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Abstract: Modern lifestyle trends, such as sedentary behaviour and unhealthy diets, have been as- 8 

sociated with obesity, a major health challenge increasing the risk of multiple pathologies. This has 9 

prompted many to reassess their routines and seek expert guidance on healthy living. In the digital 10 

era, users quickly turned to mobile apps for support. These apps monitor various aspects of daily 11 

life, such as physical activity and calorie intake, collect extensive user data, and apply modern data- 12 

driven technologies, including Artificial Intelligence (AI) and Machine Learning (ML), to provide 13 

personalised diet and lifestyle recommendations. This work examines the state of the art in data- 14 

driven technologies for personalised nutrition, including relevant data collection technologies, and 15 

explores the research challenges in this field. A literature review, following the Preferred Reporting 16 

Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline, was conducted using three 17 

databases, covering studies from 2021 to 2024, resulting in 67 final studies. The data are presented 18 

in separate subsections for recommendation systems (43 works) and data collection technologies (17 19 

works), with a discussion section identifying research challenges. The findings indicate that the 20 

fields of data-driven innovation and personalised nutrition are predominately amalgamated in the 21 

use of recommender systems. 22 

Keywords: Machine Learning; Artificial Intelligence; Personalization; Nutrition; Recipes; Restau- 23 

rant; Data-driven; Recommender; Recommendation System. 24 

 25 

1. Introduction 26 

Imbalanced diets are linked to an increased risk of various non-communicable dis- 27 

eases (NCDs) prevalent in modern society, including obesity, type 2 diabetes, and cancer 28 

[1–3]. According to the World Health Organization (WHO), at least 2.8 million people die 29 

each year due to being overweight or obese, and an estimated 35.8 million (2.3%) of global 30 

Disability-Adjusted Life Years (DALYs) are attributed to overweight or obesity [4]. Addi- 31 

tionally, as noted by Mariadoss et. al. (2023) [5], poor nutrition is also a significant con- 32 

tributing factor for specific groups, such as pregnant women, in increasing the risk of car- 33 

diovascular diseases (CVDs). 34 

Betts et. al. (2016) [6], define personalized nutrition as “developing unique nutrition 35 

guidelines for each individual” while precision nutrition “seeks to develop effective ap- 36 

proaches based in the combination of an individual’s genetic”, i.e., genotype, and “envi- 37 

ronmental and lifestyle factors”, i.e., phenotype. Additionally, based on Mathers et. al. 38 

(2017) [7], population-based interventions have sometimes proved to be ineffective in 39 

achieving sustainable eating behaviour changes while at the same time, evidence suggest 40 

considerable interindividual variation in response to the same dietary exposure. Thus, it 41 

can be argued that a “one-size-fits-all” approach to proper diet and nutrition is insuffi- 42 

cient, since every person has unique needs, and a personalised diet plan is necessary to 43 
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meet individual requirements. Thus, Personalised Nutrition (PN), also addressed as ‘tai- 44 

lored nutrition’ or ‘individualized nutrition’, has become increasingly important in recent 45 

years to a degree that is now considered by some as a crucial aspect of a healthy lifestyle 46 

and of well-being. PN is also essential for people who already have chronic diseases that 47 

require specialised diets and therefore need appropriate nutrition plans [6,8,9]. For in- 48 

stance, a person with type 2 diabetes could benefit from a nutrition low in carbohydrates 49 

Wheatley et. al. (2021) [10], while a person with lactose intolerance requires a diet exempt 50 

of lactose-containing foods such as milk, cheese, and other dairy products. Moreover, PN 51 

has been shown to be able to improve the immune system of cancer patients Shastri et. al. 52 

(2021) [11]. Hence, PN can help individuals both towards prevention but also mitigation 53 

of various chronic diseases. 54 

A big rise in the use of recommendation systems for PN has been observed in recent 55 

years. Big datasets along with Artificial Intelligence (AI) models, neural networks and 56 

recommendation systems are now being used for the generation of tailored meal recom- 57 

mendations that are based on individual user profiles. Such a trend could be expected as 58 

these technologies have been used in the food industry sector for many years now. Ac- 59 

cording to Miyazawa et. al. (2022) [12], in 2010 the crossing of AI, Machine Learning (ML), 60 

and Computer Science (CS) with the food industry led to the development of respective 61 

applications that utilised big data analysis. Later works, e.g. [13,14], show how AI and ML 62 

based approaches can be used for early food disease detection, estimating soil moisture, 63 

and more, while Theodoridis et. al. (2019) [15] show how Nutrition Recommendation Sys- 64 

tems and similar technologies are used in the field of PN for, e.g., food category recogni- 65 

tion, ingredient and cooking instructions recognition, etc. Agrawal et. al. (2023) [16] ex- 66 

amine the significant impact of AI on the food industry including the role of AI in PN. 67 

Finally, Roy et. al. (2023) [17] examines the effectiveness and challenges of these systems 68 

in delivering personalized health and dietary advice. 69 

To achieve PN through recommendation systems and other respective technologies, 70 

big data collected from individuals regarding their specific needs are needed. For exam- 71 

ple, data regarding an individual’s heart rate, burned calories, daily activity, etc., can be 72 

retrieved using smart watches, activity trackers, and more while data regarding some- 73 

one’s body weight, fat, visceral fat, etc., can be retrieved using smart scales. Even infor- 74 

mation from the diverse community of microorganisms residing in our gut microbiota can 75 

be retrieved using corresponding technologies and methods [18–25]. These and more data 76 

can be used as inputs to recommendation systems for generating personalised outputs 77 

regarding a user’s dietary or wellbeing plan. For example, Amorim et. al. (2022) [26] de- 78 

scribe a recommendation system in a hospital that uses personal information from in-hos- 79 

pital sensors, such as insulin levels, to adjust patients’ daily meals, while Greenberg et. al. 80 

