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Abstract. The increasing demand for fast wireless commu-
nications requires sophisticated baseband signal processing.
One of the computational intense tasks here is advanced
Forward Error Correction (FEC), especially the decoding.
Finding efficient hardware implementations for sophisticated
FEC decoding algorithms that fulfill throughput demands un-
der strict implementation constraints is an active research
topic due to increasing throughput, low latency, and high en-
ergy efficiency requirements.

This paper focuses on the interesting class of Polar Codes
that are currently a hot topic. We present a modular frame-
work to automatically generate and evaluate a wide range
of Polar Code decoders, with emphasis on design space ex-
ploration for efficient hardware architectures. To demonstrate
the efficiency of our framework a very high throughput Soft
Cancellation (SCAN) Polar Code decoder is shown that was
automatically generated. This decoder is, to the best of our
knowledge, the fastest SCAN Polar Code decoder published
so far.

1 Introduction

Over the last decades, digital communication systems be-
came an essential part of our lives. We consume, produce,
and store an ever increasing amount of data. Their trans-
port requires fast networks and advanced baseband signal
processing to handle the growing amount of wireless traffic.
Here, the demand for high energy efficiency, low latency, and
high throughput is increasing. One crucial and challenging
part of communication systems is channel coding, or FEC,
that copes with transmission errors in noisy environments
(Weithoffer et al., 2017).

A class of codes, that gained much interest in the last years
for achieving the channel capacity (Shannon, 1948) for spe-
cific channels, are Polar Codes. This property and their sub-

sequent adoption for the next generation mobile networks
(5G) has put Polar Codes in the focus of many investigations.
In this paper we only focus on the decoding because it’s the
most computationally intense part.

Various hardware implementations for Polar Code de-
coders have been proposed in recent years. They cover
pipelined high-throughput architectures (Giard et al., 2017),
flexible (Dizdar and Arıkan, 2016), and iterative decoder im-
plementations (Park et al., 2014) to name but a few of them.
These decoders are generally optimized only for one specific
target, e.g., throughput, area or code rate flexibility, and es-
pecially for only one specific decoding algorithm. Moreover,
a thorough analysis and comparison of the various architec-
tures with respect to trade-offs is missing from literature.

2 Contribution and outline

In this paper, we present a framework for fast exploration
of the design space for Polar Code decoder hardware im-
plementations. The framework also allows the fast adaption
to changing requirements, i.e., the code structure during the
standardization of 5G.

The contributions are as follows: First, we propose Polar
Factor Trees as a generalized model of Polar Code decod-
ing. Based on the Polar Factor Tree, we present an archi-
tectural template for high-throughput Polar Code decoders.
The Polar Factor Tree and the architectural template are the
basis of our framework. Second, we present a framework
that allows fast exploration of the Polar Code decoder design
space. Output are detailed design metrics (throughput, area,
etc.). And third, as a proof-of-concept of our framework, we
present the first high-throughput SCAN Polar Code decoder
that achieves more than 100 Gbps on a 28 nm technology.

The paper is structured as follows: In Sect. 3 a short in-
troduction to Polar Codes, their encoding and decoding al-
gorithms is given. Section 4 focuses on high-throughput de-
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Figure 1. Polarization of two channels.

Figure 2. Polar Factor Graph, encoding and decoding.

coder architectures. In Sect. 5 the proposed framework and
the generated SCAN Polar Code decoder are presented.

3 Polar Codes

Polar Codes, invented 2009 by Erdal Arikan, are the first
codes proven to achieve channel capacity (Arikan, 2009)
for Binary Symmetric Memoryless Channels (BSMC). Po-
lar Codes are block codes and belong to the class of multi-
level concatenated codes, but, in contrast to the similar Reed-
Muller-Codes, they use the phenomenon of channel polariza-
tion to maximize coding efficiency. As a candidate for the
FEC of the next generation mobile networks (5G) they play
an important role in the ongoing standardization process.

3.1 Channel polarization

Channel polarization is a transformation of N independent
copies of a channel W into a new set of N channels {W (i)

N :

1≤ i ≤N} , where, for large N , the symmetric channel ca-
pacity I (W (i)

N ) approaches either 0 (completely noisy) or 1
(completely error-free). Figure 1 shows an example for a set
of two channels before and after the polarization. The chan-
nel with decreased capacity is calledW− (red), and the other
with the improved capacity is called W+ (blue).

