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Abstract

Declarative process models allow us to capture the behavior of a business
process through temporal constraints on the evolution of process activities.
In process mining, declarative process discovery focuses on deriving these
constraints from event logs. Although the semantic aspects of declarative
processes have been extensively investigated, there has been less focus on de-
signing declarative visual notations that enhance model understanding and
support analysts in solving process mining tasks. To improve the human
understandability of declarative process models, in this paper, we present
easyDeclare, a novel visual notation to specify declarative process models
using the Declare language. easyDeclare was developed with consid-
eration of the well-established Moody’s design principles. We conducted
extensive user experiments to demonstrate that easyDeclare, when com-
pared with the original graphical representation of Declare, reduces the
cognitive load required to interpret Declare models of increasing complex-
ity, making it a promising alternative to enhancing overall comprehension
of declarative process discovery tasks.

1. Introduction

One of the most common ways to visualize and communicate process
mining insights is to use process models that show the actual flow of ac-
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tivities, events, and resources involved in a business process as recorded
in an event log. Process models can be represented through many lan-
guages (e.g., BPMN, Directly-Follow Graphs, Petri-Nets, etc.) that visually
map the overall process structure and support process mining specialists in
identifying problematic areas (e.g., congestion, bottlenecks) and improving
decision-making. The processes (and their issues) that such languages map
out ultimately need to be read by business stakeholders. However, the issue
with using such process-oriented languages is their level of interpretability
for persons who are not inherently from the field of computer science.

Despite the abundance of languages available for process models, it
is widely acknowledged that most process modeling languages fall some-
where on the imperative-declarative spectrum. Imperative notations such as
BPMN facilitate the description of sequential process flows, whereas declar-
ative specifications like Declare describe cause-effect temporal relations
between events [41]. Although the semantic aspects of declarative processes
have been extensively researched, there has been comparatively less focus
on designing declarative visual notations that enhance model understanding
and incorporating features into these notations that facilitate comprehension
as model complexity grows [26].

State-of-the-art solutions, e.g., [41, 11, 21], struggle with effectively com-
municating explicit concepts of how to interpret a declarative process model.
Existing literature suggests that a new notation easing understandability is
needed [16, 26]. This need arises because current notations can become over-
whelming and confusing, especially for non-expert stakeholders who need to
interpret these models to make informed business decisions. Given the im-
portance of declarative models in accurately reflecting the flexible nature of
business processes, improving their interpretability is critical for leveraging
the full potential of process mining.

Based on early-stage development [17], the notation presented in this
paper, called easyDeclare, is designed to ease the process of understand-
ing declarative process models. The development of this language has been
done with consideration of the well-established Moody’s design principles
[33] and several parameters (e.g., use of shapes) to maintain a contextual
fit. easyDeclare aims to bridge the gap between the complexity of declar-
ative models and the practical need for clarity and interpretability by busi-
ness stakeholders. It incorporates intuitive visual elements that simplify the
mapping of complex relationships and constraints within process models,
thereby reducing cognitive load and enhancing overall comprehension. We
also developed a software tool to support the creation of Declare models
based on our proposed graphical notation.
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We conducted extensive user experiments whose results highlight that
easyDeclare demonstrates superior effectiveness and efficiency in complex
tasks and higher user satisfaction in ease of use and intention to use if com-
pared with the original graphical representation of Declare. This makes
it a promising tool for improving the communication of process mining in-
sights related to declarative process discovery tasks to a broader audience,
ultimately supporting better decision-making and process optimization.

The rest of the paper is organized as follows. Section 2 first introduces
the required background on declarative processes and the development of
visual notations necessary to understand the paper. Then, it discusses some
state-of-the-art efforts aimed to improve the interpretability of Declare
models through innovative graphical notations. Section 3 describes the ra-
tionale for the design of easyDeclare. Section 4 presents the results of
the comparative evaluation conducted to assess easyDeclare against the
original graphical repesentation of Declare, focusing on performance and
perception metrics. Section 5 details the realization of the software tool
to specify Declare models through easyDeclare, showing its usability
through a dedicated user experiment. Finally, Section 6 concludes the paper.

2. Background and State of the Art

In this section, we introduce basic background concepts necessary for
comprehending the content of the paper.

2.1. Declare

Declare is a declarative process modeling language introduced by Pesic
and van der Aalst in [41]. Declare is qualified as “declarative” because it
does not explicitly specify every possible sequence of activities leading from
the start to the end of a process execution. Instead, it bases models on a set
of constraints that must hold true during the execution of the process. All
behaviors that respect those constraints are allowed. Constraints are applied
to sets of activities and mainly pertain to their temporal ordering. In partic-
ular, Declare specifies an extensible set of standard templates (see Table 1)
that a process analyst can use to model a process. Constraints are concrete
instantiations of these templates. Declare is equipped with a formal se-
mantics on Linear Temporal Logic on Finite Traces (LTLf ) [10], but the
use of templates makes model comprehension independent of the logic-based
formalization. Indeed, analysts can work with the graphical representation
of templates while the underlying formulas remain hidden. Graphically, a
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Table 1: Declare constraints

Constraint Explanation Examples Notation

Existence constraints

Existence(n, a) Activity a occurs at
least n times in the
trace

a

n..∗

Participation(a) ≡ Existence(1, a) a occurs at least once ✓ bcac ✓ bcaac × bcc × c
a

1..∗

Absence(m+ 1, a) a occurs at most m
times a

0..m

AtMostOne(a) ≡ Absence(2, a) a occurs at most once ✓ bcc ✓ bcac × bcaac × bcacaa
a

0..1

Init(a) a is the first to occur ✓ acc ✓ abac × cc × bac
a

Init

End(a) a is the last to occur ✓ bca ✓ baca × bc × bac
a

End

Relation constraints

RespondedExistence(a, b) If a occurs in the trace,
then b occurs as well

✓ bcaac ✓ bcc × caac × acc a b

Response(a, b) If a occurs, then b oc-
curs after a

✓ caacb ✓ bcc × caac × bacc a b

AlternateResponse(a, b) Each time a occurs,
then b occurs after-
wards, before a recurs

✓ cacb ✓ abcacb × caacb × bacacb a b

ChainResponse(a, b) Each time a occurs,
then b occurs immedi-
ately afterwards

✓ cabb ✓ abcab × cacb × bca a b

Precedence(a, b) b occurs only if pre-
ceded by a

✓ cacbb ✓ acc × ccbb × bacc a b

AlternatePrecedence(a, b) Each time b occurs, it
is preceded by a and no
other b can recur in be-
tween

✓ cacba ✓ abcaacb × cacbba × abbabcb a b

ChainPrecedence(a, b) Each time b occurs,
then a occurs immedi-
ately beforehand

✓ abca ✓ abaabc × bca × baacb a b

Mutual relation constraints

CoExistence(a, b) If b occurs, then a oc-
curs, and vice-versa

✓ cacbb ✓ bcca × cac × bcc a b

Succession(a, b) a occurs if and only if it
is followed by b

✓ cacbb ✓ accb × bac × bcca a b

AlternateSuccession(a, b) a and b if and only if
the latter follows the
former, and they alter-
nate each other in the
trace

✓ cacbab ✓ abcabc × caacbb × bac a b

ChainSuccession(a, b) a and b occur if and
only if the latter imme-
diately follows the for-
mer

✓ cabab ✓ ccc × cacb × cbac a b

Negative relation constraints

NotCoExistence(a, b) a and b never occur to-
gether

✓ cccbbb ✓ ccac × accbb × bcac a b

NotSuccession(a, b) a can never occur be-
fore b

✓ bbcaa ✓ cbbca × aacbb × abb a b

NotChainSuccession(a, b) a and b occur if and
only if the latter does
not immediately fol-
lows the former

✓ acbacb ✓ bbaa × abcab × cabc a b
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Declare model is a diagram in which activities are represented as nodes
(labeled rectangles) and constraints as arcs between activities.