(2023) [27] present a web application that uses women’s personal data, such as age and 81 

height, to prevent cardiovascular problems. The outcome of the above works is showing 82 

a quickly expanding field of research. Stefanidis et. al. (2022) [28] present a knowledge- 83 

based recommendation framework that exploits an explicit dataset of expert-validated 84 

meals to offer highly accurate diet plans spanning across ten user groups of both healthy 85 

subjects and participants with health conditions. Additionally, Yang et. al. (2018) [29] pro- 86 

pose Yum-me, a personalized nutrient-based meal recommendation system designed to 87 

meet individuals’ nutritional expectations, dietary restrictions, and fine-grained food 88 

preferences, while Harvey et. al. (2015) [30] present a recipe recommendation system that 89 

proposes meal plans based on foods that a user likes. New data collection technologies 90 

are proposed and implemented while new technologies for processing data are arising, 91 

expanding the potential of this research field. 92 

1.1. Study Purpose, Strengths, and Limitations 93 

This paper aims to present the latest advancements in data-driven innovation for AI 94 

and ML technologies in the field of PN along with the data collection technologies that are 95 

being used, and to investigate the research challenges for future work. Similar literature 96 
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reviews on the field of precision nutrition and machine learning do exist. For instance, 97 

Livingstone et. al. (2022) [31] present a literature review in the field of precision nutrition. 98 

The authors discuss the role and application of “omics” to the prescription of individual- 99 

ized diets for health and wellbeing and the use of ML technologies assisting for the inte- 100 

grative purposes. In the same vein, Kirk et. al. (2021) [32] list an extensive systematic lit- 101 

erature review on the same research field focusing on the state-of-the-art on the use of ML 102 

in Precision Nutrition. Their work answers 9 research questions and categorises all the re- 103 

searched ML models and algorithms regarding task, type, usage, and more attributes 104 

providing a holistic view. 105 

Our work differentiates mainly in three aspects, which are the objectives of this pa- 106 

per. Firstly, it encompasses data-driven technologies in general, rather than solely AI- 107 

based works in the field of personalised nutrition. That means, it also includes technolo- 108 

gies like knowledge graphs, ontologies, optimization algorithms, and more that are not 109 

included in the realm of ML and AI. Secondly, we also study data collection technologies 110 

that are described and analysed with respect to how they integrated with the recommen- 111 

dation systems. Finally, our work identifies a series of research challenges that are derived 112 

from the literature and associated with specific papers. 113 

In our review, the works are clustered and comparatively discussed, referring to their 114 

main scope, data-driven technologies used, system inputs, their technical evaluation and 115 

accuracy, and, finally, related datasets. Moreover, the information is displayed in a tabular 116 

format with additional explanations regarding the scope of the model and the integration 117 

of the various input data types. 118 

A limitation of our work is that it deals mainly with personalized nutrition and does 119 

not cover extensively precision nutrition. Exploring the use of data-driven technologies in 120 

more nutrition fields would give a more holistic perspective and understanding. Addi- 121 

tionally, the time frame of this research is from 2021 to 2024. Therefore, more extensive re- 122 

view starting earlier could give more and better information with more features to be ex- 123 

tracted. Finally, the research databases used are limited to three and these are all computer 124 

science oriented. The inclusion of works from other databases, e.g., health-oriented ones, 125 

could provide a more diverse view. 126 

The examined literature was filtered using the well-established Preferred Reporting 127 

Items for Systematic Reviews and Meta-Analyses (PRISMA) model [33–35]. In section 2, 128 

we discuss the PRISMA model and the specific filters we used. In section 3, we delve 129 

deeper into the use of recommendation systems in the field of PN and present the specific 130 

technologies that are used. According to the PRISMA model, the research for recommen- 131 

dation systems in PN is further divided into three subcategories: (a) Nutrition, (b) Recipe, 132 

and (c) Restaurant Recommendation Systems. In section 4, we present the various data 133 

collection technologies that are available and review the corresponding data collection or 134 

capturing technologies and devices. In section 5, we discuss the research challenges that 135 

are derived from the respective literature. Finally, a conclusion is apposed summarizing 136 

the overall work. 137 

2. Methods 138 

A literature search was performed by adopting the PRISMA guidelines [33–35]. Our 139 

study aimed to identify only the latest works in the field of data-driven innovation tech- 140 

nologies in personalised nutrition and to categorise them; it was not our aim to delve 141 

deeper into a technical comparison of the various systems. The articles were extracted in 142 

March 2024 from three academic databases, namely Scopus1, ScienceDirect2, and IEEE 143 

Xplore3. 144 

 
1 scopus.com 

2 sciencedirect.com 

3 ieeexplore.ieee.org 

http://www.scopus.com/
https://www.sciencedirect.com/
https://ieeexplore.ieee.org/
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Inclusion criteria: We used the text “Personalized nutrition recommendation” in the cor- 145 

responding search bar of all three academic databases. 146 

Exclusion criteria (by automated tools, i.e., using filtering options of the three da- 147 

tabases): 148 

• Publication date was outside of the time frame 2021 to 2024 149 

• Document type was not article, review, or conference paper 150 

• Publication subject area was not computer science 151 

• Publication was not peer-reviewed 152 

• Publication language was not English 153 

• Duplicate entries were excluded as well 154 

Exclusion criteria (non-automated): 155 

• Publication title and keywords, abstract, or full text indicated that the publication was 156 

out of the scope and objectives of the present review, i.e., indicated that the publica- 157 

tion was irrelevant to AI and ML technologies for PN 158 

 159 

The search was based on the following condition: title-abs-key(personalized AND 160 

nutrition AND recommendation) AND (limit-to (pubstage, "final")) AND (limit-to ( 161 

pubyear , 2024) OR limit-to (pubyear, 2023) OR limit-to (pubyear, 2022) OR limit-to 162 