3.2 Code construction

The butterfly structure in Fig. 1b represents the smallest pos-
sible Polar Code withN = 2. Larger codes can be built by re-
cursively combining two codes of length N/2 to a new code
of length N . Therefore, to create a code of length N , 2log2N

steps of combining are necessary. The code rate N/K is then
selected by setting the least reliable channels to fixed known
values, e.g., 0 (called frozen bits), and using the more reliable
channels to transmit the information bits. Figure 2 shows the
structure of a Polar Code of length N = 8 and K = 4 infor-
mation bits u1...4. The frozen bits are set to 0.

Polar Codes are defined with a generator matrix GN

that is built by using the Kronecker power F⊗log2N
2 of

F2 =

[
1 0
1 1

]
. Note that F2 represents the butterfly structure

of Fig. 1b, and the Kronecker power equals the combination
of smaller codes into bigger ones.

3.3 Encoding

The encoding is shown in Fig. 2a for a N = 8/K = 4 Polar
Code. A sequence of information bits u1...4 and frozen bits
is passed through the code structure from left to right to get
a codeword x1...8 of length N = 8. Formally, the encoding
is x = uGN with GN being the generator matrix and u the
information vector that includes the frozen bits.

3.4 Decoding

The decoding of Polar Codes can be seen as the reversal of
the encoding. Thus, decoding passes the received channel
values y from left to right as shown in Fig. 2b.

But while the encoding is simply a linear transforma-
tion, the decoding is the estimation of the originally trans-
mitted information bits û from the received channel val-
ues y, commonly represented as Log Likelihood Ratios
(LLRs). LLRs are a measure of the probability of a re-
ceived value corresponding to either 0 or 1 and are defined
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as LLR(yi)= log
(
P(yi |1)
P (yi |0)

)
. This estimation can be done by

different algorithms.
The most popular decoding algorithm for Polar Codes is

the Successive Cancellation (SC) algorithm that was pre-
sented by Arikan (2009) in his original paper. SC passes the
received channel values from left to right over the Polar Fac-
tor Graph in Fig. 2b. Four types of operations have to be
performed for every butterfly structure (see Sect. 4.1). The
decoding of the individual bits is performed in a recursive
manner on the Polar Factor Graph.

An extension of SC is the Successive Cancellation List
(SCL) algorithm. In this algorithm a list of L most proba-
ble decisions are considered, i.e., L codewords are decoded.
The final codeword is selected out of the list by, e.g., the
highest overall probability or by other checks like a Cyclic
Redundancy Check (CRC). The SC and SCL are sequential
algorithms.

An inherently parallel decoding algorithm is the Belief
Propagation (BP) algorithm for Polar Codes. It iterates from
left to right and reverse over the Polar Code Factor Graph
from Fig. 2b. Thus, the bits are decoded in an iterative man-
ner similar to the BP for Low Density Parity Check (LDPC)
codes. However, Abbas et al. (2017) showed that up to 100
iterations are necessary to match the error correcting perfor-
mance of the SC algorithm.

The SCAN algorithm (Fayyaz and Barry, 2014) uses the
general processing order of the SC algorithm in combination
with the exchange of soft values from the BP algorithm. The
SCAN decoding algorithm is highly parameterizable in terms
of processing order of the nodes and allows various trade-
offs.

Figure 3 shows the communications performance of the
SC, SCL, and SCAN algorithms, respectively. While SC
and SCAN provide similar communications performance and
mostly differ in the hard or soft output, the SCL algorithm
performs significantly better, but at the cost of increased de-
coding complexity. The SCL was simulated with list size
L= 4 and the SCAN algorithm with one iteration I = 1 for
a code of N = 1024,K = 512 over an AWGN channel and
floating-point arithmetic. The Polar Code was constructed
by using the gaussian approximation method (Vangala et al.,
2015) for a design Signal-to-Noise Ratio (SNR) of 0 dB.

