
EcologicalNetworks.jl - analysing ecological networks

Timothée Poisot 1,2 Zacharie Belisle 1

1: Université de Montréal, Département de Sciences Biologiques; 2: Québec Centre for Biodiversity Sci-

ences

Keywords:
ecological networks

Julia

graph theory

Abstract: Networks are a convenient way to represent many interactions among ecological
entities. The analysis of ecological networks is challenging for two reasons. First, there is
a plethora of measures that can be applied (and some of them measure the same property);
second, the implementation of these measures is sometimes difficult . We present Ecological-
Network.jl, a package for the julia programming language. Using a layered system of types
to represent several types of ecological networks, this packages offers a solid library of basic
functions which can be chained together to perform the most common analyses of ecological
networks.

Correspondence to Timothée Poisot – timothee.poisot@umontreal.ca

Background

The analysis of ecological networks is an increasingly common task in community ecology and
related fields (Delmas et al. 2018). Ecological networks provide a compact and tractable repre-
sentation of interactions between multiple species, populations, or individuals. The method-
ology to analyse them, grounded in graph theory, scales from small number of species to po-
tentially gigantic graphs of thousands of partners. The structural properties derived from
the analysis of these graphs can be mapped onto the ecological properties of the community
they depict. Because there is a large number of questions one may seek to address using the
formalism of networks (Poisot et al. 2016b), there has been an explosion in the diversity of
measures offered. As such, it can be difficult to decide on which measure to use, let alone
which software implementation to rely on.

At the same time, the recent years have seen an increase in the type of applications of network
theory in ecology. This includes probabilistic graphs (Poisot et al. 2016a), investigation of
species functional roles in the network (Baker et al. 2014), comparison of networks across
space and time (Poisot et al. 2012) and on gradients (Pellissier et al. 2017), to name a few. As
the breadth and complexity of analyses applied to ecological networks increases, there is a
necessity to homogenize their implementation. To the ecologist wanting to analyse ecological
networks, there are a variety of choices; these include enaR (Borrett & Lau 2014) for food
webs, bipartite (Dormann et al. 2008) and BiMat (Flores et al. 2016) for bipartite networks,
and more general graph-theory libraries such as networkx (Hagberg et al. 2008) and igraph
(Csardi & Nepusz 2006), which are comprehensive but may lack ecology-specific approaches
and measures. Additional packages are even more specific, such as bmotif for bipartite motifs
enumeration (Simmons et al. 2018), or pymfinder (Mora et al. 2018). Most of these packages
are focused on either food webs or bipartite networks, and therefore do not provide a unified
ecosystem for users to develop their analyses in; more general libraries come the closer, but

1

http://orcid.org/0000-0002-0735-5184

they require a lot of groundwork before they can be effectively used to conduct ecological
analyses. There is a gap in the current software offering.

In this manuscript, we describe EcologicalNetworks, a package for the Julia programming lan-
guage (Bezanson et al. 2017). Julia is rapidly emerging as a new standard for technical com-
puting, as it offers the ease of writing of traditional interpreted languages (like R or python)
with up to C-like performance. More importantly, code performance can be achieved by writ-
ing only pure-Julia code, i.e. without having to write the most time-consuming parts in other
languages like C or C++. This results in more cohesive, and more maintainable code, to which
users can more easily contribute.

The goal of this package is to provide a general environment to perform analyses of ecological
networks. It offers a hierarchy of types to represent ecological networks, and includes com-
mon measures to analyse them. This package has been designed to be easily extended, and
offers small, single-use function, that can be chained together to build complex analyses. The
advantage of this design is that, rather than having to learn the interfaces (and options) of
many different packages, the analyses can be seemlessly integrated in a single environment
– this solves the problem identified by Delmas et al. (2018), namely that software for ecologi-
cal network research is extremely fragmented. In addition, many measures and analyses of
network structure are likely to re-use the same basic components. Consolidating the methodol-
ogy within a single package makes it easier to build a densely connected codebase. Whenever
possible, we have also overloaded methods for the code Julia language, so that the code feels
idiomatic. We showcase the usage of EcologicalNetworks through a number of simple appli-
cations: null-hypothesis significance testing, network comparison, modularity optimisation,
random extinctions, and the prediction of missing interactions.

