an offshoot from a paper that will be presented at OOPSLA 2024 [OOPSLA]: Mix Testing: Specifying
and Testing ABI Compatibility Of C/C++ Atomics Implementations by Luke Geeson, James Brotherston,
Wilco Dijkstra, Alastair Donaldson, Lee Smith, Tyler Sorensen, and John Wickerson.

1.5 Licence
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Grant of Patent License. Subject to the terms and conditions of this license (both the Public License and
this Patent License), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Licensed Material, where such license applies
only to those patent claims licensable by such Licensor that are necessarily infringed by their
contribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such
contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim
or counterclaim in a lawsuit) alleging that the Licensed Material or a contribution incorporated within the
Licensed Material constitutes direct or contributory patent infringement, then any licenses granted to You
under this license for that Licensed Material shall terminate as of the date such litigation is filed.

1.6 About the license
As identified more fully in the Licence section, this project is licensed under CC-BY-SA-4.0 along with an
additional patent license. The language in the additional patent license is largely identical to that in
Apache-2.0 (specifically, Section 3 of Apache-2.0 as reflected at
https://www.apache.org/licenses/LICENSE-2.0) with two exceptions.

First, several changes were made related to the defined terms so as to reflect the fact that such defined
terms need to align with the terminology in CC-BY-SA-4.0 rather than Apache-2.0 (e.g., changing “Work”
to “Licensed Material”).

Second, the defensive termination clause was changed such that the scope of defensive termination
applies to “any licenses granted to You” (rather than “any patent licenses granted to You”). This change is
intended to help maintain a healthy ecosystem by providing additional protection to the community
against patent litigation claims.

1.7 Contributions
Contributions to this project are licensed under an inbound=outbound model such that any such
contributions are licensed by the contributor under the same terms as those in the Licence section.

1.8 Trademark notice
The text of and illustrations in this document are licensed by Arm under a Creative Commons
Attribution–Share Alike 4.0 International license ("CC-BY-SA-4.0”), with an additional clause on patents.
The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Please visit
https://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

1.9 Copyright
Copyright (c) 2024, Arm Limited and its affiliates. All rights reserved.

3

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

https://2024.splashcon.org/track/splash-2024-oopsla#event-overview
http://creativecommons.org/licenses/by-sa/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://www.arm.com/company/policies/trademarks

Contents
1 Preamble 2

1.1 Abstract 2

1.2 Keywords 2

1.3 Latest release and defects report 2

1.4 Acknowledgement 3

1.5 Licence 3

1.6 About the license 3

1.7 Contributions 3

1.8 Trademark notice 3

1.9 Copyright 3

2 About this document 5

2.1 Change control 5

2.1.1 Current status and anticipated changes 5

2.2 Change History 5

2.3 References 5

2.4 Terms and Abbreviations 7

3 Overview 8

4 AArch64 atomic mappings 9

4.1 Synchronization Fences 9

4.2 32-bit types 9

4.3 8-bit types 12

4.4 16-bit types 12

4.5 64-bit types 12

4.6 128-bit types 12

5 Special Cases 19

5.1 Unused result in Read-Modify-Write atomics 19

5.2 Const-Qualified 128-bit Atomic Loads 20

4

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

2 About this document

2.1 Change control

2.1.1 Current status and anticipated changes
The following support level definitions are used by the Arm Atomics ABI specifications:

Release

Arm considers this specification to have enough implementations, which have received sufficient
testing, to verify that it is correct. The details of these criteria are dependent on the scale and
complexity of the change over previous versions: small, simple changes might only require one
implementation, but more complex changes require multiple independent implementations, which
have been rigorously tested for cross-compatibility. Arm anticipates that future changes to this
specification will be limited to typographical corrections, clarifications and compatible extensions.

Beta

Arm considers this specification to be complete, but existing implementations do not meet the
requirements for confidence in its release quality. Arm may need to make incompatible changes if
issues emerge from its implementation.

Alpha

The content of this specification is a draft, and Arm considers the likelihood of future incompatible
changes to be significant.

All content in this document is at the Alpha quality level.

2.2 Change History
If there is no entry in the change history table for a release, there are no changes to the content of the
document for that release.

Issue Date Change

00alp
0

19th August 2024. Alpha Release.