4 Modeling of high-throughput architectures

In Sect. 3 we used the Polar Factor Graph to explain decod-
ing. A compressed version of this graph is the Polar Factor
Tree (see Fig. 4a, b). For that, groups of concurrent calcula-
tion steps are combined and represented as a single node in
the tree. A row of operations is mapped on the same tree
level. Leaf nodes, which are frozen, are marked white (in
Fig. 4b), leaf nodes containing information bits blue. Non-
leaf nodes containing only frozen or information bits as child

Figure 3. Error Correction Performance in Frame Error Rate (FER)
over the SNR in Eb/N0 for a Polar Code of N = 1024/K = 512.

nodes are marked white and blue, respectively. Nodes with
mixed leaf nodes are colored half white and half blue.

SC, SCL, and SCAN decoding can be modeled by a depth-
first search on this tree. Whenever during search a node is
visited, a corresponding operation has to be performed. BP
corresponds to a breadth-first search on the same tree.

The factor tree is a better representation than the graph
representation and used in many approaches: Alamdar-Yazdi
and Kschischang (2011), Sarkis et al. (2014), Sarkis et al.
(2016), and Lin et al. (2017). We use the Polar Factor Tree as
central data structure for our framework.

4.1 Node operations

As said, all decoding algorithms can be mapped onto a depth-
(SC, SCL, SCAN) or breadth-first search (BP) on this Polar
Factor Tree. Here we focus on the first class of algorithms.
The differences in the three decoding algorithm is in the node
operations while the tree is traversed.

Figure 4c and d show the performed operations of one but-
terfly unit and one node, respectively. αv , β l , and βr denote
vectors that are input to a node (marked in gray). αl , αr , and
βv are corresponding vectors calculated by the node (marked
red). The notation αvi with i = 0, . . .,N is used to address
one element of the corresponding vector. The dimensions of
the vectors depend on the tree level t , starting with t = 0 for
the root node. For the vectors αv and βv the length is N/2t

and for αl , β l , αr , and βr the length is N/2t+1.
Every node (Fig. 4d) that is visited during depth-first

search first calculates a new vector of LLRs αl and sends
it to the left child. In the backtracking phase of the search,
the left child provides β l to this node. Next, αr is calculated
and sent to the right child, awaiting the result βr of the right
child. Finally βv is calculated and sent to its parent node. Ta-
ble 1 shows the corresponding equations for the calculation
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Figure 4. Polar Code Representations.

Table 1. Node operations of different decoding algorithms

i = 0, . . .,N/2t+1 SC SCL SCAN

αli f
(
αvi ,αvi+N/2

)
L× f

(
αvi ,αvi+N/2

)
f

(
αvi ,αvi+N/2

)
αri f

(
αvi ,βli ⊕αvi+N/2

)
L× f

(
αvi ,βli ⊕αvi+N/2

)
f

(
αvi ,βli +αvi+N/2

)
βvi βli ⊕βri L×βli ⊕βri f

(
βli ,βri +αvi+N/2

)
βvi+N/2 βri L×βri f

(
βli ,αvi+N/2

)
+βri

(Sort and Prune List)

f (a,b)≈ sign(a)sign(b)min(|a|, |b|) (Leroux et al., 2011).

Table 2. Optimized pipeline stages for different codes

Code N/K Node Visits/ Optimized
Pipeline Stages

32/16 125 17
128/64 253 65
1024/512 4093 385
1024/768 4093 273

Figure 5. Architectural template for unrolled tree traversals.

of the vectors αl , αr , and βv for the SC, SCL, and SCAN
decoding algorithms, respectively. ⊕ denotes the binary ad-
dition and× implying that the operation has to be performed
L times.

Please note that for SCL decoding algorithm, additional
effort has to be spent within the nodes for the list manage-
ment, in particular the sorting and pruning of the list accord-
ing to path metrics which are not shown here for simplicity.
Also, the leaf operations differ slightly between SC, SCL,
and SCAN. While SC and SCL decide for either 1 or 0 in the
leaf node, the SCAN decoding algorithm follows the BP ap-
proach for Polar Codes and propagates constants, i.e., infinity
for frozen bits and zero for information bits.