Methods and features

Installation instructions for Julia itself are found at https://julialang.org/downloads/ – this
manuscript specifically describes version 1.0.0 of EcologicalNetworks.jl (currently un-
released), which works on the 0.7 and 1.0 releases of Julia. The code is released under
the MIT license. Functions in the package are documented through the standard Julia
mechanism (?connectance, for example), and a documentation is available online at
http://poisotlab.io/EcologicalNetworks.jl/latest/. EcologicalNetworks.jl can currently be
downloaded anonymously its GitHub repository, by first entering the package mode of the
julia REPL (]), and typing:

add https://github.com/PoisotLab/EcologicalNetworks.jl#develop

In this section, we will list the core functions offered by the package, discuss the type system,
and highlight the most important aspects of the user interface. This manuscript has been
written so that all examples can be reproduced from scratch.

Overview of package capacities

The EcologicalNetworks package offers functions to perform the majority of common ecolog-
ical networks analyses – we follow the recommendations laid out in Delmas et al. (2018). The
key functions include species richness (richness); connectance (connectance) and linkage
density (linkage_density); degree (degree) and specificity (specificity); null models (null1,
null2, null3in, null3out); constrained network permutations (shuffle); random networks
(rand); nestedness (η and nodf); shortest path (number_of_paths, shortest_path); centrality
measures (centrality_katz, centrality_closeness, centrality_degree); motif counting

2

https://julialang.org/downloads/
http://poisotlab.io/EcologicalNetworks.jl/latest/

(find_motif); modularity (Q), realized modularity (Qr), and functions to optimize them (lp and
salp for label propagation with or without simulated annealing, brim); β-diversity measures
(βs, βos, βwn); trophic level analysis (fractional_trophic_level, trophic_level); complemen-
tarity analysis (AJS; EAJS; overlap). These functions use the rich type system to apply the
correct method depending on the type of network, and rely on a simple user-interface to let
users chain them together (as explained in the next section). This package is not a series of
wrappers around functions, that would provide ready-made analyses. Instead, it provides
functions which can be chained, to let users develop their own analyses.

Type system

Networks are divided according to two properties: their partiteness (unipartite and bipartite),
and the type of information they contain.

Partiteness Int. strength Type Interactions

Unipartite Binary UnipartiteNetwork AbstractBool
Quantitative UnipartiteQuantitativeNetwork Number
Probabilistic UnipartiteProbabilisticNetwork AbstractFloat

Bipartite Binary BipartiteNetwork AbstractBool
Quantitative BipartiteQuantitativeNetwork Number
Probabilistic BipartiteProbabilisticNetwork AbstractFloat

All of these types share a Matrix field A containing the adjacency matrix, and either one Vector
field S (unipartite case) or two Vector fields T and B (bipartite case) containins the species (in
the bipartite case, the species are divided between the top layer T and bottom layer B). The
species can be represented as String or Symbol, with support for more types anticipated. In
addition, there are a number of type unions (fig. 1). The purpose of these types is to help users
write functions that target the correct combination of networks.

Fortunately, end-users will almost never need to understand how data are represented within
a type – the package is built around a number of high-level interfaces (see the next section) to
manipulate and access information about species and interactions. The type system is worth
understanding in depth when writing additional functions for which performance is impor-
tant. But in the context of other analyses, the functions described in the next section should
be used.

Interface

There are a number of high-level functions to interact with networks. An array of the species
can be returned with species(N), and this can further be split between rows and columns with,
respectively, species(N,1) and species(N,2). Another high-level function is interactions,
which returns a list of tuples, one for each interaction in the network.