2.3 References
This document refers to, or is referred to by, the following documents.

Ref External reference or URL Title

ARMA
RM

DDI 0487 Arm Architecture Reference Manual Armv8 for
Armv8-A architecture profile

CSTD ISO/IEC 9899:2018 International Standard ISO/IEC 9899:2018 –
Programming languages C.

AAELF
64

ELF for the Arm 64-bit Architecture
(AArch64)

ELF for the Arm 64-bit Architecture (AArch64)

CPPA
BI64

C++ ABI for the Arm 64-bit Architecture
(AArch64)

C++ ABI for the Arm 64-bit Architecture
(AArch64)

RATIO
NALE

Rationale Document for C11 Atomics
ABI

Rationale Document for C11 Atomics ABI

5

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/design-documents/atomics-ABI.rst
https://github.com/ARM-software/abi-aa/design-documents/atomics-ABI.rst

Ref External reference or URL Title

PAPER CGO paper Compiler Testing with Relaxed Memory Models

6

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

https://doi.org/10.1109/CGO57630.2024.10444836

2.4 Terms and Abbreviations
The C/C++ Atomics ABI for the Arm 64-bit Architecture uses the following terms and abbreviations.

AArch64

The 64-bit general-purpose register width state of the Armv8 architecture.

ABI

Application Binary Interface:

1. The specifications to which an executable must conform in order to execute in a specific
execution environment. For example, the Linux ABI for the Arm Architecture.

2. A particular aspect of the specifications to which independently produced relocatable files must
conform in order to be statically linkable and executable. For example, the C++ ABI for the Arm
64-bit Architecture [CPPABI64], or ELF for the Arm Architecture [AAELF64].

Arm-based

... based on the Arm architecture ...

Thread

A unit of computation (e.g. a POSIX thread) of a process, managed by the OS.

Atomic Operation

An indivisble operation on a memory location. This can be a load, store, exchange, compare, or
arithmetic operation. Atomics may be used to define higher level primitives including locks and
concurrent queues. ISO C/C++ defines a range of supported atomic types and operations.

Concurrent Program

A C or C++ program that consists of one or more threads. Threads may communicate with each
other through memory locations, using both Atomic Operations and standard memory accesses.

Memory Order Parameter

The order of memory accesses as executed by each thread may not be the same as the order they
are written in the program. The Memory Order describes how memory accesses are ordered with
respect to other memory accesses or Atomic Operations. ISO C/C++ defines a memory_order enum
type for the set of memory orders.

Mapping

A mapping from an Atomic Operation to a sequence of AArch64 instructions.

7

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases

3 Overview
AArch64 atomic mappings defines the mappings from C/C++ atomic operations to AArch64 that are
interoperable.

Arbitrary registers may be used in the mappings. Instructions marked with * in the tables cannot use WZR
or XZR as a destination register. This is further detailed in Special Cases.

Only some variants of fetch_<op> are listed since the mappings are identical except for a different <op>.

Atomic operations and Memory Order are abbreviated as follows:

Atomic Operation Short form

atomic_store_explicit(...) store(...)

atomic_load_explicit(...) load(...)

atomic_thread_fence(...) fence(...)

atomic_exchange_explicit(...) exchange(...)

atomic_fetch_add_explicit(...) fetch_add(...)

atomic_fetch_sub_explicit(...) fetch_sub(...)

atomic_fetch_or_explicit(...) fetch_or(...)

atomic_fetch_xor_explicit(...) fetch_xor(...)

atomic_fetch_and_explicit(...) fetch_and(...)

Memory Order Parameter Short form

memory_order_relaxed relaxed

memory_order_acquire acquire

memory_order_release release

memory_order_acq_rel acq_rel

memory_order_seq_cst seq_cst

If there are multiple mappings for an Atomic Operation, the rows of the table show the options:

Atomic Operation AArch64

store(loc,val,relaxed) ARCH1 option A

ARCH2 option B

Where ARCH is either the base architecture (Armv8-A) or an extension like FEAT_LSE.

Suggestions and improvements to this specification may be submitted to the: issue tracker page on
GitHub.

8

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/issues
https://github.com/ARM-software/abi-aa/issues

4 AArch64 atomic mappings

4.1 Synchronization Fences

Fence AArch64

atomic_thread_fence(relaxed)
NOP

atomic_thread_fence(acquire)
DMB ISHLD

atomic_thread_fence(release)
atomic_thread_fence(acq_rel)
atomic_thread_fence(seq_cst)

DMB ISH

4.2 32-bit types
In what follows, register X1 contains the location loc and W2 contains val. W0 contains input exp in
compare-exchange. The result is returned in W0.