Compared with procedural approaches, Declare models are more suit-
able for describing processes operating in unstable environments and char-
acterized by numerous exceptional behaviors. Since anything not explicitly
specified is allowed, a few constraints can specify many possible behaviors
at once. Declare templates can be divided into four main groups: exis-
tence templates, relation templates, mutual relation templates, and negative
relation templates. The first group consists of unary templates, which can
be expressed as predicates over a single parameter. The remaining groups
correspond to binary predicates over two parameters.

Starting from the first row of Table 1, Existence(n, a) is an existence
template that requires the execution of a at least n times in every process
instance. Participation(a) is a specific case where a is required to occur at
least once in every process instance. Similarly, according to Absence(m+
1, a), the execution of a is allowed at most m times in every process instance.
AtMostOne(a) specifies that a is not allowed to be executed more than
once in a process instance. Init(a) and End(a) specify that a occurs as the
first and last activity, respectively, in every process instance.

The group of relation templates comprises rules that are imposed on
the occurrence of target activities when activation tasks occur. For ex-
ample, RespondedExistence(a, b) is a relation template imposing that
if a is performed at least once during the process execution, then b must
also occur at least once, either before or after a. Response(a, b) extends
RespondedExistence(a, b) by requiring that bmust eventually occur after
a. AlternateResponse(a, b) further adds the condition that no other a
events can occur between the execution of a and the subsequent b. Template
ChainResponse(a, b) is even stricter, specifying that whenever a occurs, b
must occur immediately after. Precedence(a, b) requires that a must oc-
cur before b. AlternatePrecedence(a, b) adds to Precedence(a, b) the
condition that no other b events can occur between the execution of b and
the preceding a. Finally, ChainPrecedence(a, b) specifies that whenever
b occurs, a must occur immediately before.

Two specializations of the relation templates are mutual relation tem-
plates and negative relation templates. The first group includes templates
where both constrained activities are activation and target. For example,
CoExistence(a, b) is a mutual relation template requiring that if a is exe-
cuted, then b must be performed as well, and vice versa. Succession(a, b)
requires that both response and precedence relations hold between a and
b. AlternateSuccession(a, b) strengthens Succession(a, b) by specify-
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Figure 1: The Declare model of a flight booking process.

ing that activities must alternate without repetitions in between. Template
ChainSuccession(a, b) further strengthens AlternateSuccession(a, b)
by requiring that occurrences of activities a and b are next to each other.
In the second group, the occurrence of an activation activity excludes the
occurrence of a target activity. NotCoExistence(a, b) is a negative rela-
tion template requiring that if a is executed, then b cannot be performed
in the same trace, and vice versa. NotSuccession(a, b) requires that no
b activities occur after a (and therefore no a activities occur before b). Fi-
nally, NotChainSuccession(a, b) requires that the activity immediately
following a cannot be b.

Example 2.1 (A flight booking process model). The scenario presented
here illustrates the process a flight passenger follows from booking a ticket
to boarding the aircraft. The corresponding declarative model is depicted in
Fig. 1. The process begins with booking the ticket, represented in the model
by activity Start booking. Passengers’ personal information can then be pro-
vided and enriched with payment details. This submission is denoted as
activity Provide data in the figure. The subsequent step is the authorization of
the ticket payment (Pay), which triggers the completion of the booking phase
(Complete booking). The authorization is eventually followed by the actual
transfer of money (Complete transaction). As long as Check-in for the flight has
not occurred, customers can still modify the provided data, such as changing
the date of departure or amending personal information (Rebook flight). Af-
ter this, only cancellation is permitted (Undo booking), in case the passenger
ultimately decides not to proceed with boarding (Board flight).

The behavioral constraints specifying how the tasks can be carried out are
the following:

1. Init(Start booking)
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2. AtMostOne(Start booking)

3. Alt.Precedence(Start booking, Provide data)

4. Alt.Succession(Provide data, Pay)

5. Alt.Succession(Pay, Complete transaction)

6. Alt.Succession(Pay, Complete booking)

7. Alt.Precedence(Complete booking, Rebook flight)

8. NotSuccession(Check-in, Rebook flight)

9. Alt.Precedence(Check-in,Board flight)

10. NotSuccession(Board flight,Undo booking)

11. NotSuccession(Undo booking, Provide data)

2.2. Process Mining and Event Logs

Process mining is a family of techniques used to analyze and improve
business processes by extracting insights from the so-called event logs [40]
generated during the execution of those processes [15]. An event log is
a structured text file documenting the executions of a single process. Each
event log contains a collection of traces, each representing the enactment of a
unique case (a process instance). Traces are in turn sequences of events, i.e.,
single data entries related to the carry-out of an activity, within the process
instance evolution. In 2010, the IEEE Task Force on Process Mining has
adopted eXtensible Event Stream (XES)1 [44] as the standard for storing,
exchanging, and analyzing event logs.

Process mining involves three main types of activities: process discovery
identifying and visualizing the actual process flows from event logs, which
reveals how processes are performed in practice compared to their intended
designs; conformance checking comparing the discovered process models
against predefined models to identify discrepancies and ensure compliance
with desired process standards; model enhancement improving existing pro-
cess models based on insights gained from event logs, such as optimizing
performance, reducing bottlenecks, or increasing efficiency. By leveraging
data captured during process execution, process mining helps organizations
understand how their processes operate, identify areas for improvement, and
ensure that processes align with their goals and compliance requirements.

1http://www.xes-standard.org/
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2.3. Declarative Process Discovery

Declarative process discovery is a branch of process mining concerning
the discovery of declarative process models from event logs. This is the group
of techniques we deal with in this paper as we propose a new visual notation
that we demonstrate improves the current output of these process mining
techniques, which is primarily based on the original graphical representation
of Declare.

In the area of declarative process discovery with models expressed using
Declare, the work [31] first proposed an unsupervised algorithm for the
discovery of declarative process models This approach was improved in [28]
using a two-phase approach. The first phase is based on an apriori algorithm
used to identify frequent sets of correlated activities. A list of candidate
constraints is built on the basis of the correlated activity sets. In the second
phase, the constraints are checked by replaying the log on specific automata,
each accepting only those traces that are compliant to one constraint. Those
constraints satisfied by a percentage of traces higher than a user-defined
threshold, are discovered. Other variants of the same approach are presented
in [29, 27, 30]. The technique presented in [29] leverages apriori knowledge to
guide the discovery task. In [27], the author extends the approach to discover
metric temporal constraints, i.e., constraints taking into account the time
distance between events. Finally, in [30], the authors propose mechanisms
to reduce the execution times of the original approach presented in [28].