N = web_of_life("A_HP_001")
first(interactions(N))

(from = "Ctenophthalmus proximus", to = "Microtus arvalis", strength = 2)

We also implement an iteration protocol (for interaction in network ...), which returns
the same objects as the interactions function.

3

Figure 1 Union types defined by EcologicalNet-
works – all networks belong to the AbstractEco-
logicalNetwork supertype. The ability to target
specific combinations of types allows to write the
correct methods for multiple classes of networks
at once, while being able to specialize them on spe-
cific types.

The network itself can be accessed as an array, either using the position of the species (which
is not advised to do as a user, since species are identified by names/symbol), or their names.
This can be used to get the value of an interaction:

N["Ctenophthalmus proximus", "Microtus majori"]

27

There is a shortcut to test the existence of the interaction:

has_interaction(N, "Ctenophthalmus proximus", "Microtus majori")

true

Indexing can also be used to look at a subset of the network, in which case a new network is
returned:

Ctenophthalmus = filter(x -> startswith(x, "Ctenophthalmus"), species(N; dims=1))
Apodemus = filter(x -> startswith(x, "Apodemus"), species(N; dims=2))
N[Ctenophthalmus, Apodemus]

5×2 bipartite quantitative ecological network (Int64, String) (L: 8)

When using slices, the package is not necessarily preserving the order of species. The package
also uses ranges (the simplify function removes species without interactions):

simplify(N[Ctenophthalmus,:])

5×8 bipartite quantitative ecological network (Int64, String) (L: 23)

The simplify function will return another network, but there is a simplify! variant which
will edit the network in place. Finally, we can get the set of predecessors or successors to a
species – for example, the parasites of “Apodemus sylvaticus” are:

4

N[:,Apodemus[1]]

Set(["Ctenophthalmus inornatus", "Hystrichopsylla satunini", "Ceratophyllus
sciurorum", "Ctenophthalmus shovi", "Megabothris turbidus", "Myoxopsylla j

ordani", "Amphipsylla georgica", "Rhadinopsylla integella", "Ctenophthalmus
proximus", "Nosopsyllus fasciatus", "Leptopsylla segnis", "Palaeopsylla ca

ucasica", "Leptopsylla taschenbergi", "Amphipsylla rossica", "Ctenophthalmu
s hypanis", "Hystrichopsylla talpae"])

Whenever possible, we have overloaded base methods from the language, so that the right
syntax is immediately intuitive to Julia users. For example, removing interactions whose in-
tensity is below a certain threshold is done through the isless operation, e.g. we can select
the sub-network made of interactions stronger than 20:

S = simplify(N ≥ 20)

Use-cases

In this section, we will use data from Hadfield et al. (2014) to illustrate a variety of network
analyses – null hypothesis significance testing for nestedness, pairwise network β-diversity,
modularity analysis, simulation of extinctions, and finally the application of a machine learn-
ing technique to infer possible missing interactions.

EcologicalNetworks comes with a variety of datasets, notably the <web-of-life.es> database.
We will get the data from Hadfield et al. (2014) from this source:

ids = getfield.(filter(x -> occursin("Hadfield", x.Reference), web_of_life()), :ID);
networks = convert.(BinaryNetwork, web_of_life.(ids));

Null-hypothesis significance testing

One common analysis in the network literature is to compare the observed value of a net-
work measure to the expected distribution under some definition of “random chance”. This is
usually done by (i) generating a matrix of probabilities of interactions based on connectance
(Fortuna & Bascompte 2006), degree distribution (Bascompte et al. 2003; Weitz et al. 2013),
(ii) performing random draws of this matrix under various constraints on its degeneracy (For-
tuna et al. 2010), and (iii) comparing the empirical value to its random distribution, usually
through a one-sided t-test. We will illustrate this approach by comparing the observed value
of nestedness (measured using the η measure of Bastolla et al. (2009)) to the random expec-
tations under four null models. We will get the first network from the Hadfield et al. (2014)
dataset to illustrate this approach:

N = networks[1]

EcologicalNetworks comes with functions to generate probabilistic matrices under the four
most common null models – for example

P1 = null2(N)

All probabilistic networks can be used to generate random samples, by calling the rand func-
tion, possibly with a number of samples:

R1 = rand(P1, 9)

5

This allows to rapidly create random draws from a probabilistic null model, as illustrated in
fig. 2.

