
Distributed Architecture for Cloud System
tailored for Wireless Community Networks

Technical Report #UPC-DAC-RR-XCSD-2013-4 – May 22, 2013

Amin M. Khan, Ümit C. Büyükşahin, Felix Freitag

Department of Computer Architecture
Universitat Politècnica de Catalunya

Barcelona, Spain
Email: {mkhan, ubuyuksa, felix}@ac.upc.edu

Abstract—In community networks, individuals and local
organizations from a geographic area team up to create
and run a community-owned IP network to satisfy the
community’s demand for ICT, such as facilitating Internet
access and providing services of local interest. Most cur-
rent community networks use wireless links for the node
interconnection, applying off-the-shelf wireless equipment.
While IP connectivity over the shared network infrastructure
is successfully achieved, the deployment of applications in
community networks is surprisingly low. To address the
solution of this problem, we propose in this paper an
architecture for building a cloud system that will provide
Infrastructure-as-a-Service (Iaas) using resources from the
community network. Our focus is also to incentivize the
contribution of computing and storage as cloud resources to
community networks, in order to stimulate the deployment
of services and applications. Our final goal is the vision that
in the long term, the users of community networks will not
need to consume applications from the Internet, but find
them within the wireless community network.

Index Terms—wireless mesh networks; community net-
works; cloud computing; incentive mechanisms

I. Introduction

Wireless community networks are an emergent model
of infrastructure that aims to satisfy a community’s
demand for Internet access and ICT services. Most com-
munity networks originated in rural areas which com-
mercial telecom operators left behind when deploying
the broadband access infrastructure for the urban areas.
Different stakeholders of such a geographic area teamed
up to invest, create and run a community network as
an open telecommunication infrastructure based on self-
service and self-management by the users [1].

Current community networks use mainly wireless
technology to interconnect nodes. With the commoditiza-
tion of optical fiber, some community networks however
have also started providing broadband services combin-
ing both technologies (e.g. guifi.net with fiber to the
farm, FTTF [2]).

Community networks share, to a greater or lesser
extent, the following common characteristics:

• they apply network neutrality such that the band-
width capacity is limited only by the physical con-
straints of the deployed technologies.

• are public utilities available for use on equal terms
by any party (private, public, commercial) con-
nected to it within the community it serves.

• provide infrastructure which on the macro-level
is community-owned, while on the micro-level of
equipment is owned by the individual participants
that contributed it.

Community networks are a successful case of resource
sharing among a collective. The resources shared are
networking hardware but also each community network
participant’s time he/she donates, in different extent, for
maintaining the network. While the community network
infrastructure is the sum of the individual contributions
of wireless equipment, the network operation is achieved
by the contribution of time and knowledge of the par-
ticipants, even under the decentralized management of
the equipment, since the node owner ultimately has the
full access and control of his/her network device.

Resource sharing in community networks from the
equipment perspective refers in practice to the sharing
of the nodes’ bandwidth. This sharing enables that traffic
from other nodes is routed over the nodes of different
node owners. This is done in a reciprocal manner which
allows community networks to successfully operate as IP
networks. Computing and storage resource sharing, such
as is now common practice in today’s Internet through
Cloud computing, hardly exists in community networks.
So any service offered in community networks runs on
machines exclusively dedicated to a single member.

In Figure 1, some node types of a community net-
work are depicted. The picture shows typical commu-
nity nodes with a router and some server (or client
machine) attached to it. A community network distin-
guishes between super nodes and client nodes. Super
nodes have at least two wireless links, each to the other
super nodes. Some super nodes are placed strategically



2

Figure 1. Nodes in a Community Network

in some geographic area to improve the community
network’s backbone and thus consist only of the wireless
router. Other super nodes are installed in the community
network participant’s premises. In that latter case, such
as shown in some nodes in Figure 1, servers behind the
router are connected to offer services and applications
to the community network. Client nodes only connect to
a super node, but do not route any traffic. In Figure 1,
some clients nodes are shown which are connected to the
access point (AP) of a super node. Topological analysis
of the Guifi.net community network [3] indicates that
from approximately 17000 analysed nodes of Guifi.net,
7% are super nodes while the others are client nodes.

From the node types shown in Figure 1 it can be
seen that principally the hardware for computation and
storage is already available in community networks,
consisting of some servers attached to the wireless
routers. No cloud services, however, are yet deployed in
community networks to use this hardware as a cloud,
leaving the community network services significantly
behind the current standard of the Internet. Our vi-
sion is that some community wireless routers will have
cloud resources attached, building the infrastructure for
a community cloud formed by several cloud resources
attached to community nodes. We note that client nodes
could principally also contribute cloud resources. We
therefore centre the contribution of this paper towards
how to incentivize to bring together these computation
and storage hardware already attached to the wireless
routers of the community network into a community
cloud.