In [13], a two-step algorithm for the discovery of Declare constraints
is presented. The first step of the approach is the building of a knowledge
base, with information about temporal statistics about the (co-)occurrence
of tasks within the log. Then, the validity and the support of constraints is
computed by querying that knowledge base. The value assigned to support
is calculated by counting the activations not leading to violations of con-
straints. In [12],the authors propose an extension of MINERful to discover
target-branched Declare constraints, i.e., constraints in which the target
parameter is replaced by a disjunction of actual tasks.

Another approach for the discovery of Declare models is described
in [36]. The presented technique is based on the translation of Declare
templates into SQL queries on a relational database instance, where the
event log has previously been stored. The query answer assigns the free
variables with those tasks that lead to the satisfaction of the constraint in
the event log. The methodology has later been extended towards multi-
perspective Declare discovery [35], to include data in the formulation of
constraints. An Evolutionary Declare Miner that implements the discovery
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task using a genetic algorithm was presented in [43]. In [2], the authors in-
vestigate how to leverage Model Learning algorithms [38] for the automated
discovery of deterministic finite state automata representing Declare tem-
plates from event logs. Finally, an approach for the online discovery of
Declare models has been presented in [8]. Here, the models are discovered
from streams of events generated at runtime during the execution of a busi-
ness process. The models are adapted on-the-fly as soon as the behavior of
the underlying process changes.

The approaches mentioned above specify the discovered process models
leveraging the original graphical representation of Declare [39]. In Section
Section 2.5, we discuss some literature research efforts aimed to improve the
interpretability of Declare models through innovative (and sometime non-
conventional) graphical notations.

2.4. Designing and Developing Visual Notations

The use of visual notations is extensive throughout engineering and in-
formation technology, where shapes and patterns aim to represent processes
(e.g., BPMN, flowcharts, etc.). Developing a visual language’s syntax re-
quires an informative approach that considers several key parameters of
visual communication, such as the level of cognitive processing required to
understand and use the notation, the shapes used to communicate the pro-
cesses, and the conventions followed. By documenting this design approach,
the final design is justified, and insights can be gained into aspects that
effectively and efficiently communicate processes and those that do not.

Several frameworks provide principles for researchers developing or eval-
uating visual notations within a scientific context. For example, the Cogni-
tive Dimensions of Notations (CDs) framework defines 13 dimensions that
describe the structure of cognitive artifacts [20], while the Semiotic Quality
(SEQUAL) framework proposes general qualities for models and modeling
languages, organized along the semiotic ladder (i.e., the scale ‘physical’,
‘empirical’, ‘syntactic’, ‘semantic’, ‘pragmatic’, and ‘social’) [24].

However, one of the more notable examples, and one that is extensively
used, is The Physics of Notations theory by Moody [33] (PoN). PoN provides
the foundation for many studies either as a way to inform the development
of new visual notations or to examine the effectiveness of existing ones. This
theory presents a framework for how visual notations are constructed and
processed by the human mind, drawing on theories from communication,
graphic design, semiotics, visual perception, and cognition. Moody’s semi-
nal work emphasizes the meanings of graphical symbols and how they are
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Figure 2: Moody’s Visual Variables [33]

defined by mapping them to the constructs they represent [33]. Moody
asserts that visual variables define a set of atomic building blocks for con-
structing visual notations, where these variables provide the grammar for
the notation. Therefore, the choice of visual variables should not be ar-
bitrary but should consider the conventions of symbols currently used or
accepted within the field, follow a logical process, and be easily understood
by those using and interpreting the notation. This consideration is particu-
larly important because each variable has properties that can make it more
suitable for encoding certain types of information over others.

Based on this information, Moody presents nine principles for design-
ing cognitively effective visual notation, as shown in Fig. 2. The following
definitions are described in [42]:

1. Semiotic clarity: There should be a 1:1 correspondence between se-
mantic constructs and graphical symbols.

2. Perceptual discriminability: Symbols should be clearly distinguishable
from one another.

3. Semantic transparency: Use symbols whose appearance suggests their
meaning.

4. Complexity management: Include explicit mechanisms for dealing with
complexity.

5. Cognitive integration: Include explicit mechanisms to support the in-
tegration of information from different diagrams.

6. Visual expressiveness: Use the full range and capacities of visual vari-
ables.
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7. Dual coding: Use text to complement graphics.

8. Graphic economy: Keep the number of different graphical symbols
cognitively manageable.

9. Cognitive fit: Use different visual dialects for different tasks and/or
audiences.

Moody outlines three key properties that should be considered in the
development of visual notation:

• Level of organization: Each variable can encode a certain level
of information. For example, the use of color (e.g., red/green) can
indicate success or error.

• Capacity: While each variable has infinite variations, only a finite
number can be easily interpreted by the human mind (perceptible
steps). For example, orientation has an infinite number of possible
values (angles) but only four perceptible steps (its capacity or length).

• Efficiency: The order in which variables are processed (e.g., in par-
allel, sequentially, etc.).

In addition, Moody indicates approaches for dealing with excessive graphic
complexity, such as reducing semantic and graphic complexity and increas-
ing visual expressiveness.

Further emphasizing Moody’s work, both Popescu and Wegmann [34]
and Diamantopoulou and Mouratidis [14] explore the use of Moody’s nine
principles. Diamantopoulou and Mouratidis [14] assert that the design ra-
tionale for developing visual notation is often absent in the design of visual
notations. They infer that this could be due to the fact that the descrip-
tion and reporting of the language are oriented towards science rather than
art or design or that researchers consider visual notations as being informal
and, therefore, analyze the notations based on their semantics, potentially
undermining or undervaluing the role of design. Similarly, Popescu andWeg-
mann [34] and Genon, Heymans, and Amyot [19] also suggest using the set
of nine principles defined by Moody [33] to evaluate how effectively modeling
languages communicate their intended messages. Lastly, others have inves-
tigated systematic approaches to applying PoNs (e.g., [9, 42]), where such
approaches, such as Van Der Linden, Zamansky, and Hadar [42], propose
a systematic framework for applying the Physics of Notations that focuses
on guiding designers to make their design choices explicit and grounded in
evidence and requirements for their notation.
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2.5. Alternative notations for declarative constraints

Efforts to improve the interpretability of declarative models have been di-
verse, with several innovative graphical notations being proposed. Di Ciccio
et al. [11] introduced a graphical notation designed for declarative processes.
Their approach includes two complementary views of a model: a local view
and a global view. The local view focuses on one activity at a time, pro-
viding detailed insights. The global view offers an overview of the entire
model, showcasing the interconnections and flow. This notation uses a bi-
dimensional drawing where time is represented on the ordinates (y-axis) and
implication on the abscissa (x-axis). The thickness of the boundaries around
the boxes representing activities indicates their repeatability, cf. Fig. 3(a).
This dual view and the graphical representation aim to enhance the user’s
understanding of the process by visually differentiating between temporal
and causal relationships.