Error: type ValueIterator has no field x

Original Probabilistic Random draw 1

Random draw 2 Random draw 3 Random draw 4

Random draw 5 Random draw 6 Random draw 7

Figure 2 Illustration of the network (upper-left
corner), probabilistic network generated by the
null model, and of 8 random draws. The color
of each node represents its degree in the original
network, and the position of species is conserved
across panels.

To simplify the code, we may want to wrap this into a function (note that the functions for
null models accept networks of any partiteness, but they have to be binary). This function
will take a network, a type of null model, and a number of replicates, and return the random
draws. We will use four null models (as per Delmas et al. 2018), null1 (all interactions have
equal probability), null2 (interactions probability depends on the degree of both species), and
null3in and null3out (interactions probability depends on the in-degree or out-degree of the
species). These networks are likely to have some degenerate matrices (as per Fortuna et al.
(2010)), that is to say, some species end up disconnected from the rest of the network. One
way to remove them is to apply a filter, using the isdegenerate function.

function nullmodel(n::T, f::Function, i::Integer) where {T<:BinaryNetwork}
@assert f in [null1, null2, null3in, null3out]
sample_networks = rand(f(n), i)
filter!(!isdegenerate, sample_networks)
length(sample_networks) == 0 && throw(ErrorException("No valid randomized networks; increase i ($(i))"))
return sample_networks

end

6

sample_size = 5_000

S1 = nullmodel(N, null1, sample_size)
S2 = nullmodel(N, null2, sample_size)
S3i = nullmodel(N, null3in, sample_size)
S3o = nullmodel(N, null3out, sample_size)

This function will return the randomized networks that have the same richness as the empir-
ical one. We can now measure the nestedness of the networks in each sample:

nS1 = η.(S1)
nS2 = η.(S2)
nS3i = η.(S3i)
nS3o = η.(S3o)

0.2 0.4 0.6 0.8

100

200

300

400

500

600

Connectance (I)

0.2 0.4 0.6 0.8

100

200

300

400

Degree distribution (II)

0.2 0.4 0.6 0.8

100

200

300

400

Host degree (III in)

0.2 0.4 0.6 0.8

10

20

30

40

50

Parasite degree (III out)

Figure 3 Distribution of nestedness values for
the empirical network (solid black line) and for
random draws based on four null models. This
analysis is frequently used to determine whether
the nestedness of an observed network is signifi-
cant.

Network beta-diversity

In this section, we will use the approach of Poisot et al. (2012) to measure the dissimilarity
between bipartite host-parasite networks. We use the networks from Hadfield et al. (2014),
which span the entirety of Eurasia. Because these networks are originally quantitative, we
will remove the information on interaction strength using convert. Note that we convert to
an union type (BinaryNetwork) – the convert function will select the appropriate network type
to return based on the partiteness. The core operations on sets (union, diff, and intersect)
are implemented for the BinaryNetwork type. As such, generating the “metaweb” (i.e. the list
of all species and all interactions in the complete dataset) is:

metaweb = reduce(union, networks)

From this metaweb, we can measure β′
OS (Poisot et al. 2012), i.e. the dissimilarity of every

network to the expectation in the metaweb. Measuring the distance between two networks
is done in two steps. We follow the approach of Koleff et al. (2003), in which dissimilarity
is first partitioned into three components (common elements, and elements unique to both

7

samples), then the value is measured based on the cardinality of these components. As in
Poisot et al. (2012), the function to generate the partitions are βos (dissimilarity of interactions
between shared species), βs (dissimilarity of species composition), and βwn (whole network
dissimilarity). The output of these functions is passed to one of the functions to measure the
actual β-diversity. We have implemented the 24 functions from Koleff et al. (2003), and they
are named KGLdd, where dd is the two-digits code of the function in Table 1 of Koleff et al.
(2003).