4.2 Unrolling the tree traversal

To build high-throughput decoders, pipelining is the most
efficient way to gain maximal parallelism and at the same
time maximized data locality. For iterative decoding algo-
rithms like the BP, pipelining can be achieved by unrolling
the iterations and pipelining the different stages. The number
of pipelining stages corresponds to the number of iterations.
Such an architecture was for the first time demonstrated for
LDPC decoding by Schläfer et al. (2013). In their paper, a
min-sum LDPC decoding algorithm was unrolled over 9 iter-
ations for an N = 672,Rate= 13/16 LDPC code, achieving
an outstanding throughput and energy efficiency, but at the
cost of flexibility.

Here we focus on SC, SCL, and SCAN that perform depth-
first traversal of the Polar Factor Tree during decoding. Com-
parable to unrolled LDPC decoding, we can similarly unroll
the tree traversal: Whenever a tree node is visited during the
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Figure 6. Pipeline Optimization through tree minimization for a Polar Code of N = 16,K = 8.

Figure 7. Design Space (red: focus in this paper).

traversal, a corresponding pipeline stage is instantiated. The
resulting generic architectural template is shown in Fig. 5:
Panel a shows the tree traversal and panel b the correspond-
ing pipeline stages. This model serves as a generic model for
all decoding algorithms that traverse the tree, i.e., SC, SCL,
and SCAN. The only difference between decoders for differ-
ent algorithms is in the node operations in the pipeline stages.

For a binary balanced tree with N leaf nodes, 2 · (2N − 2)
node-visits are performed during the depth-first traversal
which results in 2 · (2N − 2) pipeline stages, respectively.

Giard et al. (2015) have first published this concept of un-
rolling for Polar Codes and the SC algorithm. Later it was
presented by Giard et al. (2016) also for the SCL algorithm.
Our approach presented in this paper is a generalized model
and valid for all decoding algorithms based on the traversal
of the Polar Factor Tree.

4.3 Pipeline optimization

Since the number of traversed nodes’ visits directly maps
into the amount of pipeline stages, minimizing the tree cor-
responds to minimizing the number of pipeline stages. A
smaller tree therefore leads to less pipeline stages, thus lower
latency, improved area, and energy efficiency. Sarkis et al.
(2014) have proposed some techniques to reduce the size of
the Polar Factor Tree without a loss in error correction per-
formance.

A reduction is achieved by first replacing complete sub-
trees with a single node that can decode the subtree in one
step. Two possible subtree optimizations are shown in Fig. 6:

Figure 8. Polar Code decoder exploration framework.

A 4 bit subtree with three frozen and one information bit as
leaves, equaling a repetition code, is replaced by a new spe-
cialized node (marked red). Similar a 4 bit subtree with only
one frozen bit and three information bits as leaves, acting like
a simple parity check code, is likewise replaced by a new spe-
cialized node (marked green).

The tree can be further reduced by optimizing homoge-
neous subtrees (composed of either completely frozen or
completely information nodes) and merging them into their
parent node. This is valid because a subtree with only frozen
bit leaves (marked white in Fig. 6) equals a Rate-0 code, that
doesn’t carry any information but only noise. Accordingly a
subtree with only information bits as leaves (marked blue)
equals a Rate-1 code that consists of only information and
no redundancy, therefore has no error correction capabilities.

Table 2 shows the number of node visits, or pipeline
stages, for selected Polar Codes with different code lengths
and code rates, respectively, before and after the optimization
for the SCAN decoding algorithm. The numbers for the op-
timized pipeline stages are created by traversing the reduced
tree described in this section. While the improvement in the
number of pipeline stages and therefore also latency and area
are significant, it also becomes obvious, that every change in
the code length or code rate results in a different tree and,
thus, a different architecture.

5 Framework for design space exploration

Every change in either the decoding algorithm, the code (the
position of frozen bits), its length or rate affects the opti-
mal architecture for a Polar Code decoder and spans a de-
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Figure 9. Pipeline architectures.