Atomic Operation AArch64

store(loc,val,relaxed)
STR W2, [X1]

store(loc,val,release)
store(loc,val,seq_cst) STLR W2, [X1]

load(loc,relaxed)
LDR W2, [X1]

load(loc,acquire) Armv8-A
LDAR W2, [X1]

FEAT_RCPC
LDAPR W2, [X1]

load(loc,seq_cst)
LDAR W2, [X1]

exchange(loc,val,relaxed) Armv8-A
loop:
 LDXR W0, [X1]
 STXR W3, W2, [X1]
 CBNZ W3, loop

FEAT_LSE
SWP W2, W0, [X1] *

9

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation AArch64

exchange(loc,val,acquire) Armv8-A
loop:
 LDAXR W0, [X1]
 STXR W3, W2, [X1]
 CBNZ W3, loop

FEAT_LSE
SWPA W2, W0, [X1] *

exchange(loc,val,release) Armv8-A
loop:
 LDXR W0, [X1]
 STLXR W3, W2, [X1]
 CBNZ W3, loop

FEAT_LSE
SWPL W2, W0, [X1] *

exchange(loc,val,acq_rel)
exchange(loc,val,seq_cst)

Armv8-A
loop:
 LDAXR W0, [X1]
 STLXR W3, W2, [X1]
 CBNZ W3, loop

FEAT_LSE
SWAL W2, W0, [X1] *

fetch_add(loc,val,relaxed) Armv8-A
loop:
 LDXR W0, [X1]
 ADD W2, W2, W0
 STXR W3, W2, [X1]
 CBNZ W3, loop

FEAT_LSE
LDADD W0, W2, [X1] *

fetch_add(loc,val,acquire) Armv8-A
loop:
 LDAXR W0, [X1]
 ADD W2, W2, W0
 STXR W3, W2, [X1]
 CBNZ W3, loop

FEAT_LSE
LDADDA W0, W2, [X1] *

fetch_add(loc,val,release) Armv8-A
loop:
 LDXR W0, [X1]
 ADD W2, W2, W0
 STLXR W3, W2, [X1]
 CBNZ W3, loop

FEAT_LSE
LDADDL W0, W2, [X1] *

10

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation AArch64

fetch_add(loc,val,acq_rel)
fetch_add(loc,val,seq_cst)

Armv8-A
loop:
 LDAXR W0, [X1]
 ADD W2, W2, W0
 STLXR W3, W2, [X1]
 CBNZ W3, loop

FEAT_LSE
LDADDAL W0, W2, [X1] *

compare_exchange_strong(

loc,exp,val,relaxed,relaxed)

Armv8-A
 MOV W4, W0
loop:
 LDXR W0, [X1]
 CMP W0, W4
 B.NE fail
 STXR W3, W2, [X1]
 CBNZ W3, loop
fail:

FEAT_LSE
CAS W0, W2, [X1] *

compare_exchange_strong(

loc,exp,val,acquire,acquire)

Armv8-A
 MOV W4, W0
loop:
 LDAXR W0, [X1]
 CMP W0, W4
 B.NE fail
 STXR W3, W2, [X1]
 CBNZ W3, loop
fail:

FEAT_LSE
CASA W0, W2, [X1] *

compare_exchange_strong(

loc,exp,val,release,release)

Armv8-A
 MOV W4, W0
loop:
 LDXR W0, [X1]
 CMP W0, W4
 B.NE fail
 STLXR W3, W2, [X1]
 CBNZ W3, loop
fail:

FEAT_LSE
CASL W0, W2, [X1] *

11

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation AArch64

compare_exchange_strong(

loc,exp,val,acq_rel,acquire)

compare_exchange_strong(

loc,exp,val,seq_cst,seq_cst)

Armv8-A
 MOV W4, W0
loop:
 LDAXR W0, [X1]
 CMP W0, W4
 B.NE fail
 STLXR W3, W2, [X1]
 CBNZ W3, loop
fail:

FEAT_LSE
CASAL W0, W2, [X1] *

4.3 8-bit types
The mappings for 8-bit types are the same as 32-bit types except they use the B variants of instructions.

4.4 16-bit types
The mappings for 16-bit types are the same as 32-bit types except they use the H variants of instructions.