(pubyear , 2021)) AND (limit-to (DOCTYPE , "ar") OR limit-to (doctype , "re") OR limit-to 163 

(doctype , "cp")) AND (limit-to (subjarea, "COMP")) AND (limit-to (language , "English")) 164 

The number of records retrieved from the three databases is 3052. From these, 335 165 

duplicate records were removed while 2125 records were excluded as ineligible by auto- 166 

mation tools (i.e., date, document type, subject area, peer reviewed, language), leading to 167 

592 unique records for manual screening. After careful examination of the title, keywords, 168 

abstract, and the full text for scientific relevance, 67 records remained and were consid- 169 

ered for the present review. The full selection procedure is detailed in Figure 1, while 170 

Figure 2 displays the number of works for every year showing the increasing frequency 171 

in this area of science. 172 

The final works can be categorised based on their differences and similarities. Draw- 173 

ing from the two similar review works [31, 32] and inspired by their categorization meth- 174 

ods, we came up to a way to present our findings. More specifically, Livingstone et. al. 175 

(2022) [31] divides the various “omics” categories briefly discussing the works while also 176 

uses tabular format to summarize this information. In the same way, Kirk et. al. (2021) [32] 177 

divides and briefly discusses the various machine learning tasks, algorithms, evaluation 178 

metrics, etc. while also uses tabular format. Therefore, we concluded on dividing and cat- 179 

egorizing our research based on their commonalities and differences. Three main catego- 180 

ries based on the scope of the recommendation system are used (nutrition, recipe, and 181 

restaurant) to distinct the final works while grouping the woks that use the same of similar 182 

methods. Additionally, we identified several commonalities among the works. Specifi- 183 

cally, most employ one or more technologies for their recommendation systems, utilize 184 

datasets, and incorporate multiple inputs. Some works also integrate their recommenda- 185 

tion systems into platforms. Furthermore, we observed that some use devices for data 186 

collection. Consequently, we have summarized this information in two tables. 187 

 188 
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 189 

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 190 
2020) flow diagram of study selection, inclusion, and synthesis. 191 

 192 

Figure 2. Bar chart displaying the number of works retrieved for every year from 2021 to 2024 193 
(based on the PRISMA model). The increasing number of works is an indication of the rapid growth 194 
of this field. 195 

3. Results 196 

3.1. Recommenders in personalised nutrition 197 

Recommendation systems are vital components in personalised nutrition, delivering 198 

accurate and customized results based on individual needs and preferences. Notably, they 199 

outperform older – frequently manual or semiautomatic – methods in terms of time effi- 200 

ciency, affordability, and sometimes even accuracy. These advantages, coupled with surg- 201 

ing technology penetration and the increasing processing power of mobile devices Central 202 

Process Unit (CPU) and Graphical Process Unit (GPU), are propelling the field of data 203 

driven PN research forward, resulting in a constant stream of novel studies exploring both 204 

improved accuracy and novel technological applications. Applying the PRISMA model to 205 

our literature review search, we identified three main categories of recommendation sys- 206 

tems: 207 

• Nutrition Recommendation Systems. Generate daily or weekly meal plans tailored 208 

to individual profiles, leveraging AI, ML, or other computing technologies, as well 209 

as multidimensional data. 210 
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• Recipe Recommendation Systems. Suggest personalised recipes based on individ- 211 

ual profiles, preferences, and other data. 212 

• Restaurant Recommendation Systems. Recommend appropriate selections from 213 

restaurant menus to individuals based on their profile. 214 

 215 

The following subsections delve deeper into these categories, presenting the corre- 216 

sponding literature searches, results, and technologies. First, we summarise the relevant 217 

literature, mentioning the works and their findings. Subsequently, we present net graphs 218 

and tables of the used databases, technologies, and more, highlighting their frequency of 219 

appearance and other relevant metrics. 220 

3.1.1. Nutrition Recommendation Systems 221 

This section explores Nutrition Recommendation Systems, a category focused on per- 222 

sonalised meal plan generation through the synergistic application of various digital tech- 223 

nologies and dietary databases. 224 

Reviewed studies commonly utilize anthropometric data, including sex, age, height, 225 

weight, etc., along with other relevant information, to provide informed recommenda- 226 

tions. For example, Haseena et. al. (2022) [36]construct a ranking framework, based solely 227 

on factors like age or weight, to identify suitable nutrition plans, following four stages: 228 

gathering user data, generating fuzzy weights using fuzzy Analytic Hierarchy Process 229 

(AHP)4, evaluating plan compatibility with cuckoo optimization5, and ranking options 230 

with fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)6. 231 

This system incorporates popular dietary approaches like the Mediterranean and low-fat 232 

diets, providing diverse personalized recommendations. Similarly, Lakshmi et. al. (2023) 233 

[37] employ Fuzzy AHP and Fuzzy TOPSIS for personalized nutrition planning, consid- 234 

ering individual differences in age, Body Mass Index (BMI), dietary preferences, lifestyle, 235 

and blood sugar levels. These fuzzy logic-based methods effectively rank dietary alterna- 236 

tives, like balanced and diabetes-specific diets, catering to nuanced preferences and health 237 

requirements, promising more precise nutritional guidance. 238 

Zhang et. al. (2022) [38], departing from personalized data, employed a novel many- 239 

objective optimization (MaOO) approach using caloric intake data from the MyFitnessPal 240 

database. Addressing limitations of traditional recommendation techniques, the authors 241 

propose a multi-objective approach with four objectives: user preferences, nutritional val- 242 

ues, dietary diversity, and user diet patterns. Three representative MaOO algorithms – 243 

strength Pareto evolutionary algorithm 2 (SPEA2), Non-dominated Sorting Genetic Algo- 244 

rithm (NSGAII), and SPEA2+shift-based density estimation (SDE) – are leveraged to opti- 245 

mize these objectives simultaneously in two scenarios. In Scenario 1, three objectives are 246 

optimized, while Scenario 2 optimizes all four objectives, including user diet patterns. 247 