Conversely, Hanser et al. [21] propose an alternative notation that chal-
lenges the traditional Declare notation by using circles instead of squares.
This notation incorporates cursors to indicate sequential relations between
activities, with inwards and outwards cursors at the end of arcs. Optional
activities are represented by smaller circles placed in the middle of the arc,
often accompanied by an asterisk, indicating that additional constraints may
allow further activities to be executed in between.

Hanser’s notation represents an evolution of the declarative templates
initially presented by van der Aalst et al. [39]. It offers a fresh perspective
on designing process notations by revisiting and modifying existing elements,
aiming to provide a clearer and more intuitive visualization of constraints
and sequences within declarative models. Fig. 3(a) and Fig. 3(b) illustrate
these notations, showing theResponse(a, b) andAlternateResponse(a, b)
templates encoded using the respective styles proposed by Di Ciccio et al.
and Hanser et al.

Finally, in 2018, Ferro et al. [17] presented Verto, which included
restyling the original Declare constraints to align them with the state-
of-the-art design principles for visual notations. The list of Declare con-
straints represented with the Verto notation is shown in Fig. 3(c). These
visual representations ([11], [21], [17]) underscore the distinct approaches to
modeling and interpreting declarative processes using Declare, each with
its own set of advantages, limitations and enhancements.
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(a) Example local view of the activity a includ-
ing RespondedExistence(t, u) and Negation-
Response(t,q) from Di Ciccio et al. [11].

(b) Response(a, b) and
AlternateResponse(a, b) templates from
Hanser et al. [21]. (c) Verto templates presented in [17].

Figure 3: Alternative notations for declarative constraints

3. Design

Various elements influenced the design of easyDeclare. The first
step was analyzing the three existing notations for Declare: the original
one [39], the notation of Hanser et al. [21] and Verto [17]. We discarded
the notation in [11] from the analysis because it was neither evaluated nor
fully explained by the authors, denoting its early-stage fashion.

We identified some limitations in the notations by analyzing them di-
rectly and informally collecting feedback from professionals and researchers.
For Declare, two main limitations emerged. Firstly, the encodings of some
concepts could be more intuitive, leading to potential misinterpretations.
For example, using two lines for encoding alternate templates and three
lines for encoding chain templates can be confusing. Additionally, when
analyzing models with many templates, it becomes complicated to interpret
the templates because the information is represented both on the line and
at its ends. This increases cognitive load, especially when the entities it
connects are far apart. Hanser et al. share the same approach and similar
limitations. In particular, the use of inwards and outwards cursors and their
combination to represent sequentiality and activations challenges perceptual
discriminability. The main limitation of Verto, on the other hand, lies in
the high number of visual means necessary for constructing its templates.
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For example, different types of arrows represent response, succession, and
precedence. This can make it challenging for users to effectively utilize the
notation without extensive memorization and familiarity with the various
encodings.

We designed a new notation, named easyDeclare, from these limita-
tions and informed by the nine principles of Moody [33]. The new notation
addresses the identified limitations by simplifying the mapping of concepts
and reducing the cognitive load required to interpret models with many tem-
plates. The templates in the new notation are constructed by composing a
few elementary visual elements complying with the graphic economy. These
elements are designed to be intuitive and easy to remember, reducing the
need for extensive memorization. In the following, we present these ele-
ments, explaining their encoding mechanisms. We will then show how these
visual means can be combined to form the resulting templates, showcasing
the expected advantages of our newly designed notation.

3.1. Visual elements

The Declare and Hanser et al. relation templates are constructed by
applying visual means distributed throughout the arc joining the two ac-
tivities. The templates for constraints implying sequentiality (response,
precedence, and succession) are shown as cursors (at the end of the arc in
Declare, at both extremes in Hanser et al.), while activations are shown
at the ends of the arc (as circles in Declare). In Declare, the number
of lines represents the variations of the constraint (plain, alternate, chain),
while negation is represented with two vertical lines in the middle of the arc.
In Hanser et al., the cursors are positioned internally or externally to the ac-
tivity depending on the activations and are hollow to represent the negation.
The fact that information is spread can be an issue when templates are used
in models that have many constraints. When information is spread across
different parts of a diagram, users need to mentally connect these parts to
understand the relationship. This can be cognitively demanding. For this
reason, we decided to depict the binary templates with a single glyph on
the arc defined according to the constraint it represents, as shown in Fig. 4.
The arc is a plain line and does not contain any other visual means (e.g.,
arrows) except the glyph.

By consolidating all the information into a single symbol, users can inter-
pret the information more quickly and with less mental effort. This improves
the readability of complex models, as users do not need to look at multiple
locations to gather the information. When information is located at the
ends of arcs, there is a higher chance of misinterpreting or missing parts of
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Figure 4: Binary constraint between two activities (A and B) as defined by easyDeclare
visual notation. A single glyph over the arc represents the constraint. Each constraint
primitive has its own glyph; in this figure, the purple box is a placeholder for that.

the information, especially in complex diagrams. A single symbol minimizes
this risk by presenting all the relevant information in one place, thereby
enhancing accuracy. This choice is consistent with the Proximity Compat-
ibility Principle, which claims that the elements that need to be integrated
and processed together should be in close proximity. Using a single symbol
to represent the constraint makes all necessary data spatially close, making
it easier to process the information.

To foster semiotic clarity, shapes are mapped 1 : 1 to different concepts:
horizontal rectangles represent activities, squares represent relation tem-
plates, triangles (arrows) represent sequentially, and vertical bars represent
activations. All the binary templates are shaped as squares, with the only
variation occurring with Choice(a, b) and ExclusiveChoice(a, b), where
the shapes are diamonds. The reason for this is that the diamond is associ-
ated with choice or decision in both Flowcharts and UML.

The use of color is another area that, in many ways, offers an addi-
tional layer of implicit information. For example, the color red suggests
an error, while the color green denotes success. In addition, the use of
color also contains accessibility limitations in situations where users may
suffer from a vision impairment (e.g., color blindness). For these reasons,
the only colors that are used for easyDeclare are black and white. The
first reason is its ease of use and accessibility. By using black and white,
we mitigate accessibility issues, as the contrast between the two is enough
to be seen by a majority of users. The second reason is related to print-
ing. If a user intends to print their easyDeclare models, the use of black
and white allows it to be clearly interpreted regardless of the printer type
that is used (i.e., monochrome or color). Templates are generally encoded
through a black glyph over a white background, the opposite for negative
constraints. This color differentiation allows users to easily tell apart models
such as ChainSuccession(a, b) and NotChainSuccession(a, b), as shown
in Fig. 5, where the former is white and the latter is black.