4.5 64-bit types
The mappings for 64-bit types are the same as 32-bit types except the registers used are X-registers.

4.6 128-bit types
Since the access width of 128-bit types is double that of the 64-bit register width, the following mappings
use pair instructions, which require their own table.

In what follows, register X4 contains the location loc, X2 and X3 contain the input value val. X0 and X1
contain input exp in compare-exchange. The result is returned in X0 and X1.

Atomic Operation AArch64

store(loc,val,relaxed) Armv8-A
loop:
 LDXP XZR, X1, [X4]
 STXP W5, X2, X3, [X4]
 CBNZ W5, loop

FEAT_LSE
 LDP X0, X1, [X4]
loop:
 MOV X6, X0
 MOV X7, X1
 CASP X0, X1, X2, X3, [X4]
 CMP X0, X6
 CCMP X1, X7, 0, EQ
 B.NE loop

FEAT_LSE2
STP X2, X3, [X4]

12

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation AArch64

store(loc,val,release) Armv8-A
loop:
 LDXP XZR, X1, [X4]
 STLXP W5, X2, X3, [X4]
 CBNZ W5, loop

FEAT_LSE
 LDP X0, X1, [X4]
loop:
 MOV X6, X0
 MOV X7, X1
 CASPL X0, X1, X2, X3, [X4]
 CMP X0, X6
 CCMP X1, X7, 0, EQ
 B.NE loop

FEAT_LSE2
DMB ISH
STP X2, X3, [X4]

FEAT_LRCPC3
STILP X2, X3, [X4]

store(loc,val,seq_cst) Armv8-A
loop:
 LDAXP XZR, X1, [X4]
 STLXP W5, X2, X3, [X4]
 CBNZ W5, loop

FEAT_LSE
 LDP X0, X1, [X4]
loop:
 MOV X6, X0
 MOV X7, X1
 CASPAL X0, X1, X2, X3, [X4]
 CMP X0, X6
 CCMP X1, X7, 0, EQ
 B.NE loop

FEAT_LSE2
DMB ISH
STP X2, X3, [X4]
DMB ISH

FEAT_LRCPC3
STILP x2, X3, [X4]

load(loc,relaxed) Armv8-A
loop:
 LDXP X0, X1, [X4]
 STXP W5, X0, X1, [X4]
 CBNZ W5, loop

FEAT_LSE
CASP X0, X1, X0, X1, [X4]

FEAT_LSE2
LDP X0, X1, [X4]

13

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation AArch64

load(loc,acquire) Armv8-A
loop:
 LDAXP X0, X1, [X4]
 STXP W5, X0, X1, [X4]
 CBNZ W5, loop

FEAT_LSE
CASPA X0, X1, X0, X1, [X4]

FEAT_LSE2
LDP X0, X1, [X4]
DMB ISHLD

FEAT_LRCPC3
LDIAPP X0, X1, [X4]

load(loc,seq_cst) Armv8-A
loop:
 LDAXP X0, X1, [X4]
 STXP W5, X0, X1, [X4]
 CBNZ W5, loop

FEAT_LSE
CASPA X0, X1, X0, X1, [X4]

FEAT_LSE2
LDAR X5, [X4]
LDP X0, X1, [X4]
DMB ISHLD

FEAT_LRCPC3
LDAR X5, [X4]
LDIAPP X0, X1, [X4]

exchange(loc,val,relaxed) Armv8-A
loop:
 LDXP X0, X1, [X4]
 STXP W5, X2, X3, [X4]
 CBNZ W5, loop

FEAT_LSE
 LDP X0, X1, [X4]
loop:
 MOV X6, X0
 MOV X7, X1
 CASP X0, X1, X2, X3, [X4]
 CMP X0, X6
 CCMP X1, X7, 0, EQ
 B.NE loop

FEAT_LSE128
MOV X0, X2
MOV X1, X3
SWPP X0, X1, [X4]

14

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation AArch64

exchange(loc,val,acquire) Armv8-A
loop:
 LDAXP X0, X1, [X4]
 STXP W5, X2, X3, [X4]
 CBNZ W5, loop

FEAT_LSE
 LDP X0, X1, [X4]
loop:
 MOV X6, X0
 MOV X7, X1
 CASPA X0, X1, X2, X3, [X4]
 CMP X0, X6
 CCMP X1, X7, 0, EQ
 B.NE loop