In the following sections we present our proposal
of the main components that the architecture for a
community cloud should have. In section II we discuss
the requirements for tailoring a cloud system to the
community networks. In section III we describe how
this architecture would be applicable to the topology
of current community network deployments in which
the interconnection and traffic routing is done by super
nodes. In section IV we describe the conceptual overview
and in section V overall design and architecture of a
cloud management system that can provide services to
the applications. In section VI we discuss the related
work, and in section VII we conclude our findings and

discuss about future work.

II. Requirements

A community cloud is a combination of a number of
cloud systems running independently by the different
community members. Moreover, the amount and quality
of the resources available at each individual cloud can
vary a lot. This is very much different from the existing
commercial public clouds which are deployed on data
centres using clusters of mostly homogeneous comput-
ers. This is also different from private and hybrid clouds
where resources, though not as abundant as data centres,
are still grouped into larger entities.

This means that in a hybrid cloud, there are a handful
of partners, each with may be a few hundred to thou-
sands of machines. In contrast, in community clouds
there may be tens or even hundreds of partners, but
each partner may have only a few tens of machines.
This particular make-up of a community cloud requires
careful attention to a different set of requirements.

Following requirements provide the foundation for the
design and architecture of the community cloud system,
that we discuss in sections IV and V. These need to
be satisfied for a community cloud to be deployed and
adopted successfully by the community.

A. Autonomy

Individual cloud systems are set up and managed
independently by different owners. We cannot assume
or require prior coordination or even trust between dif-
ferent cloud owners. This means that each cloud owner
can take decisions about his or her cloud set-up without
negotiating with other partners beforehand. The main
requirement for a cloud owner for participating in a
community cloud is that the local cloud set-up should
adhere to the public API provided by the community
cloud. In addition, it should contribute some set of
mutually agreed upon resources to the community.

B. Security

With multiple independent cloud operators, security
becomes even more important in a community cloud
[4]. The data and applications running on different cloud
systems should be protected from unauthorized access.
Similarly, the cloud applications should not adversely
affect the local machines. There are many other security
challenges [5] that need to be addressed for ensuring
users’ trust in the system.

C. Self-Management

Different nodes can join and leave the community
cloud at any time. Community cloud should self-manage
itself and continue providing services without disrup-
tion. One important aspect is the coordination between
different cloud owners that become part of the federated
community cloud.



3

D. Utility

For wide adoption of community cloud, it should
provide applications as a service that are valuable for the
community. The driving factor for the growth of the com-
munity cloud would be the number of useful application
available. Installing and using the applications should be
straightforward and should require little overhead from
the users.

E. Ease of Use

The majority of the users of the community cloud will
be the non-technical ones who should not be required
to understand the intricacies of the cloud infrastructure.
Setting up nodes for deployment should be simple and
straightforward. Similarly, managing and updating the
cloud software on the nodes should be as automatic as
possible.

F. Incentives for Contribution

A community cloud builds on the contribution of the
volunteers in terms of computing, storage and network
resources. For community cloud to be sustainable, in-
centive mechanisms are needed to encourage users to
actively participate in the system and dedicate resources
to the cloud.

G. Support for Heterogeneity

The hardware in a community cloud can have quite
varying characteristics. There are powerful machines
with good network connectivity and abundant storage
space. On the other end, there are less powerful ma-
chines with limited CPU, RAM, disk space and band-
width. The software for community cloud should handle
this heterogeneity seamlessly.

H. Standard API

The cloud system should make it straightforward for
the application programmers to design their applications
in a transparent manner for the underlying heteroge-
neous cloud infrastructure. The API should provide the
appearance of a meta-cloud [6] that obviates the need
to customize the applications specific to each cloud
architecture.

This is essential for the community cloud which re-
sults from federation of many independently managed
clouds. Each cloud may be using a different virtual
machine manager (VMM) that may provide a different
set of API. Providing a standard API for the community
cloud ensures that applications:

• written for one community cloud can also be de-
ployed for another community cloud in the future

• can be easily deployed on new cloud architectures
as they are integrated into the community cloud

Figure 2. Overlay Network of Super Nodes and Ordinary Nodes in a
Community Cloud

III. Distributed Architecture using Super Nodes
A. Context of the community network topology

The community mesh network generally includes dif-
ferent node types and each type plays a different role in
the network. For example, Guifi.net [7], which is consid-
ered the largest meshed community network worldwide,
includes two main types of nodes, according to [3]:
terminal nodes which represent the end user nodes, and
hubs which serve traffic to end users. In this network,
each terminal node has a unique connection to a hub
that routes traffic, and hubs can have many connected
terminal nodes [3].

The architecture of a community cloud has to consider
the topology of the community network which the cloud
will be deployed on. Considering the typical community
nodes explained above and the analysis of the commu-
nity network topology [3], a hierarchical architecture [8]
for community clouds is suggested. In this architecture,
each super node is responsible for the management of
a set of attached nodes. From the perspective of the at-
tached nodes, these super nodes act as a centralized unit
to manage the cloud services. These super nodes connect
physically between other super nodes and logically in an
overlay network to other cloud managing nodes.