Evaluation using the hypervolume indicator yielded values of 59%, 62%, and 73% for the 248 

three algorithms respectively. 249 

Salloum et. al. (2022) [39] proposed Meal Plan Generation (MPG), a system that au- 250 

tomates the creation of personalized meal plans by integrating personal information, ca- 251 

loric intake, and user preferences. Using an adaptation of the Transportation Optimization 252 

 
4 A method used to assign weights to different criteria or factors in decision-making processes, considering uncertainty 

and imprecision in human judgments. https://en.wikipedia.org/wiki/Analytic_hierarchy_process 

5 The Cuckoo Optimization Algorithm (COA) is an optimization technique inspired by the brood parasitism behaviour 

of some cuckoo species. These cuckoos lay their eggs in the nests of other bird species, relying on the host birds to 

incubate and raise their offspring. This natural behaviour forms the basis of the algorithm, where solutions to optimi-

zation problems are metaphorically represented by eggs in nests. https://en.wikipedia.org/wiki/Cuckoo_search 

6 A decision-making technique that evaluates and ranks alternative options based on their distance from the ideal so-

lution and the anti-ideal solution, aiming to identify the most desirable option. https://en.wikipedia.org/wiki/TOPSIS 

https://en.wikipedia.org/wiki/Analytic_hierarchy_process
https://en.wikipedia.org/wiki/Cuckoo_search
https://en.wikipedia.org/wiki/TOPSIS
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Problem (TOP), MPG generates plans that meet caloric needs while accommodating indi- 253 

vidual preferences. Evaluation involves established nutrition health literature procedures 254 

and transportation optimization techniques, demonstrating MPG's ability to produce 255 

healthy, personalized meal plans aligned with user preferences. Furthermore, Rout et. al. 256 

(2023) [40] introduce a machine learning model for diet recommendations based on users' 257 

nutritional data and physical conditions, addressing concerns about non communicable 258 

diseases from unhealthy diets. Employing K-means clustering and Random Forest (RF) 259 

algorithms, the study analyses nutritional data and user profiles to offer tailored diet ad- 260 

vice, enhancing health outcomes and nutritional awareness. 261 

Kaur et. al. (2022) [41], present a food recommendation system targeting Polycystic 262 

Ovary Syndrome (PCOS) in women, integrating personal information and food images to 263 

manage weight and nutrient intake. They enhance pre-trained Convolutional Neural Net- 264 

work (CNN) models with additional layers to classify food images and suggest suitable 265 

food items based on macronutrient requirements. Evaluation against other models shows 266 

high accuracy rates, achieving a 95% accuracy rate for classifying sample food classes and 267 

90.7% accuracy rate for twelve food image classes. Similarly, Aguilar et. al. (2022) [42], 268 

introduce a Bayesian network into semantic segmentation methods for food images, 269 

achieving improved accuracy in multi-class segmentation and uncertainty estimation. The 270 

Bayesian versions achieved 99% accuracy in UNIMIB2016, 88% in UECFOODPIXCom- 271 

plete, and 77% in Food201, outperforming the original versions. Romero-Tapiador et. al. 272 

(2023) [43] present a recommendation framework which employs the analysis of eating 273 

behaviours through food image datasets. CNNs are used to generate personalized da- 274 

tasets and to provide insights on healthier dietary habits via a user-friendly platform. The 275 

results show 99.53% accuracy and 99.60% sensitivity, demonstrating the potential to sig- 276 

nificantly enhance dietary monitoring and recommendation systems. Azzimani et. al. 277 

(2022) [44] utilize Red-Green-Bleu-Depth (RGBD) images and user data on anthropomet- 278 

ric information, allergies, and chronic diseases to estimate nutrient content in meals. Ad- 279 

vanced image processing techniques and a Multi-Task Fully Convolutional Network 280 

(MFCN) are employed for image segmentation and volume estimation. Dietitians evalu- 281 

ated the system, indicating its potential for PN and menu planning. 282 

In addition to user preferences and ratings, health data integration can provide cru- 283 

cial insights into the user's health status and history. For instance, Shandilya et. al. (2022) 284 

[45] introduce MATURE, a food recommendation system refined to incorporate user 285 

health data, ensuring recommendations align with current health needs. Rigorously vali- 286 

dated against other recommendation systems, MATURE demonstrated superior perfor- 287 

mance in meeting mandatory health requirements. Xu et. al. (2022) [46], present ElCombo, 288 

a personalized meal recommendation system for the elderly, leveraging a Knowledge 289 

Graph (KG) integrating foods, nutrients, and health data. Compared with elders' choices, 290 

ElCombo significantly improves diet quality, diversity, and adherence to health require- 291 

ments. Utilizing Particle Swarm Optimization (PSO) and K-means clustering, Hosen et. 292 

al. (2023) [47] develop an optimized recommendation system for thyroid patients, deliv- 293 

ering personalized food recommendations based on historical patient data and nutrient- 294 

rich foods beneficial for thyroid health. Validation indicates its superiority over traditional 295 

algorithms, offering more accurate dietary advice for managing thyroid conditions. 296 

Introducing innovative approaches to health management, Larizza et. al. (2023) [48] 297 

present the V-care app, targeting childhood obesity through gamification and personal- 298 

ized nutrition recommendations. With quizzes and a virtual coach, the app engages users 299 

in learning about healthy habits, earning an average score of greater than 3 in user evalu- 300 

ations. Similarly, Lodhi et. al. (2023) [49] discuss a personalized nutrition approach for 301 

individuals with chronic kidney disease (CKD), employing KGs to provide tailored ad- 302 

vice. Evaluation through a case study yields an average usability score of 8.5/10. Address- 303 

ing Type 2 Diabetes management, Burgermaster et. al. (2023) [50] introduce the Platano 304 

mHealth app, offering personalized nutritional guidance based on meal logs and blood 305 
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glucose levels. User feedback indicates over 78% found the app easy to use, highlighting 306 

its effectiveness in supporting health management. 307 

Islam et. al. (2023) [51] utilize electroencephalography (EEG) signals to develop a per- 308 

sonalized meal recommendation system, analysing user brain responses to meals to de- 309 

termine palatability. Employing a hierarchical ensemble ML model and TOPSIS approach, 310 

they construct personalized meal suggestions considering user preferences and nutri- 311 

tional requirements, validated through confusion matrix, f1-score, and Area Under the 312 