The use of arrows to indicate direction is a well-established convention
in graph theory and diagramming. Adhering to this convention ensures that
the graph is consistent with what users typically expect, enhancing usabil-
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(a) ChainSuccession(a, b) (b) NotChainSuccession(a, b)

Figure 5: An example of a ChainSuccession(a, b) and a NotChainSuccession(a, b).
The white background (a) and black background (b) on the constraint symbol discriminate
between a positive and a negative relation.

ity and reducing potential confusion. For this reason, constraints expressing
sequentiality are represented with an arrow (as in Declare) inside the
template symbol. The arrow direction indicates which template precedes
the other. Alternating arrow directions (as in Hanser et al.) may lead to
confusion, particularly in cases where the constraint is part of complex mod-
els where it cannot be guaranteed that the template ordering corresponds
to the temporal constraints. On the other hand, having an arrow explicitly
indicating “who precedes who” allows templates to be interpreted correctly
even in cases where they are positioned counter-intuitively (e.g., right to
left, bottom to top).

The activations are represented as vertical bars inside the glyph repre-
senting the constraint. The bars are positioned according to the role of the
activities; for example, Response(a, b) has a bar on the left of the arrow
because the activity activating it is the first one, while Precedence(a, b)
has a bar on the right because the template it activates is the one that
follows the other one. Distinctive examples are CoExistence(a, b) and
RespondedExistence(a, b); the symbol of the former consists of the two
bars of the activations, while the latter has the left activation bar and a
smaller bar on the right, thus recalling the direction of the template.

Finally, variations of relation templates are encoded by exploiting dual
coding through letters embedded in the symbol: A for “Alternate” varia-
tions, and C for “Chain” variations.

3.2. Templates

Following the aforementioned primitives, we defined a notation for both
existence and relation templates. Activities are encoded with white rectan-
gles, although a light gray background can optionally be used to improve
contrast. The name of each activity is written inside the rectangle, ensuring
clear identification and easy readability. Existence constraints are repre-
sented as labels attached to the top or the bottom of the activity rectangles.
These labels contain text that specifies the unary constraint. Each tem-
plate has a fixed position over the activity rectangle to leverage preattentive
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Figure 6: easyDeclare notation for existence constraints. First row: plain activity A,
Init(A), End(A). Second row: Absence(1, A), Existence(1, A), Absence(m+ 1, A).

Figure 7: easyDeclare graphical notation for binary constraints.

visual properties. The differentiation of placement makes the constraints
easily recognizable at a glance. 6 shows how existence constraints are rep-
resented.

Relation templates are represented by a glyph positioned in the middle
of the arc connecting two activities. The arc is plain, without any additional
visual elements (e.g., arrows), ensuring that the focus remains on the glyph
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Figure 8: The easyDeclare model of a flight booking process, same as Example 2.1

representing the constraint. Each type of relation template is associated
with a unique glyph, which is shown in 7.

Example 3.1 (A flight booking process model). The scenario presented
here illustrates the process a flight passenger follows from booking a ticket
to boarding the aircraft. The corresponding declarative model is the same as
2.1 and in 8 is represented using the easyDeclare notation.

4. Evaluation

We designed a controlled experiment to evaluate the proposed graphi-
cal notation. First, we describe the experiment’s design, then present and
discuss the obtained results.

4.1. Design

The design of the experiment relies on the Method Evaluation Model
(MEM) [32], collecting performance-based and perception-based metrics to
evaluate the likelihood of acceptance of easyDeclare. We designed a
comparative experiment in which subjects had to perform tasks using the
original graphical representation of Declare (cf. Table 1), and the one we
propose, easyDeclare (cf. Fig. 6 and 7).

A graphical notation for declarative process modeling supports two ele-
mentary tasks:
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• Template encoding – given a template, depict it through its graphical
representation;

• Template decoding – given the graphical representation of a template,
identify it correctly.

In its practical application, it typically supports higher-level tasks built on
the elementary ones:

• Model encoding – given a model, depict it through its graphical repre-
sentation;

• Model decoding – given the graphical representation of a model, com-
prehend its meaning.

For encoding tasks, a template (or a model) was presented to the sub-
ject, who had to select its representation from five alternatives; conversely,
for decoding tasks, the subject had to choose the textual representation cor-
responding to the graphical representation of a template (or a model) given
as input.

According to the MEM, the efficacy in performing a task is defined as
the quality of the results (effectiveness) and the effort required (efficiency)
in achieving them. For the experiment tasks, effectiveness corresponds to
the correctness of the result, while efficiency can be defined as the ratio
between the effectiveness and the time spent to perform the task.

The experiment targets novice users without prior knowledge of graph-
ical notations for declarative process modeling. Therefore, we decided to
include the evaluation of the learning process of notations by subjects in
the experiment. In the first phase of the experiment, the subjects had to
perform elementary tasks alternated with increasingly detailed explanations
of the notation. The results collected in this phase contribute to evaluating
the semantic transparency and learnability of the notations.

Some empirical studies [18, 5] suggest that problem-solving tasks can be
used to measure understandability. We, therefore, used model encoding and
decoding to evaluate it.

Each subject experimented first with one notation and then with the
other. An instance of the experiment is generated by randomly choosing
the templates and the models used for the tasks. For each instance, another
is created for another user in which the notations are swapped so that the
order in which they are presented and the variability of the templates affect
the result the least. This instance is divided into two parts, A and B,
corresponding to the two notations. Each part was structured as follows:
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Figure 9: Example of a Model decoding task for the easyDeclare notation where the
correct answer is the last one.

As the first step, the subject had to perform 4 tasks of Template decoding
(TD1) and 4 tasks of Template encoding (TE1) without a prior explanation
of the notation to evaluate its semantic transparency.

Afterward, subjects were provided with the list of templates and relative
graphical representations (E1), which they could consult for a maximum of
3 minutes. Then, they had to perform another 4 tasks of Template decoding
(TD2) and 4 tasks of Template encoding (TE2).

The subjects were then provided with the list of templates and relative
graphical representations and a brief explanation of the rationale behind
the notation (E2), which they could consult for as long as they deemed
necessary.

Finally, they had to perform the last block of tasks composed of 4 tasks
of Template decoding (TD3), 4 tasks of Template encoding (TE3), 4 tasks of
Model decoding (MD1), and 4 tasks of Model encoding (ME1). Fig. 9 shows
an example of a Model decoding task.

We collected the score (i.e., 10 if the answer is correct, 0 otherwise) and
elapsed time for each performed task, and the time devoted by each subject
to the two explanations.

Additionally, at the end of each part, the subjects had to answer a ques-
tionnaire regarding their perception of the graphical notation adapted from
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Abrahão et al. [1] visible in Table 2.

Table 2: Questionnaire used to assess the user perception of the graphical notation,
adapted from Abrahão et al. [1].

Item Statement

PEOU1 The graphical notation is simple and easy to use.

PEOU2 Overall, it was easy to understand what the graphical templates represent (Template Decoding).

PEOU3 Overall, it was easy to understand what the graphical models represent (Model Decoding).

PEOU4 Overall, it was easy to represent the templates with the graphical notation (Template Encoding).

PEOU5 Overall, it was easy to represent the models with the graphical notation (Model Encoding).

PEOU6 The graphical notation is easy to learn.

PU1 Overall, I found the graphical notation to be useful.

PU2 Overall, I think this graphical notation provides an effective way of describing declarative templates.

PU3 I believe this graphical notation would reduce the time required to model declarative processes.

PU4 I believe this graphical notation is useful for modeling business processes in complex environments.