This hierarchical architecture can be classified into the
two main classes of fully decentralized and centralized
systems [8]. If the design of the architecture is done
towards a centralized systems, advantages include ef-
ficient search and control, while if it is decentralized,
load-balancing, robustness and failure tolerance would
be the benefits. There are several large-scale distributed
applications that using a hierarchical designs achieved
great success, such as Kazaa1 and Skype2.

B. Architecture and design
Figure 2 depicts the overlay network that results from

the hierarchical architecture of the community cloud,

1http://www.kazaa.com
2http://www.skype.com

http://www.kazaa.com
http://www.skype.com


4

having ordinary nodes (ON) and super nodes (SN). ONs
behave both as provider and requester in the cloud sys-
tem. That means, at different times they can both request
a resource or provide a resource. SNs are dedicated
machines which are mainly responsible for coordinating
and managing the ONs.

1) Ordinary Nodes (ONs): Each ON is assigned to a
SN called parent-SN and holds the necessary informa-
tion about it. In addition, each ON maintains locally a
list called ON_SNList which contains the metadata of
other SNs. With the information in this list, an extended
registration of an ON in the system can done.

When an ON needs some resources, it sends a request
to its parent-SN. Moreover, ONs periodically send a
heartbeat message to their parent-SN to inform about
their aliveness and inform about their current status.

2) Super Nodes (SNs): Each SN is responsible for a
set of ONs and stores their metadata in a structure
called SN_ONList. This list has to be updated after each
resource sharing operation. Besides, each SN has another
list called SN_SNList which holds the metadata of other
SNs. This list is refreshed periodically to update which
SN can supply how much amount of resources. For this
purpose, each SN publishes their own status to other
SNs, e.g. by gossiping [9].

C. Coordination in Federated Clouds

Multiple super nodes in a community network can
connect and form federated clouds [10]. Such federated
clouds are transient and can grow or shrink and merge
or split or form larger cloud systems [11]. When there
is a sufficient number of sites in a federated cloud,
some of the more resourceful SNs can take additional
responsibility of the management and coordination for
neighbouring SNs.

Figure 3 explains a possible scenario of how super
nodes can become part of the community cloud. In
the beginning, as shown in Figure 3(a), super nodes
SN1 through SN3 have set up cloud systems at their
sites. Super node SN4 is still going through the process
as more ONs are going to connect to SN4. Next in
Figure 3(b), SN1 and SN2 have connected to form a
sub-cloud, whereas SN3 and SN4 have also connected
to form a separate sub-cloud.

In Figure 3(c), all the four SNs are now part of a single
community cloud. In addition, SN3 has comparatively
more resources so it has taken additional management
tasks for the cloud, thus becoming hyper node. In Fig-
ure 3(d), SN3 gets disconnected from the network. The
community cloud now consists of nodes SN1, SN2, and
SN4 only, and SN2 starts acting as a hyper node.

IV. Overview of Community CloudManager

A community network is managed and owned by
the community. Nodes are managed independently by
their owners. Nodes principally can enter and leave

the system, with or without any notice. Nodes that
form the backbone however, i.e. super nodes, are usu-
ally intended to be stable with permanent connectivity.
Ordinary nodes do more frequently change their con-
nectivity status. An architecture for the cloud platform
that manages such infrastructure needs to be robust,
self-managing and resistant to such churn. It should
enable a user to connect his or her machines for using
or contributing to the cloud at any instant.

The option for enabling a community cloud in a wire-
less mesh network on which we focus here is to deploy a
cloud managing platform tailored to community networks
on a super node. Existing open and commercial cloud
managing platforms are, for example OpenNebula [12],
OpenStack [13], Euclyptus3, Nimbus4, Aeolus5, etc.

The conceptual overview for the cloud managing plat-
form that we propose for community networks is shown
in Figure 4. The ordinary nodes of the wireless mesh
network are the hosts of the cloud and form the physical
layer of the cloud architecture. The core layer residing in
the super node contains the software for managing and
monitoring the virtual machines on ordinary nodes. The
front end layer provides the interface of the infrastruc-
ture service (Infrastructure-as-a-Service, IaaS) provided
by the super node.

The components cloud coordinator, economic engine
and social engine provide additional services for cus-
tomizing cloud infrastructure to the community net-
works and are discussed in detail in section V, see
Figure 6.

A. Super Nodes and Ordinary Nodes
The main difference between super nodes and or-

dinary nodes, from the point of view of cloud man-
agement, is that SNs support greater functionality for
handling VMs. A super node has full installation of the
cloud management software and so enables the user to
manage and monitor VMs. In most cases, super node
will be a comparatively stable node, most likely a hub
from the wireless mesh network.

Ordinary nodes, on the other hand, only act as hosts
for executing VMs. There is no VMM software present,
so the VMs cannot be controlled from the ordinary
nodes. ONs directly connect to some SN on the network
which is responsible for management of VMs. Note that
the ONs can belong to a home network and be a desktop
or laptop, or they can be a cluster running at a university
consisting of many servers.