Curve (AUC) score evaluations. The incorporation of EEG signals enhances the system's 313 

ability to understand user preferences, while the ensemble ML model improves accuracy 314 

by combining predictions from multiple models. Similarly, Yang et. al. (2022) [52] propose 315 

a PN service leveraging genetic testing, physical examination, dietary habits, and medical 316 

history to compute disease risk and nutrition requirements, providing tailored nutrition 317 

solutions via a user-friendly mobile application. 318 

Fu et. al. (2023) [53] introduce "Food4healthKG", a KG integrating food, gut microbi- 319 

ota, and mental health data from various sources, facilitating food recommendations and 320 

queries. Evaluation against expert responses shows system accuracy ranging from 90% to 321 

95%. Similarly, Yang et. al. (2023) [54] focus on PN plans for immune system improve- 322 

ment, combining DNA testing, physical examination, and lifestyle evaluation to compute 323 

tailored plans. Evaluation of their personalized vitamin D supplementation solution 324 

demonstrates effectiveness in reducing vitamin D deficiency risk. Furthermore, Yang et. 325 

al. (2022) [55] develop a PN platform for Chinese users, leveraging genetic, lifestyle, and 326 

physical examination data to generate personalized nutrition packs. The study highlights 327 

the ease of collecting and utilizing genetic data for accurate PN recommendations, em- 328 

ploying business process management techniques for efficiency. These works showcase 329 

the potential of integrating diverse data sources for personalized nutrition and health im- 330 

provement. 331 

In addition to the above works, Geng et. al. (2023) [56] propose a heuristic optimiza- 332 

tion-based recommendation model, leveraging Trajectory Reinforcement-based Bacterial 333 

Colony Optimization (TRBCO) to balance accuracy and diversity in personalized recom- 334 

mendation systems. Evaluation against benchmark datasets demonstrates TRMOBCO's 335 

superior performance compared to contemporary and state-of-the-art optimization algo- 336 

rithms. Sahal et. al. (2022) [57] explore Personal Digital Twin (PDT) technology for per- 337 

sonalized healthcare, emphasizing its potential for improving decision-making and treat- 338 

ment selection, particularly in PN. Chivukula et. al. (2022) [58] contribute to the field by 339 

developing an ontology model in the food domain, facilitating informed dietary decisions 340 

based on health conditions. The ontology model is evaluated for its utility in answering 341 

queries using SPARQL Protocol and RDF Query Language (SPARQL), demonstrating its 342 

effectiveness in providing appropriate food recommendations. These approaches offer in- 343 

novative solutions for enhancing personalized recommendation systems and improving 344 

health outcomes. 345 

Kaur et. al. (2023) [59] discuss a Clinical Decision Support System (CDSS) for neonatal 346 

nutrition in the Neonatal Intensive Care Unit (NICU) leverages a Nutrition Recommen- 347 

dation Ontology (NRO) to generate personalized feeding plans, achieving a validation 348 

accuracy of 98%. Martinho et. al. (2023) [60] contributes to AI systems in healthcare by 349 

developing an ontology to manage diet and energy consumption for patients with obesity, 350 

diabetes, and those needing tube feeding, aiming to improve health outcomes through 351 

personalized dietary recommendations. Similarly, Rostami et. al. (2024) [61] introduce the 352 

Healthy Group Food Recommendation System (HGFR), prioritizing both user preferences 353 

and nutritional value, outperforming other models in database comparisons and promot- 354 

ing healthier eating choices for groups. 355 

Palacios et. al. (2023) [62] propose Baby-Feed, a user-friendly web app, which pro- 356 

vides age-appropriate food recommendations for infants to prevent rapid weight gain, 357 

with over 87% of parents finding it easy to use and effective, rating it 4/5 stars. Wang et. 358 
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al. (2023) [63] focus on personalized recommendations for carbohydrate-protein supple- 359 

ments, employing ML techniques like backpropagation neural networks to tailor intake 360 

for endurance sports enthusiasts, achieving a mean absolute error (MAE) of 470.77 com- 361 

pared to 500.85 for the traditional model Gradient Boosted Regression Trees (GBRT). 362 

Cunha et. al. (2023) [64] introduce an advanced nutrition control recommendation system 363 

utilizing Internet of Thinks (IoT) devices and ML models in real time to offer personalized 364 

dietary and exercise plans, demonstrating accurate BMI prediction within a small time 365 

window of three days. These studies highlight the efficacy of ML in personalized nutrition 366 

recommendations, suggesting future enhancements for broader dataset dimensions and 367 

model robustness. 368 

The literature review reveals a nuanced landscape characterized by the diversity not 369 

only in technological approaches but also in the scope of the research endeavours. Within 370 

this spectrum, certain studies such as [41,42] employ images as their primary input, while 371 

others [45,55] rely on personal and health data. The technological repertoire is equally 372 

expansive, encompassing a range from AI CNN models and Bayesian networks to ontol- 373 

ogies and addressing the TOP. Moreover, despite a shared overarching goal of delivering 374 

PN, the strategies employed exhibit notable variations. For instance, in the study con- 375 

ducted by Islam et. al. (2023) [51], the methodology revolves around generating PN 376 

through EEG signals, while Sahal et. al. (2022) [57] adopt a distinct approach utilising DT. 377 