PU5 I believe that the models obtained with this graphical notation are organized, clear, concise and non-ambiguous.

PU6 I believe this graphical notation has enough expressiveness to represent declarative processes.

PU7 Using this graphical notation would improve my performance in describing complex business processes.

ITU1 I would use this graphical notation to specify complex business processes.

ITU2 It would be easy for me to become knowledgeable in using this graphical notation.

ITU3 I would recommend the use of this graphical notation to describe complex business processes.

The users had to answer 16 questions with a five-level Likert scale, rang-
ing from “strongly disagree” to “strongly agree”. The answers are then
mapped into a numerical value ranging from [0, 10]. The questions are in-
tended to estimate three perception-based variables: Perceived Ease of Use
(PEOU), i.e., the degree to which a person believes that using a particular
technology or system will be free from effort; Perceived Usefulness (PU), i.e.,
the extent to which a person believes that using a specific technology or sys-
tem will provide some beneficial outcome; and Intention to Use (ITU), i.e.,
the user’s motivation or plan to employ a particular technology or system
in the future.

4.2. Hypotheses

According to the Goal-Question-Metric (GQM) template [4], the exper-
imentation goal is to: Analyze the declarative process modeling graphi-
cal notations easyDeclare and Declare, for the purpose of evaluating
their effectiveness and efficiency, with respect to their semantic transparency,
learnability, understandability, ease of use, usefulness, and intention to use,
from the point of view of novice and non-expert users.

The evaluation measures 3 performance-based variables (semantic trans-
parency, learnability, and understandability) and 3 perception-based vari-
ables (PEOU, PU, and ITU). The results are analyzed with a paired t-test
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to check whether there is a statistically significant difference between the
average performance with the two notations (p-value < 0.05). Specifically,
we formulate the following hypotheses:

Semantic transparency.

H10 Users without prior knowledge of easyDeclare and Declare have
the same effectiveness and efficiency in decoding templates represented
with the two notations.

H20 Users without prior knowledge of easyDeclare and Declare have
the same effectiveness and efficiency in encoding templates with the
two notations.

Learnability.

H30 Users without prior knowledge of easyDeclare and Declare have
the same effectiveness and efficiency in learning to decode templates
represented with the two notations.

H40 Users without prior knowledge of easyDeclare and Declare have
the same effectiveness and efficiency in learning to encode templates
with the two notations.

H50 Users without prior knowledge of easyDeclare and Declare take
the same amount of time to memorize the two notations.

Understandability.

H60 Users have the same effectiveness and efficiency in decoding models
represented with the two notations.

H70 Users have the same effectiveness and efficiency in encoding models
with the two notations.

Perception-based variables.

H80 The Perceived Ease of Use is the same for the two notations.

H90 The Perceived Usefulness is the same for the two notations.

H100 The Intention to Use is the same for the two notations.
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Subjects. The subjects who participated in the experiment are 31 students
with prior knowledge of the syntax and semantics of declarative process
modeling templates but not of their graphical notations. We had to discard
one result due to technical problems that occurred during the experiment,
reducing the number of valid experiments to 30.

The use of students as subjects might affect the experiment’s external
validity; however, they are relatively close to the population of interest, being
the next generation of professionals, and can be considered representative
of novice and non-expert users of declarative process modeling [23, 22]. To
limit the experimental bias that may affect the experiment’s internal validity,
we anonymously collected the results and did not inform subjects of which
notation we proposed.

Subjects were 15 males and 15 females, 29 Master students and 1 PhD
student in Engineering in Computer Science.

4.3. Analysis

Semantic transparency. Regarding semantic transparency, almost no signif-
icant differences emerge between the two notations. The only difference
appears in decoding effectiveness (see Fig. 10(a).T1), where using easy-
Declare (µV = 6.4) is greater than using Declare (µD = 5.0). This
difference is not significant for efficiency (Fig. 10(b).T1) as well as for tem-
plate encoding (Fig. 10(c).T1, Fig. 10(d).T1), which shows no statistically
significant differences for either effectiveness or efficiency.

Results: H10 is partially rejected for the difference in the average
effectiveness. However, no significant differences were observed in the
efficiency of decoding. This is because the users were more effective
using easyDeclare but at the cost of more time taken to respond. H20
is accepted, thus no differences were found between the two notations
for encoding.

Learnability. Subsequently, subjects were provided with a list of templates
and their relative graphical representations. The data show no statistically
significant differences in the time the subjects spent on the two notations
(Fig. 11(a).E1). Subsequent decoding tasks show no significant differences
in efficiency and effectiveness. Conversely, template encoding shows signif-
icant differences between the two notations (Fig. 10(c).T2, Fig. 10(d).T2),
with easyDeclare having better performance both in terms of effective-
ness (µV = 9.7, µD = 8.8) and efficiency (µV = 1.6, µD = 1.3).
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T1 T2 T3

p-value 0.030 1.000 0.073

Notation e D e D e D

Mean 6.42 5.00 9.08 9.08 9.33 8.67

Std. Dev. 2.30 2.74 1.77 1.37 1.28 1.91

(a) Decoding Effectiveness

T1 T2 T3

p-value 0.715 0.565 0.005

Notation e D e D e D

Mean 0.33 0.36 1.24 1.17 1.45 1.16

Std. Dev. 0.25 0.37 0.55 0.53 0.57 0.49

(b) Decoding Efficiency

T1 T2 T3

p-value 0.899 0.016 1.000

Notation e D e D e D

Mean 6.17 6.25 9.67 8.83 9.33 9.33

Std. Dev. 2.56 2.48 0.85 1.80 1.43 1.28

(c) Encoding Effectiveness

T1 T2 T3

p-value 0.627 0.008 0.256

Notation e D e D e D

Mean 0.64 0.71 1.57 1.30 1.77 1.56

Std. Dev. 0.44 0.47 0.53 0.49 0.70 0.60

(d) Encoding Efficiency

Figure 10: Templates encoding and decoding

The subjects were then provided with a list of templates and their rela-
tive graphical representations, along with a brief explanation of the rationale
behind the notation. The time spent on the two notations is different in this
case (Fig. 11(a).E2), with that devoted to easyDeclare (µV = 32.4) signif-
icantly lower than that devoted to Declare (µD = 61.4). The last block of
template decoding and encoding tasks does not show significant differences.
The only difference appears in decoding, with the efficiency of easyDe-
clare (µV = 1.45) higher than the efficiency with Declare (µD = 1.16).

Results: H30 is almost fully accepted; however, the third time the
subjects had to decode the templates, they were more efficient using
easyDeclare. H40 is partially rejected; after the first explanation
of the notations, subjects showed that they were more effective and
more efficient using easyDeclare. However, these differences are not
significant after further explanation of the notations. The analysis of
the time spent analyzing the notations seems to confirm these results.
While the time spent on the first explanation does not show significant
differences, the time spent on the second explanation is significantly
higher for Declare, suggesting that the subjects were less confident
with this notation. H50 is thus partially rejected.