A user can connect multiple machines as ONs to a
super node on the local network. We term this setup
a cloud site which is an independent installation of the
cloud management software on the local SN. The cloud
management software is responsible for handling all the

3http://www.eucalyptus.com
4http://www.nimbusproject.org
5http://www.aeolusproject.org

http://www.eucalyptus.com
http://www.nimbusproject.org
http://www.aeolusproject.org


5

Figure 3. Super nodes connect to form community cloud. (a) SN1 through SN4 set up cloud software. (b) SN1 connects with SN2 and SN3
connects with SN4 forming sub-clouds. (c) SN1 through SN4 form a single cloud with SN3 as hyper node. (d) SN3 leaves community cloud
and SN2 is the new hyper node.

Figure 4. Conceptual Overview of the Community Cloud Manager

on-site ONs. The super node works independently from
other SNs in the community network since the only
resources it directly manages are the local ONs.

B. Different Configurations of SNs and ONs

In practice, the distinction between SN and ON may
not be always clear because users can enable their ma-

chines for the community cloud in a variety of ways. Fig-
ure 5 shows some of the possible scenarios as explained
below.

1) Only ordinary nodes: Consider that you have a
couple of free machines that you want to dedicate to the
community cloud. You do not want to concern yourself
with the management and running of these machines.
You can reset both the machines and install a specific op-
erating system distribution provided by the community
cloud. Your both machines will act as ordinary nodes
(ONs), and you will configure your machines to connect
to a nearby super node.

2) Super node with multiple ordinary nodes: Consider
that you have a few machine available at your research
lab. You want to set up a cloud infrastructure in your lab
and you also want to contribute these resources to the
community. You want full control of the VMs running on
your machines and want to actively manage and monitor
them.

You select one of the more powerful machines and
install the cloud management software on it and this
will become a super node in your local network. You
reset the rest of the machines and install the operating
system distribution provided by the community cloud.



6

Figure 5. Different configurations of SNs and ONs. (a) Only ONs on-site. (b) SN with multiple ONs on-site. (c) Only SN on-site. (d) Community
Cloud Box with SN and VMs

These machines become ordinary nodes (ONs), and they
are configured to be controlled by your local SN.

Your local SN will publish the information about your
new setup to other SNs in the community cloud. The
cloud coordinator in your SN will allow your applica-
tions to take advantage of the resources contributed by
others in the community.

3) Only super node: Consider that you have a hub of
wireless mesh network in your apartment building. It is
always on and connected to the Internet and has good
bandwidth available. You want to deploy community
cloud in your neighbourhood and your hub can take
the responsibility of managing VMs running on other
hosts (ONs) in your network. You can install the cloud
management software on your hub and it will become
a super node in your local network. Your SN will also
coordinate with other SNs in the community cloud.

4) Super node and ordinary nodes as a single box: In
community networks there might also be the situation
that a clear super node cannot be identified. An example
are local wireless mesh networks in cities in which all

nodes communicate with all other nodes in signal range.
The link characteristics may change dynamically and the
connectivity topology of the mesh networks also changes
as a result. In this case, while certain node may still
assume the role of a super node, e.g. due to a more
powerful hardware, decentralizing the role of the super
node could be a more suitable approach.

For example, you have a single machine that you want
to connect to community cloud but you cannot select
a single reliable SN. You reset the machine and install
the operating system distribution provided by the com-
munity cloud. You also install the cloud management
software on the same machine. So you now have a super
node that manages the VMs running on the same host.

In Figure 5(d) the architecture for the scenario of a
decentralized cloud architecture is shown. It can be seen
that the three layers Front End Layer, Core Layer and
Hardware Layer are on a single node which we call
community cloud box, a device attached to each node in a
wireless mesh network. The cloud coordinator, economic



7

engine and social engine are distributed services in
which all community cloud boxes participate.

V. Architecture of Community CloudManager

The core of cloud manager is the virtual machine
manager (VMM) that is responsible for instantiating,
scheduling and monitoring virtual machines on the
hosts. There are some commercial and open source cloud
management platforms available to manage public and
private clouds. Among the most consolidated and popu-
lar open source tool are currently OpenNebula [10], [12]
and OpenStack [13].

The cloud platform can be tailored for community
networks by extending these existing tools and building
components like cloud coordinator, economic engine
and social engine on top of them. The virtual machine
manager (VMM) consists of the following layers, which
are common to most cloud computing architectures.

A. Hardware Layer
This consists of the physical infrastructure that is

needed to run a cloud system. These include PCs,
storage, and network. The hardware in the community
networks mostly consist of ordinary nodes and wireless
links provided by the mesh network.

The machines in the community network will have a
standard operating system or some hypervisor software
installed. In addition, there will be drivers to support the
operation of VMs.