3.1.2. Recipe Recommendation Systems 378 

An alternative paradigm identified through the literature review involves the inte- 379 

gration of PN objectives with the utilisation and management of recipes. By harnessing 380 

extensive datasets comprising recipes and nutritional information, coupled with data- 381 

driven AI technologies, the creation of individualised recipe recommendations becomes 382 

feasible. For example, Neha et. al. (2023) [65] delineate a methodical approach to extract 383 

and predict information from recipes by employing advanced ML models (Parallel-CNN, 384 

Naïve Byes, Fuzzy rule, Artificial Neural Network). This approach adeptly addresses the 385 

diverse requirements of users, including dietary preferences, allergies, food intolerances, 386 

and more. The results of this work show that Parallel-CNN outperforms the other models 387 

with 95% accuracy, 91% precision and 95% f1-score as well as with the value 0.1872 re- 388 

garding the model loss attribute. 389 

Wang et. al. (2022) [66] propose an intelligent recipe recommendation model, opti- 390 

mizing weekly meal plans to accommodate user restrictions and nutritional needs using 391 

the Hungarian algorithm and integer programming, ensuring personalized balanced di- 392 

ets. Buzcu et. al. (2022) [67] introduce a Virtual Coaching System (NVS), integrating user- 393 

specific factors like allergies and preferences to offer personalized recipe recommenda- 394 

tions via an ontology-based approach, validated through user surveys showing a prefer- 395 

ence for interactive explanation-based interactions over conventional recommendation 396 

systems. Shubhashree et. al. (2022) [68] present a recipe recommendation system incorpo- 397 

rating allergies and personal information employs K-Nearest Neighbor (KNN) clustering 398 

and the Euclidean distance algorithm to generate personalized diet tables, outperforming 399 

other algorithms with 95% accuracy. Likewise, Ribeiro et. al. (2022) [69] present a recipe 400 

recommendation system considering user-specific allergies and cultural preferences to 401 

craft three-week meal plans, validated through simulated user profiles, highlighting the 402 

importance of diverse data to meet food preferences, restrictions, and nutritional needs. 403 

Wu et. al. (2022) [70] introduce visual-aware food analysis (VAFA), employing deep 404 

learning models ATNet and PiNet to classify food items from multimedia inputs like im- 405 

ages and descriptions, achieving state-of-the-art performance in food classification and 406 

recipe recommendation precision, respectively. The interaction with the recommendation 407 

system is facilitated through a web application. Forouzandeh et. al. (2024) [71] present a 408 

Health-aware Food Recommendation System with Dual Attention in Heterogeneous 409 

Graphs (HFRS-DA), utilizing unsupervised learning on graph-structured data to recom- 410 
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mend healthy and popular recipes, outperforming existing methods with superior perfor- 411 

mance on the Allrecipes dataset. RahmathNisha et. al. (2023) [72] outline the development 412 

of the web-based Intelligent Nutrition Assistant Application (INAA), employing AI and 413 

ML algorithms to provide personalized dietary recommendations, validated through a 414 

user study with 50 participants, with future plans to enhance the system with advanced 415 

ML techniques and expanded food database. 416 

Li et. al. (2022) [73] introduce a novel post-hoc agnostic model to explain the output 417 

of Recipe Recommendation Systems, aiming to enhance user understanding and confi- 418 

dence in the system's recommendations. The model elucidates the relationships between 419 

network variables and user preferences, validated through comparison with four state-of- 420 

the-art recommendation system explainable models. By incorporating nutrition-aware 421 

criteria variables, the system offers more personalized and health-conscious recommen- 422 

dations, potentially improving the effectiveness of recommendation systems and leading 423 

to increased user satisfaction and adoption. In parallel, Li et. al. (2023) [74], pioneer an 424 

innovative methodology by integrating KGs into Recipe Recommendation Systems, ena- 425 

bling users to transition between different behavioural patterns based on evolving prefer- 426 

ences. The system, evaluated on Food.com and MyFitnessPal datasets, outperforming 427 

other models on various metrics, highlighting its effectiveness in providing tailored rec- 428 

ommendations. 429 

Kansaksiri et. al. (2023) [75] introduce "Smart Cuisine" which utilizes AI technologies, 430 

including the Generative Pre-training Transformer (GPT) model, to offer personalized rec- 431 

ipes and nutritional advice, enhancing sustainable cooking practices. By processing food 432 

images and employing natural language processing, the system generates recipes and 433 

provides nutritional guidance. Tests on the Recipe1M dataset showed higher accuracy in 434 

predicting well-known recipes, demonstrating the system's potential to revolutionize 435 

meal preparation. Similarly, Safitri et. al. (2023) [76], introduce CookPal, a GPT-3-based 436 

chatbot aimed at promoting healthier eating habits by offering personalized recipe sug- 437 

gestions. Operating on a desktop platform with a focus on data privacy, CookPal demon- 438 

strated high accuracy in providing dietary advice (86%) and received positive feedback 439 

(4.5/5 in a scalar size of 1 to 5) for its potential to facilitate healthier lifestyle choices. 440 

In conclusion, the use of Recipe Recommendation Systems for promoting healthy 441 

eating habits has gained significant attention, showing substantial potential for further 442 

development. The literature review highlights a range of methods for tailoring recipe sug- 443 

gestions based on individual preferences, dietary restrictions, and nutritional needs. 444 

These approaches employ various techniques, including KNN, and Euclidean distance. 445 

Despite the diversity in inputs, from physiological data to dietary preferences and aller- 446 

gies, there is a notable trend toward utilizing web-based platforms as intermediaries be- 447 

tween recommendation systems and users, as observed in subsection 3.1.4. 448 

3.1.3. Restaurant Recommendation Systems 449 

The third category of recommendation systems derived from the PRISMA model is 450 