βcomponents = βos.(metaweb, networks);
βosprime = KGL02.(βcomponents);

The average dissimilarity between the local interactions and interactions in the metaweb is
0.27. We have also presented the distribution in fig. 4. Finally, we measure the pairwise dis-
tance between all networks:

S, OS, WN = Float64[], Float64[], Float64[]
for i in 1:(length(networks)-1)
for j in (i+1):length(networks)

push!(S, KGL02(βs(networks[i], networks[j])))
push!(OS, KGL02(βos(networks[i], networks[j])))
push!(WN, KGL02(βwn(networks[i], networks[j])))

end
end

0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

Difference to metaweb
0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Species dissimilarity

N
et

w
or

k
di

ss
im

ila
rit

y

shared sp.
networks

Figure 4 Left panel: values of β′
OS for the 51

networks in Hadfield et al. (2014). Right panel:
species dissimilarity is not a good predictor of in-
teraction dissimilarity between shared species.

Modularity

In this example, we will show how the modular structure of an ecological network can be
optimized. The Finding the optimal modular structure can be a time-consuming process, as
it relies on heuristic which are not guaranteed to converge to the global maximum. There is
no elegant alternative to trying multiple approaches, repeating the process multiple time, and
having some luck.

We will use again the first network from the Hadfield et al. (2014) dataset in this example,
which has a small number of species. For the first approach, we will generate random par-
titions of the species across 3 to 12 modules, and evaluate 20 replicate attempts for each of
these combinations. The output we are interested in is the number of modules, and the over-
all modularity (Barber 2007).

n = repeat(3:12, outer=20)
m = Array{Dict}(length(n))

8

for i in eachindex(n)
Each run returns the network and its modules
We discard the network, and assign the modules to our object
_, m[i] = n_random_modules(n[i])(N) |> x -> brim(x...)

end

Now that we have the modular partition for every attempt, we can count the modules in it,
and measure its modularity:

q = Q.(N, m)
c = (m .|> values |> collect) .|> unique .|> length

The relationship between the two is represented in fig. 5. Out of the 200 attempts, we want
to get the most modular one, i.e. the one with highest modularity. In some simple problems,
there may be several partitions with the highest value, so we can either take the first, or one
at random:

optimal = rand(find(q .== maximum(q)))
best_m = m[optimal]

This partitions has 5 motifs. EcologicalNetworks has other routines for modularity, such as
LP (Liu & Murata 2009), and a modified version of LP relying on simulated annealing.

Error: type ValueIterator has no field x

2 4 6 8

0.1

0.2

0.3

0.4

0.5

Number of modules

M
od

ul
ar

ity Figure 5 Left, relationship between the num-
ber of modules in the optimized partition and its
modularity. Right, representation of the network
where every node is colored according to the mod-
ule it belongs to in the optimal partition.

Extinctions

In this illustration, we will simulate extinctions of hosts, to show how the package can be
extended by using the core functions described in the “Interface” section. Simply put, the goal
of this example is to write a function to randomly remove one host species, remove all parasite
species that end up not connected to a host, and measuring the effect of these extinctions on
the remaining network. Rather than measuring the network structure in the function, we will
return an array of networks to be manipulated later:

function extinctions(N::T) where {T <: AbstractBipartiteNetwork}

We start by making a copy of the network to extinguish
Y = [copy(N)]

While there is at least one species remaining...