B. Core Layer
The core layer consists of components that are respon-

sible for creation, allocation, scheduling, monitoring and
management of VMs on the hosts. This has following
main components, some of which are shown in Figure 4.
• Virtual Machines Controller
• Virtual Machines Scheduler
• Virtual Machines Monitor
• Hosts Manager
• Virtual Network Manager
The functionality of the core layer is already provided

by tools like OpenNebula, OpenStack and others. Com-
munity cloud manager can, therefore, make use of these
existing tools and extend their functionality to suit the
needs of the community networks.

C. Cloud Coordinator
The cloud coordinator is responsible for the feder-

ation of the cloud resources which are independently
managed by different super nodes. It provides the in-
terface for other components like economic engine and
social engine to request information from other SNs. The
cloud coordinator components in different SNs connect
with each other in a decentralized manner to exchange
relevant information about managing the available re-
sources.

Figure 6. Functional overview of the distributed components of
community cloud manager

By default applications running at a cloud site can
only consume resources from the ONs directly managed
by that particular super node. With the cloud coordi-
nator, the infrastructure service can provide a unified
view of the resources contributed by multiple sites.
When pooling resources from multiple sites, the cloud
coordinator applies a regulation mechanism fed by the
economic engine and social engine to perform resource
allocation.

The cloud coordinator will require a number of mod-
ules, some of which are highlighted in Figure 6.

1) Gossip-Based Discovery: The design of a community
cloud manager follows a decentralized approach, so
cloud coordinator relies on gossip-based [9] discovery
mechanisms to manage overlay network of the super
nodes in community cloud. The updated list of neigh-
bouring super nodes is saved in SN_List database.

2) Distributed Self-Management: The community cloud
has to efficiently manage the distributed resources in an
autonomous way as ordinary and super nodes join and
leave the network. This module handles this important
function of the cloud coordinator.

D. Economic Engine

The role of economic engine is to manage the account-
ing and auditing for the infrastructure service so that
the access can be regulated to the users of community
cloud. Consider the commercial public clouds where
providers get paid in hard currency. In contrast, for
community cloud, the incentive for the providers is the
utility that they get from the community cloud in return.
Economic engine manages a system of virtual credits
that encourages the users to contribute resources to the
cloud.

This component will consist of many modules and we
have discussed the important ones below, as shown in
Figure 6.

1) Resource Usage Tracker: This modules connects with
VM Monitor in the core layer to get details about the



8

resource usage. It links this information to the user who
requested the VMs and keeps record of it for accounting
and auditing purposes. This information forms the basis
for regulating access to the resources.

2) Contribution Tracker: The information from VM
Monitor is also fed to the contribution tracker module
which uses it to register the resources contributed by the
owner of the nodes. This information is used to reward
the provider of the resources with virtual credits.

3) Credits Transaction Manager: This modules manages
the virtual credits database and credits or debits the ac-
count of different users with virtual credits. The database
gets updated whenever someone requests resources or
contributes to the community cloud. The challenge for
this module is to handle these transactions in a secure
manner within a distributed system.

E. Social Engine
The community cloud is as much a social construct as

it is a technical construct. The existence of community
cloud is not possible if there is a lack of participation
from the community. The running of community cloud
not only requires supply of technical resources like mem-
ory or bandwidth, but also the time and effort of the
users who setup and manage the hardware.

Whereas economic engine takes care of the incentives
in the virtual world, the social engine is the component
that encourages contribution in the physical world. We
discuss here some of the modules that help achieve
this goal. These modules may not be integral to the
cloud managing platform from a technical point of view,
but nevertheless provide functionality necessary for the
smooth running of the community cloud.

1) Distributed Identity Manager: This module manages
the global identity of the users in a decentralized manner.
This unique system-wide user ID is needed to track the
usage and contribution by each user [14].

2) Support Ticketing System: This module provides a
system for the users to help each other in resolving
the problems encountered while using the community
cloud. The volunteers who provide the support to others
are encouraged by rewarding them with better reputa-
tion in the system. This reputation can then translate to
an increase in virtual credits which the user can spend
for consuming resources from the community cloud.

3) Social Contribution Tracker: This module provides
incentives to the volunteers who help with the smooth
running of the community cloud. The volunteers con-
tribute with their time and effort to setup and maintain
the hardware and network. This module tracks this
contribution of the volunteers in the reputation score
database.

The social contribution tracker interacts with credits
transaction manager module in the economic engine
and the users can exchange the reputation score with
virtual credits. The virtual credits allow the volunteers

to consume the applications and services provided by
community cloud.

F. Frontend Layer

The frontend layer provides the interface to interact
with the infrastructure service of the community cloud.
This includes modules like command line interface (CLI),
graphical user interface (GUI), application programming
interface (API), and any other tools that assist with
developing application using the infrastructure service.

G. Interaction between different components

We discuss here some usage scenarios and explain
how different components of the community cloud man-
ager interact with each other.

1) Workflow for a resource request: Consider the case
when a user requests a new VM from the community
cloud. The user connects to the GUI in frontend layer
and submits a request for a VM instance. The request is
forwarded to cloud coordinator that checks for availabil-
ity at local ordinary nodes and also forwards the request
to neighbouring SNs using SN_List database.