Understandability. The tasks dealing with the decoding and encoding of en-
tire models are where the most significant differences emerged (see Fig. 11(b),
Fig. 11(c)). Decoding performance with easyDeclare was better than
with Declare both for effectiveness and efficiency. With easyDeclare,
subjects scored on average µV = 8.2 for effectiveness and µV = 0.29 for effi-
ciency, whereas with Declare the performance was much lower (µD = 2.9
for effectiveness and µD = 0.11 for efficiency). Similar performances were
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E1 E2

p-value 0.589 0.033

Notation e D e D

Mean 114.6 106.9 32.4 61.4

Std. Dev. 55.8 51.7 23.2 56.3

(a) Explanation Time

Decoding Encoding

p-value 0.000 0.000

Notation e D e D

Mean 8.17 2.92 9.25 4.67

Std. Dev. 1.70 1.84 1.15 2.79

(b) Models Effectiveness

Decoding Encoding

p-value 0.000 0.002

Notation e D e D

Mean 0.29 0.11 0.46 0.27

Std. Dev. 0.16 0.10 0.24 0.22

(c) Models Efficiency

PEOU PU ITU

p-value 0.013 0.055 0.040

Notation e D e D e D

Mean 7.88 6.47 7.29 6.25 7.25 6.06

Std. Dev. 1.53 2.19 1.73 2.41 1.63 2.60

(d) Perception Variables

Figure 11: Explanation times, models encoding and decoding, perception-based variables

observed in model encoding. The effectiveness of easyDeclare (µV = 9.3)
was much higher than that of Declare (µD = 4.7); similarly, the effi-
ciency of the former (µV = 0.46) was higher than the efficiency of the latter
(µD = 0.27).

Results: Both hypotheses on understandability are rejected. The dif-
ferences shown are substantial for both decoding and encoding models
in terms of effectiveness (H60) and efficiency (H70). Although they
cannot be considered conclusive, these results seem to confirm our hy-
pothesis that using Declare is progressively more difficult as the com-
plexity of the task increases. easyDeclare, on the other hand, seemed
to suffer less from this problem, with subjects maintaining consistently
good performance even on these more complex tasks.

Perception-based variables. Perception-based variables show some differences
between the two notations (see Fig. 11(d)). More specifically, the PEOU of
easyDeclare (µV = 7.88) is higher than that of Declare (µD = 6.47).
Similarly, the ITU of easyDeclare (µV = 7.25) is higher than that of
Declare (µD = 6.06), while the PU does not show significant differences.

Results: H80 is rejected, suggesting that the Perceived Ease of Use of
easyDeclare is higher than that of Declare. Similar considerations
arise for the Intention to Use, as H100 is rejected. Conversely, the
Perceived Usefulness does not show significant differences, as H90 is
confirmed.
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5. EDD – EasyDeclare Designer

We developed EDD – EasyDeclare Designer – a tool to support the cre-
ation of models based on our proposed graphical notation. EDD is an open-
source web application implemented in JavaScript, freely available along
with its source code.2 Further details about the tool, including features and
technical specifications, are reported in Section 5.1.

To evaluate the usability of EDD, we conducted a user study using
the System Usability Scale (SUS), a common approach for measuring the
usability of systems, providing a quantitative score that reflects the overall
user experience and assesses their perceived usability. The results of the
SUS indicated a high usability level, achieving an A+ rating. Details about
this evaluation are reported in Section 5.2.

5.1. Tool Overview

The interface of EDD has been designed to be simple and efficient. As
shown in Fig. 12, it is composed of three panels: A) Canvas Pane, B) Details
Pane, and C) Overview Pane.

The main pane is the Canvas (A) on the left side of the interface, which
shows the model. This pane also offers an interactive interface for model
creation and manipulation. Users can create activities by double-clicking on
an empty area of the canvas. To create binary constraints between activities,
users can mouse over the border of an activity and drag it to another activ-
ity. Although the tool automatically arranges activities and constraints on
the canvas to maintain an organized layout, users can manually adjust the
positions by dragging these elements across the canvas, allowing for a cus-
tom layout. Furthermore, the canvas supports zoom and pan functionalities,
supporting users to manage models of various sizes.

On the right side of the interface is the Details Pane (B), which provides
an overview of the existing activities and constraints in the model. This pane
also shows details about each activity and constraint and allows the editing
of their properties.

In the bottom right corner of the interface, there is the Overview Pane
(C). This pane shows the overview of the entire model, highlighting which
part is currently visible in the canvas, following the focus+context visual
paradigm. This feature helps users maintain a view of the entire model even
if they zoom in and out on the canvas to work on different areas.

2 https://github.com/blasilli/easyDeclare
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Figure 12: An overview of the EDD interface. It is composed of three panels: A) Canvas
Pane, B) Details Pane, and C) Overview Pane.

To allow for the interoperability of the tool, we implemented existing
standards for the input and output of model files, such as decl [37] and RuM
[3]. Additionally, we defined a new input/output format named edj, which is
based on JSON and contains information about activities, constraints, and
layout. This format is detailed in the tool repository.

5.2. Usability Evaluation

To evaluate the usability of EDD, we conducted a user study using the
System Usability Scale (SUS) [6, 7]. The SUS is a questionnaire composed
of ten questions designed to assess the perceived usability of a system. The
user, after having performed tasks on the system, is required to answer the
10 questions with a value on a five-level Likert scale, ranging from “strongly
disagree” to “strongly agree”. The answers are then mapped into a numerical
value ranging from [0, 10], and their sum becomes the SUS score assigned to
the system, which ranges from [0, 100]. Additionally, Lewis and Sauro [25]
defined a scale mapping the SUS score into 11 grades from higher to lower:
[A+, A, A-, B+, B, B-, C+, C, C-, D, F ].

The ten questions of the SUS are reported in the following:

Q1. I think that I would use this system frequently;
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Q2. I found the system unnecessarily complex;

Q3. I thought the system was easy to use;

Q4. I think that I would need the support of a technical person to be able to use this
system;

Q5. I found the various functions in the system were well integrated;

Q6. I thought there was too much inconsistency in this system;

Q7. I would imagine that most people would learn to use this system very quickly;

Q8. I found the system very awkward to use;

Q9. I felt very confident using this system;

Q10. I need to learn a lot of things before I could get going with this system.

The user study involved 18 researchers and practitioners in the process
mining field composed of: 1 associate professor, 3 assistant professors, 10
PhD students, 2 master students, 1 bachelor student, and 1 process mining
consultant.

5.2.1. Methodology

Participants were first asked to evaluate their expertise in three areas: a)
declarative process modeling and related graphical notations, b) imperative
process modeling and related graphical notations, and c) BPMN and related
graphical notations. This was done using a five-level Likert scale ranging
from “not competent” to “highly competent”. Next, we briefly reviewed the
basic concepts of Declarative Process Modeling and illustrated our proposed
visual notation. We then presented EDD, explained its functionalities, and
allowed the participants ten minutes to familiarize themselves with the tool.

To test the system functionalities, we designed two tasks (T1 and T2) for
the users to complete. After completing the tasks, participants were asked
to fill out the SUS questionnaire. Finally, they were invited to share their
comments and thoughts on the tool.