Restaurant Recommendation Systems. With the abundance of data available on the inter- 451 

net, and with the use of data-driven approaches, it is possible to develop recommendation 452 

systems that can suggest restaurants or specific restaurant menu items based on users’ 453 

preferences and nutritional needs. By providing personalised recommendations, such sys- 454 

tems can help users make better decisions when ordering food while at the same time 455 

promoting healthier eating habits. 456 

Two innovative systems exemplify this trend: MenuDecoder, an AI-powered restau- 457 

rant app proposed by Hasan et. al. (2022) [77], and the "meals-plates exploration cycle" 458 

recommendation system from Takahashi et. al. (2023) [78]. MenuDecoder leverages AI 459 

algorithms and a vast database of restaurant menus to offer personalized meal recommen- 460 

dations based on user preferences and nutritional needs. A qualitative usability study 461 

demonstrated high user satisfaction with the app's design and helpfulness. On the other 462 

hand, the recommendation system introduced by Takahashi et. al. (2023) [78] enhances 463 
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the dining experience by aiding users in selecting suitable plates for their meals. It em- 464 

ploys machine learning for plate shape estimation and text classification, utilizing datasets 465 

from recipe platforms and e-commerce websites to establish meal-plate relationships, ca- 466 

tering to user preferences and characteristics of both meals and plates. 467 

In conclusion, the use of data-driven approaches in Restaurant Recommendation 468 

Systems for personalised nutrition can have significant benefits. This is a promising area 469 

for future research. 470 

3.1.4. Summarization 471 

In this section, we summarise key information for recommendation systems that 472 

were presented previously in a single, easy to use table (Table 1). For each recommenda- 473 

tion system, we provide: ‘Reference No.’, ‘Method/Model/Technology’, ‘Datasets’, ‘In- 474 

puts’ and ‘Platform’. The first column presents the number of the reference that corre- 475 

sponds to the paper or work presented in each row. The second column refers to the tech- 476 

nologies used to generate the personalisation (e.g., AI model, method, ontology, KGs etc.). 477 

Additional information is given in parenthesis indicating the use/role of the model. The 478 

third column presents the datasets used, including novel datasets that were created as 479 

part of the scientific work. The fourth column presents the input provided to the recom- 480 

mendation system, e.g., what information is fed to the AI model, ontology, etc. Here also 481 

additional information is given inside parenthesis explaining the integration of the vari- 482 

ous data inputs. Finally, the fifth column refers to any means the scientists used to collect 483 

inputs or communicate with the users. Such platforms vary and range from paper ques- 484 

tionnaires, where users fill the information by hand, to mobile applications that employ a 485 

friendly user interface. 486 

Table 1. Overview of the works presented in Section 3 (Recommendation systems for personalised 487 
nutrition), indicating method/model/technology (the “*” indicates that this work includes numerical 488 
measurements regarding the algorithm’s efficacy and/or user acceptability. The reader can refer to 489 
the work on section 3.x for additional information), datasets, inputs, and data acquisition platform 490 
used. Additionally, the last row named Notes is referring to where a system uses clinical data (*) 491 
and genetic data (**). For more information, the reader can refer to the corresponding work. 492 

Reference No. Method/Model/Technology Datasets Input Platform Note 

A. Nutrition Recommendation Systems  

Haseena et. al. (2022) 

[36] 

Cuckoo (optimization) 

Fuzzy AHP (multi-criteria) 

Fuzzy TOPSIS (decision-mak-

ing) * 

- 

Physiological data 

(Use the data as values for the com-

parison matrix) 

Questionnaire 

* 

Lakshmi et. al. (2023) 

[37] 

Fuzzy AHP (multi-criteria) 

Fuzzy TOPSIS (decision-mak-

ing) 

- 

Physiological data, dietary data, 

health data 

(Use the data as values for the com-

parison matrix) 

- * 

Zhang et. al. (2022) 

[38] 
MaOO (optimization) * MyFitnessPal Dietary data, nutrition values - 

* 

Salloum et. al. (2022) 

[39] 
TOP (optimization) * - 

Physiological data 

(Use a loss function) 
Questionnaire 

* 

Rout et. al. (2023) 

[40] 

KNN (clustering) 

RF (classification) * 

Kaggle (calorie da-

taset) 

Nutrition values, physical activity 

(Clustering the data) 
Web application 

* 

Kaur et. al. (2022) 

[41] 

EfficientNet (B0-B7) (classifica-

tion) 

VGG16 (classification) 

VGG19 (classification) 

ResNet50 (classification) 

ResNet100 (classification) * 

Food101 

Physiological data, RBG images 

(Compute BMI and caloric needs from 

physiological data and use food im-

ages to calculate caloric income and 

what to recommend) 

Web application 

* 
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Aguilar et. al. (2022) 

[42] 

Bayesian network (probabilis-

tic modelling) * 

UECFOODPIX, 

UNIMIB2016, 

Food201 

RGB images - 

* 

Romero-Tapiador et. 

al. (2023) [43] 
CNN (classification) * 

food images 

(AI4Food-Nutri-

tionDB) 

Physiological data, preferences, physi-

cal activity, food images 

(Construct the user profile from all the 

above data and then create food image 

datasets with different eating behav-

iours) 

Mobile application 

* 

Azzimani et. al. 

(2022) [44] 

SVM (classification) 

MFCN (segmentation) * 
Morocco FCT 

Physiological data, health data, RGBD 

images 

(Construct the user profile from the 

physiological data and health data and 

then include the information of food 

image) 

- 

* 

Shandilya et. al. 