Cloud coordinator checks with identity manager com-
ponent of social engine. This authenticates the user and
confirms that user has access to the resources.

Cloud coordinator then checks the virtual credits
database of economic engine to see if the user has
sufficient credits available to fulfil the request. After
confirming that user can consume the resources, the
request is forwarded to scheduler in the core layer which
selects the host on which VM will be executed.

The monitor in the core layer will provide the details
of the consumed resources to the resource usage tracker
component in the economic engine. Credits transaction
manager in the economic engine will update the credits
of the requester and provider of VM in virtual credits
database. Contribution tracker in economic engine will
update the details for the provider.

The requester can use the GUI in the frontend layer
to get up-to-date status of the VM.

2) Workflow for social contribution: Consider the case
when a user contributes to the community cloud by
providing services like setting up routers or performing
network maintenance. The user connects to the GUI in
the frontend layer and submits the details of his or
her contribution. The request is forwarded to the cloud
coordinator which contacts the identity manager and so-
cial contribution tracker components to confirm whether
the user is registered at this particular node. The cloud
coordinator also forwards the details to neighbouring
SNs using SN_List database.

Social contribution tracker component updates the
values for the user in the reputation score database.
It also contacts credits transaction manager component
in the economic engine which updates virtual credits
database for the user. Social contribution tracker and



9

credits transaction manager provide the details to the
frontend layer and GUI informs the user of the outcome
of the operation.

3) Workflow for support provision: Consider the case
when a user contributes to the community cloud by
providing support to others in resolving issues with the
system. The support ticketing system in social engine
provides a mechanism for users to request and provide
support on self-help basis. The main role of the support
ticketing system in the community cloud is to provide
incentives to the volunteers by rewarding them with
virtual credits for their effort.

When a user helps others with fixing their problems,
support ticketing system keeps track of the feedback.
It checks with identity manager component of the so-
cial engine to authenticate the user. Social contribution
tracker then updates the reputation score database for
the user.

Social contribution tracker also asks credits transaction
manager to update virtual credits database for the user.
The details are provided to the frontend layer and user
can check the status of his or her virtual credits via GUI.

VI. RelatedWork

After the prevalence of public clouds [15], there is
now increasing interest in providing cloud services by
harvesting excess resources from the idle machines con-
nected to the Internet [16]. Commercial clouds have
dedicated resources that are financed by the users who
pay in hard currency to use the cloud services. In
contrast, building a cloud platform within a community
mesh network requires incentives to encourage active
participation from the members of the community. Pre-
vious distributed multi-owned computing platforms like
Seti@Home [17] have relied on altruistic contribution
of volunteer users. PlanetLab [18] requires for granting
resource usage a prior fixed contribution before the
services are made available.

At the level of participation in community networks,
reciprocal resource sharing is in fact part of the mem-
bership rules or peering agreements of many commu-
nity networks. The Wireless Commons License6 (WCL)
of many community networks states that the network
participants that extend the network, e.g. contribute new
nodes, will extend the network in the same WCL terms
and conditions, allowing traffic of other members to
transit on their own network segments.

Regarding incentive mechanisms, in the literature
there are various incentive mechanisms which address
different requirements [19]–[22]. None of these incentive
mechanisms however target the particular situation of
wireless community networks.

On the level of complete systems for community cloud
computing [16], there are a few research prototypes.

6http://guifi.net/es/ProcomunXOLN

Skadsem et al. [23] provide applications for the commu-
nities by using local cloud services. Their work is similar
to ours though they assume that the social mechanisms
like trust in a small community do not require additional
mechanisms for incentives. They envisage two usage
scenarios for cloud applications in rural communities.
First focuses on the distributed storage where they plan
to provide an online message board for community
for sharing photos and videos. The other deals with
compute-intensive operations such as collaborative edit-
ing of video footage. They have built distributed storage
in P2P systems, and they want to extend that to the
community cloud after incorporating virtualization.

The Cloud@Home7 [24] project has similar goals to
harvest in resources from the community to meet peaks
in demands. The aim is to work with open, commercial
and hybrid clouds to make cloud federations. The sys-
tem envisages ensuring Quality of Service (QoS) using
a rewards and credit system, however the authors have
not provided sufficient details to understand how these
incentives will be designed.

CuteCloud [25] is an ongoing project that plans to
use idle resources form users’ commodity machines and
dedicated servers. High-demanding jobs are assigned
to dedicated servers while excess demand can be met
from commodity machines. They presume that resources
will be volunteered similar to Seti@Home [17] and do
not address the problem of how to encourage users
to devote resource. They aim to use the Nimbus8 as
virtual machines manager (VMM), with Xen9 hypervisor
running on dedicated machines and VirtualBox10 on
common users’ machines.

Clouds@home11 [26] project focuses on providing
guaranteed performance and ensuring quality of service
(QoS) even when using volatile Internet volunteered
resources. They do not focus on incentive mechanisms.