FEAT_LSE128
MOV X0, X2
MOV X1, X3
SWPPA X0, X1, [X4]

exchange(loc,val,release) Armv8-A
loop:
 LDXP X0, X1, [X4]
 STLXP W5, X2, X3, [X4]
 CBNZ W5, loop

FEAT_LSE
 LDP X0, X1, [X4]
loop:
 MOV X6, X0
 MOV X7, X1
 CASPL X0, X1, X2, X3, [X4]
 CMP X0, X6
 CCMP X1, X7, 0, EQ
 B.NE loop

FEAT_LSE128
MOV X0, X2
MOV X1, X3
SWPPL X0, X1, [X4]

15

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation AArch64

exchange(loc,val,acq_rel)
exchange(loc,val,seq_cst)

Armv8-A
loop:
 LDAXP X0, X1, [X4]
 STLXP W5, X2, X3, [X4]
 CBNZ W5, loop

FEAT_LSE
 LDP X0, X1, [X4]
loop:
 MOV X6, X0
 MOV X7, X1
 CASPAL X0, X1, X2, X3, [X4]
 CMP X0, X6
 CCMP X1, X7, 0, EQ
 B.NE loop

FEAT_LSE128
MOV X0, X2
MOV X1, X3
SWPPAL X0, X1, [X4]

fetch_add(loc,val,relaxed) Armv8-A
loop:
 LDXP X0, X1, [X4]
 ADDS X0, X0, X2
 ADC X1, X1, X3
 STXP W5, X0, X1, [X4]
 CBNZ W5, loop

FEAT_LSE
 LDP X0, X1, [X4]
loop:
 MOV X6, X0
 MOV X7, X1
 ADDS X8, X0, X2
 ADC X9, X1, X3
 CASP X0, X1, X8, X9, [X4]
 CMP X0, X6
 CCMP X1, X7, 0, EQ
 B.NE loop

16

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation AArch64

fetch_add(loc,val,acquire) Armv8-A
loop:
 LDAXP X0, X1, [X4]
 ADDS X0, X0, X2
 ADC X1, X1, X3
 STXP W5, X0, X1, [X4]
 CBNZ W5, loop

FEAT_LSE
 LDP X0, X1, [X4]
loop:
 MOV X6, X0
 MOV X7, X1
 ADDS X8, X0, X2
 ADC X9, X1, X3
 CASPA X0, X1, X8, X9, [X4]
 CMP X0, X6
 CCMP X1, X7, 0, EQ
 B.NE loop

fetch_add(loc,val,release) Armv8-A
loop:
 LDXP X0, X1, [X4]
 ADDS X0, X0, X2
 ADC X1, X1, X3
 STLXP W5, X0, X1, [X4]
 CBNZ W5, loop

FEAT_LSE
 LDP X0, X1, [X4]
loop:
 MOV X6, X0
 MOV X7, X1
 ADDS X8, X0, X2
 ADC X9, X1, X3
 CASPL X0, X1, X8, X9, [X4]
 CMP X0, X6
 CCMP X1, X7, 0, EQ
 B.NE loop

fetch_add(loc,val,acq_rel)
fetch_add(loc,val,seq_cst)

Armv8-A
loop:
 LDAXP X0, X1, [X4]
 ADDS X0, X0, X2
 ADC X1, X1, X3
 STLXP W5, X0, X1, [X4]
 CBNZ W5, loop

FEAT_LSE
 LDP X0, X1, [X4]
loop:
 MOV X6, X0
 MOV X7, X1
 ADDS X8, X0, X2
 ADC X9, X1, X3
 CASPAL X0, X1, X8, X9, [X4]
 CMP X0, X6
 CCMP X1, X7, 0, EQ
 B.NE loop

17

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation AArch64

fetch_or(loc,val,relaxed) FEAT_LSE128
MOV X0, X2
MOV X1, X3
LDSETP X0, X1, [X4]

fetch_or(loc,val,acquire) FEAT_LSE128
MOV X0, X2
MOV X1, X3
LDSETPA X0, X1, [X4]

fetch_or(loc,val,release) FEAT_LSE128
MOV X0, X2
MOV X1, X3
LDSETPL X0, X1, [X4]

fetch_or(loc,val,acq_rel)
fetch_or(loc,val,seq_cst)