9

while richness(last(Y)) > 1
We remove one species randomly
remain = sample(species(last(Y); dims=2), richness(last(Y); dims=2)-1, replace=false)

Remaining species
R = last(Y)[:,remain]
simplify!(R)

Then add the simplified network (without the extinct species) to our collection
push!(Y, copy(R))

end
return Y

end

extinctions (generic function with 1 method)

One classical analysis is to remove host species, and count the richness of parasite species, to
measure their robustness to host extinctions (Memmott et al. 2004) – this is usually done with
multiple scenarios for order of extinction, but we will focus on the random order here. Even
though EcologicalNetworks has a built-in function for richness, we can write a small wrapper
around it:

function parasite_richness(N::T) where {T<:BinaryNetwork}
return richness(N; dims=1)

end

parasite_richness (generic function with 1 method)

Writing multiple functions that take a single argument allows to chain them in a very ex-
pressive way: for example, measuring the richness on all timesteps in a simulation is N |>
extinctions .|> parasite_richness, or alternatively, parasite_richness.(extinctions(N)).
In fig. 6, we illustrate the output of this analysis on 100 simulations (average and standard
deviation) for one of the networks.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Proportion of hosts removed

P
ro

po
rt

io
n

of
 r

em
ai

ni
ng

 p
ar

as
ite

s

Figure 6 Output of 100 random extinction simu-
lations, where the change in parasite richness was
measured every timestep. This example shows
how the basic functions of the package can be
leveraged to build custom analyses rapidly.

10

Interaction imputation

In the final example, we will apply the linear filtering method of Stock et al. (2017) to suggest
which negative interactions may have been missed in a network. Starting from a binary net-
work, this approach generates a quantitative network, in which the weight of each interaction
is the likelihood that it exists – for interactions absent from the original network, this suggests
that they may have been missed during sampling. This makes this approach interesting to
guide empirical efforts during the notoriously difficult task of sampling ecological networks
(Jordano 2016b, 2016a).

In the approach of Stock et al. (2017), the filtered interaction matrix (i.e. the network of
weights) is given by

Fij = α1Yij + α2

∑
k

Ykj
n

+ α3

∑
l

Yil
m

+ α4

∑
Y

n × m
, (1)

where α is a vector of weights summing to 1, and (n,m) is the size of the network. Note
that the sums along rows and columns are actually the in and out degree of species. This is
implemented in EcologicalNetworks as the linearfilter function. As in Stock et al. (2017),
we set all values in α to 1/4. We can now use this function to get the top interaction that,
although absent from the sampled network, is a strong candidate to exist based on the linear
filtering output:

N = networks[50]
F = linearfilter(N)

We would like to separate the weights in 3: observed interactions, interactions that are not
observed in this network but are observed in the metaweb, and interactions that are never
observed. EcologicalNetworks has the has_interaction function to test this, but because Bi-
naryNetwork are using Boolean values, we can look at the network directly:

scores_present = sort(
filter(int -> N[int.from, int.to], interactions(F)),
by = int -> int.probability,
rev = true);

scores_metaweb = sort(
filter(int -> (!N[int.from,int.to])&(metaweb[int.from, int.to]), interactions(F)),
by = int -> int.probability,
rev = true);

scores_absent = sort(
filter(int -> !metaweb[int.from,int.to], interactions(F)),
by = int -> int.probability,
rev = true);

The results of this analysis are presented in fig. 7: the weights Fij of interactions that are
present locally (Yij = true) are always larger that the weight of interactions that are absent;
furthermore, the weight of interactions that are absent locally are equal to the weight of inter-
actions that are also absent globally, strongly suggesting that this network has been correctly
sampled.

11

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Relative rank

In
te

ra
ct

io
n

w
ei

gh
t

Present locally
Present globally
Absent

Figure 7 Relative weights (higher weights indi-
cates a larger chance that the interaction has been
missed when sampling) in one of the host-parasite
networks according to the linear filter model of
Stock et al. (2017).

Conclusion

We have illustrated the core approach of EcologicalNetworks, a Julia package to analyse eco-
logical networks of species interactions. It is built to be extendable, and to facilitate the de-
velopment of flexible network analysis pipelines. EcologicalNetworks has been designed to
be robust, easy to write code with, maintainable, and fast (in that order). We think that by
providing a rich system of types, coupled with specialized methods, it will allow ecologists to
rapidly implement network analyses. Bug reports and features requests can be submitted at
https://github.com/PoisotLab/EcologicalNetworks.jl/issues.