P2PCS12 [27] project has built a prototype implemen-
tation of a decentralized Peer-to-Peer Cloud System. It
uses Java JRMI technology and build an IaaS system that
provides very basic support for creating and managing
VMs as. A slice is a group of multiple VMs connected in
a single virtual network. It manages slices information
in a decentralized manner using gossip protocols. They
also do not address the issue of incentives.

We notice that none of the found related work propose
and discuss clouds within wireless mesh community
networks.

7http://cloudathome.unime.it
8http://www.nimbusproject.org
9http://www.xen.org
10http://www.virtualbox.org
11http://clouds.gforge.inria.fr
12https://code.google.com/p/cloudsystem

http://guifi.net/es/ProcomunXOLN
http://cloudathome.unime.it
http://www.nimbusproject.org
http://www.xen.org
 http://www.virtualbox.org
http://clouds.gforge.inria.fr
https://code.google.com/p/cloudsystem


10

VII. Conclusion
Wireless community networks would have additional

value from services deployed on community clouds. A
vast amount of applications could be deployed upon
community clouds, boosting the usage and spread of the
community network model.

We have proposed a distributed service architecture
for providing cloud services that is tailored to the
unique nature and conditions of community networks.
We have discussed different scenarios for setting up
cloud infrastructure in community networks and how
the distributed service architecture can handle them.

We aim to develop software components on top of
existing cloud managing platforms like OpenNebula that
provide services for federation of cloud resources with
regulated resource sharing to encourage active contrib-
utory participation of the community members to form
and maintain the cloud infrastructure. Since community
networks are volunteer organizations, we consider such
services essential to assure a sustainable community
cloud within community networks.

While this would assure the community cloud infra-
structure to be created by the members’ contributions, a
next step is to assess the community cloud performance.
So in future work we plan to run experiments to inves-
tigate the expected performance of such a distributed
community cloud in wireless community networks.

Acknowledgement
This work was supported by the European Com-

mission Framework Programme 7 within the Future
Internet Research and Experimentation Initiative (FIRE),
Community Networks Testbed for the Future Inter-
net (CONFINE), FP7-288535, and CLOMMUNITY, FP7-
317879. Support was also provided by the Universitat
Politècnica de Catalunya BarcelonaTech and the Spanish
Government through the Delfin project, TIN2010-20140-
C03-01.

References
[1] F. A. Elianos, G. Plakia, P. A. Frangoudis, and G. C. Polyzos,

“Structure and evolution of a large-scale Wireless Community
Network,” in 2009 IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks & Workshops. IEEE, Jun.
2009.

[2] “Guifi.net new sections of fiber deployed to the farm,”
2012. [Online]. Available: http://en.wikinoticia.com/Technology/
internet/122595

[3] D. Vega, L. Cerda-Alabern, L. Navarro, and R. Meseguer, “Topol-
ogy patterns of a community network: Guifi.net,” in 1st Interna-
tional Workshop on Community Networks and Bottom-up-Broadband
(CNBuB 2012), within IEEE WiMob, Barcelona, Spain, Oct. 2012,
pp. 612–619.

[4] F. Baiardi and D. Sgandurra, “Securing a Community Cloud,” in
2010 IEEE 30th International Conference on Distributed Computing
Systems Workshops. Los Alamitos, CA, USA: IEEE, Jun. 2010, pp.
32–41.

[5] K. Bernsmed, M. G. Jaatun, P. H. Meland, and A. Undheim,
“Thunder in the Clouds: Security challenges and solutions for
federated Clouds,” in 4th IEEE International Conference on Cloud
Computing Technology and Science Proceedings. IEEE, Dec. 2012,
pp. 113–120.

[6] B. Satzger, W. Hummer, C. Inzinger, P. Leitner, and S. Dustdar,
“Winds of Change: From Vendor Lock-In to the Meta Cloud,”
IEEE Internet Computing, vol. 17, no. 1, pp. 69–73, Jan. 2013.

[7] “Guifi.net: Open, Free and Neutral Network Internet for
everybody.” [Online]. Available: http://guifi.net

[8] B. Yang and H. Garcia-Molina, “Designing a super-peer network,”
in Proceedings 19th International Conference on Data Engineering.
IEEE, 2003, pp. 49–60.

[9] O. Babaoglu and M. Jelasity, “Self-* properties through gossip-
ing.” Philosophical transactions. Series A, Mathematical, physical, and
engineering sciences, vol. 366, no. 1881, pp. 3747–57, Oct. 2008.

[10] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente, “IaaS
Cloud Architecture: From Virtualized Datacenters to Federated
Cloud Infrastructures,” Computer, vol. 45, no. 12, pp. 65–72, Dec.
2012.

[11] O. Babaoglu, M. Jelasity, A.-M. Kermarrec, A. Montresor, and
M. van Steen, “Managing clouds: A Case for a Fresh Look at
Large Unreliable Dynamic Networks,” ACM SIGOPS Operating
Systems Review, vol. 40, no. 3, p. 9, Jul. 2006.