Table 3. Implementation results for a SCAN decoder with N = 128/K = 64 for different architectures on a 28 nm FD-SOI technology

Combinatorial Logic Fully Pipelined Optimized for 100Gbps Lin et al. (2017)

Technology 28 nm 28 nm 28 nm 28 nm (scaled from 90 nm)
Code 128/64 128/64 128/64 1024/512
Architecture Unrolled Unrolled Unrolled Sequential
Throughput (Gbps) 6.39 121.9 108.5 2.5
Max. Frequency (MHz) 49.9 952.4 847.5 1440
Nr. of Reg. Stages 0 64 24 –
Total Size of Reg. (KB) 0 13.9 5.23 –
Area (mm2) 0.36 0.76 0.39 0.12
Area Efficiency (Gbpsmm−2) 17.7 159.6 276.0 20.5

sign space (Fig. 7) of possible architectures. This space is
too large for manual investigation and can only be explored
by automating the hardware decoder generation.

We developed a framework to explore this design space.
Input are a Polar Code, a specific decoding algorithm, and
further parameters, e.g., approximations, quantization, etc.
Output are simulation results to evaluate the error correction
performance and VHDL code of decoder architectures that
can be synthesized, placed&routed. This information is fed
back into the framework for further optimization. The frame-
work consists of a number of different components that are
modular and interact as shown in Fig. 8. Their functionality
is as follows:

Node Operations: In this block, the node functionality is
selected according to the decoding algorithm. The node func-
tionality is defined on C++ level for simulation and on VHDL
level for architecture generation (Table 1).

The Simulation Model generates the error correction per-
formance for the specified decoding algorithms, approxima-
tions, quantization etc., and generates FER/Bit Error Rate
plots as shown in Fig. 3.

The Polar Factor Tree from Sect. 4 represents the main
data structure of the framework and uses a Polar Code as
input. The tree is then traversed to generate a Pipelined Ar-
chitecture (see Sect. 4.2). This pipelined architecture uses the
sequence of operations from the tree traversal and the VHDL
blocks to assemble a fully synthesizable Polar Code decoder
in VHDL.

Both the Polar Factor Tree and the pipelined architec-
ture are subject to Optimization based on results from the
simulation model and synthesis/place&route. For the Polar
Factor Tree this can be, e.g., optimizations on the tree (see
Sect. 4.3). For pipeline optimizations we refer to the next
section.

5.1 Case study

To show the performance of our framework we present as
a case study, an unrolled SCAN Polar Code decoder with
one iteration. We further show various design trade-offs.
There are two extreme cases. We can remove all registers
from the pipeline stages. This results in a pure combinatorial
circuit (Fig. 9a). Advantages are low area, low power, and
low latency. Main disadvantage is low throughput. The other
extreme is to have a pipeline register between each stage
(Fig. 9b). Advantage is high-throughput, disadvantages are
high area, high power, and a high latency. Our framework al-
lows to balance the register count between the two extrema
using its internal timing engine. So, for a given through-
put constraint, the number and optimum position of registers
can be automatically calculated (Fig. 9c). Table 3 shows the
various trade-offs. Results are after place&route and worst
case Process-Voltage-Temperature (PVT) on a 28 nm FD-
SOI technology. Throughput refers to coded bits.

The first two columns show the pure combinatorial and
fully pipelined architecture, respectively. Column 3 shows
the architecture for a throughput constraint of 100 Gbps. All
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three architectures were automatically generated with our
framework. The last column shows the fastest SCAN decoder
implementation published (Lin et al., 2017). However, their
decoder uses a sequential processing, a different code and
a different technology. To give at least a first estimate we
scaled the decoder down to 28 nm. Our architecture is more
than 40 times faster and shows a much better area efficiency,

To the best of our knowledge, this fully pipelined archi-
tecture is the fastest SCAN Polar Code decoder, while the
partially pipelined architecture is the most area efficient pub-
lished so far.

6 Conclusion and outlook

Based on the works of Sarkis et al. (2014), Giard et al.
(2015), and Lin et al. (2017) we proposed a generalized
model for the decoding of Polar Codes with the SC, SCL, and
SCAN algorithms. This model is used to provide a generic ar-
chitectural template for unrolled high-throughput decoders.
We further presented a framework to evaluate the error cor-
rection performance of Polar Codes, automate the unrolling
and generate a fully functional and synthesizable VHDL im-
plementation of a Polar Code decoder.

Further, we presented an optimization of pipeline stages to
improve the area and energy efficiency. To demonstrate the
performance of our framework we presented a high through-
put SCAN decoder. With a throughput of over 100 Gbps it is
to our knowledge the fastest published SCAN decoder.
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