FEAT_LSE128
MOV X0, X2
MOV X1, X3
LDSETPAL X0, X1, [X4]

fetch_and(loc,val,relaxed) FEAT_LSE128
MVN X0, X2
MVN X1, X3
LDCLRP X0, X1, [X4]

fetch_and(loc,val,acquire) FEAT_LSE128
MVN X0, X2
MNV X1, X3
LDCLRPA X0, X1, [X4]

fetch_and(loc,val,release) FEAT_LSE128
MVN X0, X2
MVN X1, X3
LDCLRPL X0, X1, [X4]

fetch_and(loc,val,acq_rel)
fetch_and(loc,val,seq_cst)

FEAT_LSE128
MVN X0, X2
MVN X1, X3
LDCLRPAL X0, X1, [X4]

compare_exchange_strong(

loc,exp,val,relaxed,relaxed)

Armv8-A
loop:
 LDXP X6, X7, [X4]
 CMP X6, X0
 CCMP X7, X1, 0, EQ
 CSEL X8, X2, X6, EQ
 CSEL X9, X3, X7, EQ
 STXP W5, X8, X9, [X4]
 CBNZ W5, loop
 MOV X0, X6
 MOV X1, X7

FEAT_LSE
CASP X0, X1, X2, X3, [X4]

18

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation AArch64

compare_exchange_strong(

loc,exp,val,acquire,acquire)

compare_exchange_strong(

loc,exp,val,acquire,relaxed)

Armv8-A
loop:
 LDAXP X6, X7, [X4]
 CMP X6, X0
 CCMP X7, X1, 0, EQ
 CSEL X8, X2, X6, EQ
 CSEL X9, X3, X7, EQ
 STXP W5, X8, X9, [X4]
 CBNZ W5, loop
 MOV X0, X6
 MOV X1, X7

FEAT_LSE
CASPA X0, X1, X2, X3, [X4]

compare_exchange_strong(

loc,exp,val,release,relaxed)

Armv8-A
loop:
 LDXP X6, X7, [X4]
 CMP X6, X0
 CCMP X7, X1, 0, EQ
 CSEL X8, X2, X6, EQ
 CSEL X9, X3, X7, EQ
 STLXP W5, X8, X9, [X4]
 CBNZ W5, loop
 MOV X0, X6
 MOV X1, X7

FEAT_LSE
CASPL X0, X1, X2, X3, [X4]

compare_exchange_strong(

loc,exp,val,acq_rel,acquire)

compare_exchange_strong(

loc,exp,val,seq_cst,acquire)

Armv8-A
loop:
 LDAXP X6, X7, [X4]
 CMP X6, X0
 CCMP X7, X1, 0, EQ
 CSEL X8, X2, X6, EQ
 CSEL X9, X3, X7, EQ
 STLXP W5, X8, X9, [X4]
 CBNZ W5, loop
 MOV X0, X6
 MOV X1, X7

FEAT_LSE
CASPAL X0, X1, X2, X3, [X4]

5 Special Cases

5.1 Unused result in Read-Modify-Write atomics
CAS, SWP and LD<OP> instructions must not use the zero register if the result is not used since it allows
reordering of the read past a DMB ISHLD barrier. Affected instructions are marked with *.

19

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

5.2 Const-Qualified 128-bit Atomic Loads
Const-qualified data containing 128-bit atomic types should not be placed in read-only memory (such as
the .rodata section).

Before FEAT_LSE2, the only way to implement a single-copy 128-bit atomic load is by using a
Read-Modify-Write sequence. The write is not visible to software if the memory is writeable. Compilers
and runtimes should prefer the FEAT_LSE2/FEAT_LRCPC3 sequence when available.

20

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

	1 Preamble
	1.1 Abstract
	1.2 Keywords
	1.3 Latest release and defects report
	1.4 Acknowledgement
	1.5 Licence
	1.6 About the license
	1.7 Contributions
	1.8 Trademark notice
	1.9 Copyright

	2 About this document
	2.1 Change control
	2.1.1 Current status and anticipated changes

	2.2 Change History
	2.3 References
	2.4 Terms and Abbreviations

	3 Overview
	4 AArch64 atomic mappings
	4.1 Synchronization Fences
	4.2 32-bit types
	4.3 8-bit types
	4.4 16-bit types
	4.5 64-bit types
	4.6 128-bit types

	5 Special Cases
	5.1 Unused result in Read-Modify-Write atomics
	5.2 Const-Qualified 128-bit Atomic Loads