[12] “OpenNebula - Open Source Data Center Virtualization,”
http://opennebula.org. [Online]. Available: http://opennebula.org

[13] OpenStack, “Open Source Cloud Computing Software,”
http://www.openstack.org. [Online]. Available: http://www.
openstack.org

[14] J. Chen, X. Wu, S. Zhang, W. Zhang, and Y. Niu, “A Decentral-
ized Approach for Implementing Identity Management in Cloud
Computing,” in 2012 Second International Conference on Cloud and
Green Computing. IEEE, Nov. 2012, pp. 770–776.

[15] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D.
Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, and
A. Rabkin, “A view of cloud computing,” Communications of the
ACM, vol. 53, no. 4, p. 50, Apr. 2010.

[16] A. Marinos and G. Briscoe, “Community Cloud Computing,”
Cloud Computing, vol. 5931, pp. 472–484, 2009.

[17] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer, “SETI@home: an experiment in public-resource
computing,” Communications of the ACM, vol. 45, no. 11, pp. 56–61,
Nov. 2002.

[18] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzo-
niak, and M. Bowman, “PlanetLab: An Overlay Testbed for Broad-
Coverage Services,” ACM SIGCOMM Computer Communication
Review, vol. 33, no. 3, pp. 3–12, Jul. 2003.

[19] K. Zhang, N. Antonopoulos, and Z. Mahmood, “A taxonomy of
incentive mechanisms in peer-to-peer systems: Design require-
ments and classification,” International Journal on Advances in
Networks and Services, vol. 3, no. 1, pp. 196–205, 2010.

[20] M. Babaioff, J. Chuang, and M. Feldman, “Incentives in peer-to-
peer systems,” in Algorithmic Game Theory. Cambridge University
Press, 2007, pp. 593–612.

[21] M. Feldman and J. Chuang, “Overcoming free-riding behavior in
peer-to-peer systems,” ACM SIGecom Exchanges, vol. 5, no. 4, pp.
41–50, Jul. 2005.

[22] Y. Tang, H. Wang, and W. Dou, “Trust based incentive in P2P net-
work,” in IEEE International Conference on E-Commerce Technology
for Dynamic E-Business, no. 90104020. IEEE Comput. Soc, 2004,
pp. 302–305.

[23] M. K. Skadsem, R. Karlsen, G. Blair, and K. Mitchell, “Community
Cloud - Cloud Computing for the Community,” in 1st International
Conference on Cloud Computing and Services Science. Setubal,
Portugal: SciTePress, May 2011, pp. 418–423.

[24] S. Distefano and A. Puliafito, “Cloud@Home: Toward a Volunteer
Cloud,” IT Professional, vol. 14, no. 1, pp. 27–31, Jan. 2012.

[25] D. Che, M. Zhu, J. Fairfield, and M. Khaleel, “CuteCloud–Putting
“Credit Union” Cloud Computing into Practice,” in Research in
Applied Computation Symposium (RACS 2012), San Antonio, USA,
Oct. 2012.

[26] S. Yi, E. Jeannot, D. Kondo, and D. P. Anderson, “Towards Real-
Time, Volunteer Distributed Computing,” in 11th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGrid
2011). Newport Beach, USA: IEEE, May 2011, pp. 154–163.

[27] O. Babaoglu, M. Marzolla, and M. Tamburini, “Design and
implementation of a P2P Cloud system,” in 27th Annual ACM
Symposium on Applied Computing (SAC ’12), New York, USA, Mar.
2012, pp. 412–417.

http://en.wikinoticia.com/Technology/internet/122595
http://en.wikinoticia.com/Technology/internet/122595
http://guifi.net
http://opennebula.org
http://www.openstack.org
http://www.openstack.org

	Introduction
	Requirements
	Autonomy
	Security
	Self-Management
	Utility
	Ease of Use
	Incentives for Contribution
	Support for Heterogeneity
	Standard API

	Distributed Architecture using Super Nodes
	Context of the community network topology
	Architecture and design
	Ordinary Nodes (ONs)
	Super Nodes (SNs)

	Coordination in Federated Clouds

	Overview of Community Cloud Manager
	Super Nodes and Ordinary Nodes
	Different Configurations of SNs and ONs
	Only ordinary nodes
	Super node with multiple ordinary nodes
	Only super node
	Super node and ordinary nodes as a single box


	Architecture of Community Cloud Manager
	Hardware Layer
	Core Layer
	Cloud Coordinator
	Gossip-Based Discovery
	Distributed Self-Management

	Economic Engine
	Resource Usage Tracker
	Contribution Tracker
	Credits Transaction Manager

	Social Engine
	Distributed Identity Manager
	Support Ticketing System
	Social Contribution Tracker

	Frontend Layer
	Interaction between different components
	Workflow for a resource request
	Workflow for social contribution
	Workflow for support provision


	Related Work
	Conclusion
	References