References

Baker et al. (2014). Species’ roles in food webs show fidelity across a highly variable oak
forest. Ecography. 38:130–9.

Barber. (2007). Modularity and community detection in bipartite networks. Phys Rev E.
76:066102.

Bascompte et al. (2003). The nested assembly of plant-animal mutualistic networks. PNAS.
100:9383–7.

Bastolla et al. (2009). The architecture of mutualistic networks minimizes competition and
increases biodiversity. Nature. 458:1018–20.

Bezanson et al. (2017). Julia: A Fresh Approach to Numerical Computing. SIAMRev. 59:65–98.

Borrett & Lau. (2014). enaR: An r package for Ecosystem Network Analysis. Methods Ecol
Evol. 5:1206–13.

Csardi & Nepusz. (2006). The igraph Software Package for Complex Network Research. Inter-
Journal. Complex Systems:1695.

Delmas et al. (2018). Analysing ecological networks of species interactions. Biol Rev.:112540.

12

https://github.com/PoisotLab/EcologicalNetworks.jl/issues

Dormann et al. (2008). Introducing the bipartite Package: Analysing Ecological Networks. R
News. 8:8–11.

Flores et al. (2016). BiMAT: a MATLAB package to facilitate the analysis and visualization of
bipartite networks. Methods Ecol Evol. 7:127–32.

Fortuna & Bascompte. (2006). Habitat loss and the structure of plantanimal mutualistic net-
works. Ecol Lett. 9:281–6.

Fortuna et al. (2010). Nestedness versus modularity in ecological networks: two sides of the
same coin? J Anim Ecol. 78:811–7.

Hadfield et al. (2014). A Tale of Two Phylogenies: Comparative Analyses of Ecological Inter-
actions. Am Nat. 183:174–87.

Hagberg et al. (2008). Exploring Network Structure, Dynamics, and Function using NetworkX.
In: Varoquaux et al., eds. Proceedings of the 7th Python in Science Conference. Pasadena, CA
USA; pp. 11–5.

Jordano. (2016a). Chasing Ecological Interactions. PLOS Biol. 14:e1002559.

Jordano. (2016b). Sampling networks of ecological interactions. Funct Ecol.

Koleff et al. (2003). Measuring beta diversity for presence–absence data. J Anim Ecol. 72:367–
82.

Liu & Murata. (2009). Community Detection in Large-Scale Bipartite Networks. 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent
Technology. Institute of Electrical & Electronics Engineers (IEEE);

Memmott et al. (2004). Tolerance of pollination networks to species extinctions. Proc Biol
Sci. 271:2605–11.

Mora et al. (2018). pymfinder: a tool for the motif analysis of binary and quantitative complex
networks. bioRxiv.:364703.

Pellissier et al. (2017). Comparing species interaction networks along environmental gradi-
ents. Biol Rev Camb Philos Soc.

Poisot et al. (2012). The dissimilarity of species interaction networks. Ecol Lett. 15:1353–61.

Poisot et al. (2016a). The structure of probabilistic networks. Vamosi, ed. Methods Ecol Evol.
7:303–12.

Poisot et al. (2016b). Describe, understand and predict: why do we need networks in ecology?
Funct Ecol. 30:1878–82.

Simmons et al. (2018). bmotif: a package for counting motifs in bipartite networks.

Stock et al. (2017). Linear filtering reveals false negatives in species interaction data. Sci Rep.
7:45908.

Weitz et al. (2013). Phage–bacteria infection networks. Trends Microbiol. 21:82–91.

13

	Background
	Methods and features
	Overview of package capacities
	Type system
	Interface

	Use-cases
	Null-hypothesis significance testing
	Network beta-diversity
	Modularity
	Extinctions
	Interaction imputation

	Conclusion
	References