T1. The first task is designed to familiarize users with the system by creat-
ing a simple model from scratch. Users were asked to model an Emergency
Room procedure as follows:

1. Open the tool and create a new project.

2. Add three new activities named Registration, Admission, and Triage.

3. Add a Init unary constraint to the activity Registration.

4. Add an Existence constraint with cardinality 0...1 to the activity Registration.

5. Add a binary constraint AlternateResponse(Registration,Admission).
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6. Add a binary constraint Succession(Registration, Triage).

7. Add a binary constraint Precedence(Triage,Admission).

8. Save the model to a local file.

T2. The second task involves modifying an existing and more complex
model (shown in Fig. 12), which represents a booking procedure for flight
tickets. Users were asked to:

1. Open the “flight.edj” file in the tool.

2. Add a Init unary constraint to the activity StartBooking.

3. Add a End unary constraint to the activity BoardFlight.

4. Add a new activity named UndoBooking.

5. Add a binary constraint NotSuccession(BoardF light, UndoBooking).

6. Add a binary constraint NotSuccession(UndoBooking, ProvideData).

7. Transform theChoice(ProvideData, Pay) intoChainSuccession(ProvideData, Pay).

8. Invert the order of activities in theAlternateSuccession(CompleteTransaction, Pay)
to AlternateSuccession(Pay,CompleteTransaction).

9. Save the model to a local file.

The correct model, after the required modifications, is shown in Fig. 8.

5.2.2. Results

Participants’ expertise was assessed using a five-level Likert scale, where
“not competent” was encoded as 0 and “highly competent” as 10. The ex-
pertise levels were as follows (with µ and σ being the average score and the
standard deviation, respectively):

• Declarative process modeling: theory µ = 5.56, σ = 3.16; related
graphical notations µ = 5.42, σ = 3.56.

• Imperative process modeling: theory µ = 5.52, σ = 3.56; related
graphical notations µ = 5.42, σ = 3.76.

• BPMN: theory µ = 7.36, σ = 2.5; related graphical notations µ = 7.08,
σ = 2.88.

Overall, the SUS results demonstrate a highly positive evaluation of the
tool’s usability, with an average grade of A+ and an average score of µ =
87.64 and a median of 90. This indicates that users generally found the
system very usable. The standard deviation of σ = 7.54 suggests relatively
low variability in scores, meaning that most users had a similar usability
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experience with the tool. Detailed question and score results are shown in
Fig. 13.

Interestingly, question Q1 — I think that I would use this system fre-
quently — reported the lowest median among all questions. This observation
suggests that the low median does not necessarily reflect the tool’s usability
but may be related to the participants’ work patterns. Many participants
did not need to use the tool regularly, as their roles did not require frequent
creation or editing of models.

Participants provided several positive comments and valuable sugges-
tions for improving the tool. Users generally appreciated its visual design
and usability. For example, one user commented, “Very nice visual tool,
with clear feedback and high usability level”. Another noted, “In general, I
found the tool very simple to use”.

Despite these positive remarks, users also offered constructive feedback
for enhancements. One suggestion was to “add support for multiple projects
open at the same time in different tabs”, which would improve multitasking
capabilities. Another user suggested, “It would be helpful to double-click on
an activity to rename it”, indicating a potential improvement in interaction
design. Additionally, implementing keyboard shortcuts, such as “clicking
on an activity and pressing the delete key to remove the activity”, was also
recommended.
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P1 7.5 7.5 7.5 7.5 10.0 7.5 7.5 7.5 10.0 7.5 80.0 A-

P2 5.0 10.0 7.5 7.5 7.5 10.0 5.0 7.5 5.0 10.0 75.0 B

P3 7.5 7.5 7.5 7.5 7.5 7.5 2.5 10.0 5.0 7.5 70.0 C

P4 10.0 10.0 10.0 7.5 7.5 10.0 10.0 10.0 10.0 10.0 95.0 A+

P5 7.5 10.0 10.0 10.0 7.5 10.0 10.0 10.0 10.0 10.0 95.0 A+

P6 5.0 10.0 10.0 7.5 10.0 10.0 10.0 10.0 10.0 10.0 92.5 A+

P7 10.0 10.0 7.5 10.0 7.5 10.0 7.5 10.0 10.0 7.5 90.0 A+

P8 7.5 10.0 10.0 10.0 7.5 10.0 7.5 10.0 10.0 7.5 90.0 A+

P9 5.0 7.5 10.0 7.5 7.5 10.0 10.0 7.5 7.5 10.0 82.5 A

P10 5.0 10.0 5.0 10.0 5.0 10.0 7.5 10.0 10.0 10.0 82.5 A

P11 7.5 7.5 10.0 7.5 10.0 10.0 10.0 7.5 7.5 7.5 85.0 A+

P12 7.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 97.5 A+

P13 2.5 10.0 7.5 10.0 7.5 10.0 10.0 10.0 7.5 10.0 85.0 A+

P14 10.0 10.0 10.0 10.0 10.0 7.5 10.0 10.0 10.0 10.0 97.5 A+

P15 7.5 10.0 10.0 7.5 10.0 10.0 10.0 7.5 10.0 10.0 92.5 A+

P16 7.5 10.0 7.5 10.0 10.0 10.0 7.5 10.0 7.5 10.0 90.0 A+

P17 7.5 10.0 10.0 10.0 10.0 7.5 10.0 7.5 10.0 7.5 90.0 A+

P18 7.5 7.5 10.0 10.0 10.0 10.0 7.5 7.5 7.5 10.0 87.5 A+

AVERAGE 87.64 A+

Figure 13: System Usability Scale (SUS) results for EDD. These results indicate a high
usability level, with an average rating of A+ (score 87.64).

6. Conclusion

In this paper, we introduced and evaluated a new graphical notation,
easyDeclare, designed to improve the interpretability of declarative pro-
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cess discovery results. Traditional process modeling languages, while effec-
tive for specialists, often pose comprehension challenges for non-experts due
to their complexity and technical nature.

Our controlled experiment evaluated the proposed graphical notation
against the pre-existing standard, Declare, focusing on performance and
perception metrics.

In decoding tasks, easyDeclare showed higher effectiveness than De-
clare, although it took more time, indicating better accuracy but reduced
efficiency. For encoding tasks, there were no significant differences in effec-
tiveness or efficiency between the two notations. There was no significant
difference in the initial time spent learning both notations. However, easy-
Declare required significantly less time for subsequent explanations. In
template encoding tasks, easyDeclare showed better performance after
initial explanations, though differences became insignificant after further
explanations. In both decoding and encoding tasks for models, easyDe-
clare outperformed Declare in effectiveness and efficiency, suggesting it
handles complexity better. easyDeclare was perceived as easier to use
(PEOU) and users were more likely to use it in the future (ITU). There
were no significant differences in perceived usefulness (PU) between the two
notations.

In conclusion, easyDeclare demonstrated superior effectiveness and
efficiency in complex tasks and higher user satisfaction in ease of use and
intention to use, making it a promising alternative to the traditional graph-
ical notation provided by Declare for declarative process modeling. As
a future work, we aim to integrate easyDeclare in a declarative process
mining suite like RuM [3] to widen its usage among practitioners and per-
form further longitudinal user tests.
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