(2022) [45] 

Content-based recommenda-

tion system (recommendation 

system) * 

CKD, USDA 

Health data, preferences, rating 

(Item feature-based classification, then 

extract mandatory features from the 

user’s profile and finally with the ex-

traction of the preferred features they 

generate recommendations) 

- 

* 

Xu et. al. (2023) [46] 
KG (reasoning) 

NLP (natural language) * 

User Profiles, Food 

Dataset 

Sociodemographic, nutrition and 

health, dietary preferences 

(Rule-based relation among the KG 

schema) 

- 

* 

Hosen el. al. (2023) 

[47] 

 PSO (optimization) 

k-means (clustering) 

SOM (clustering) 

NLP (natural language) * 

American food 

chart 

Dietary data, health data, contextual 

info 

(Clustering the data) 

- 

* 

Larizza et. al. (2023) 

[48] 
- Use their own DB 

Demographics, physiological data, 

lifestyle 

(Construct child profile using the 

above data) 

Questionnaires 

* 

Lodhi et. al. (2023) 

[49] 

KG (reasoning) 

Ontology (reasoning) * 
- 

Health data, demographics 

(Construct user profile with the data 

and then extract proper nutritional 

recommendations based on rule-based 

and data-driven approaches) 

Web application 

* 

Burgermaster et. al. 

(2023) [50] 
- - 

Meal logs, health data, food images 

(These data are for constructing the 

user profile) 

Mobile application  

* 

Islam et. al. (2023) 

[51] 
TOPSIS (decision-making) * - 

EEG signals, food nutritional 

(Extract features from EEG collection 

and survey data and then recommend 

foods and menus) 

Questionnaires 

* 

Yang et. al. (2022) 

[52] 
- - 

Genetic data, physical data, diet style, 

habits, medical data 

(Construct user profile with the above 

data) 

Mobile application, Question-

naire 

** 

Fu et. al. (2023) [53] 
KG (reasoning) 

Ontology (reasoning) * 

FoodData Central 

dataset (FDC), 

FoodOn, Chinese 

Food Ontology, 

Health data, food, gut microbiota data 

(The KG works with queries as inputs 

and returns the relationship among 

the above three categories) 

- 

* 
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KEGG, MENDA, 

MiKG, MeSH 

Yang et. al. (2023) 

[54] 
- - 

Health data, physiological data 

(Construct the user profile) 

Mobile application, Question-

naire 

** 

Yang et. al. (2022) 

[55] 

LIMS (data management pro-

cesses) 

Bioinformatic pipelines 

Genetic Interpretation System, 

CRM * 

AutDB, DisGeNET, 

OMIM 

Physiological data 

(Construct the user profile) 

Mobile application, Question-

naire 

** 

Geng et.al. (2023) 

[56] 

Heuristic Optimization, 

TRBCO * 

Shaffer, Fonseca, 

Kursawe, Poloni, 

ZDT1-6, Movielens-

1M 

Ratings 

(Use of rating to recommend a meal) 
- 

* 

Sahal et. al. (2022) 

[57] 
DT - 

Dietary data, physical activity, contex-

tual information 

(They do not mention how they inte-

grate these data) 

- 

* 

Chivukula et. al. 

(2022) [58] 
Ontology * - 

(The ontology works with queries as 

inputs and returns the relationship 

among the tis classes) 

- 

 

Kaur et. al. (2023) 

[59] 
Ontology * Clinical data 

Clinical data, weight, gestational age 

(SPARQL queries to the ontology us-

ing the above data) 

- 

* 

Martinho et. al. 

(2023) [60] 
Ontology 

FoodOn, Joint Food 

Ontology 

Workgroup (JFOW) 

Preferences, allergies, meals intake, 

demographics 

(Queries to the ontology using the 

above data) 

Mobile application, Web appli-

cation 

* 

Rostami et. al. (2024) 

[61] 

Clustering (encoder and de-

coder), deep neural networks * 
- 

Preferences, health factors of foods 

(Construction of a user-rating matrix 

with the above data) 

- 

* 

Palacios et. al. (2023) 

[62] 
ADDIE * - 

Food frequency 

(Construct user profile and feed it to 

the model) 

Questionnaire 

Web application 

* 

Wang et. al. (2023) 

[63] 

BP Neural Network Model, 

Gradient Boosted Regression 

Trees (GBRT) * 

- 

Health data, physiological data, physi-

cal activity, contextual information 

(Input the above data into the models 

and generate personalized advice)  

- 

* 

Cunha et. al. ( 2023) 

[64] 
RNN, LSTM, GRU * 

FitBit fitness tracker 

data 

Food intake, physical activity, physio-

logical data 

(Input the above data into the models 

to predict BMI, weight, muscle mass, 

etc.) 

- 

* 

B. Recipe Recommendation Systems  

Neha et. al. (2023) 

[65] 

CNN, Naive Bayes, Fuzzy 

Rule * 
- 

Text data of ingredients and recipes 

(Input of the above information to the 

models) 

- 

* 

Wang et. al. (2022) 

[66] 
Integer programming - 

Physiological data, health data, prefer-

ences 

(Input of the above data to the model) 

Web application 

* 

Buzcu et. al. (2023) 

[67] 
Ontology 

OWL-based ontol-

ogy 

Allergies, preferences, type of cuisine 

(Queries to the ontology using the 

above data) 

Web application 

* 
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Shubhashree et. al. ( 

2022) [68] 
KNN, Euclidean * - 

Physiological data, dietary data, pref-

erences, restrictions 

(Construct user profile with the above 

data and feed them to the model) 

Web application 

* 

Ribeiro et. al. (2022) 

[69] 
MaOO * - 

Physiological data, food type, allergies 

(Construct user profile using the 

above data and feed them to the 

model) 

Mobile application 

* 

Wu et. al. (2022) [70] ATNet, PiNet 
Created their own 

DB 

Food images 

(Input the above data to the model to 

classify them) 

Web application 

 

Forouzandeh et. al. 

(2024) [71] 
NLA, SLA, GAT, GNN * Allrecipes 

Rating, recipes 

(Combination of user profiles and rat-

ings of recipes to produce healthy reci-

pes recommendations) 

- 

 

RahmathNisha et. al. 

(2023) [72] 

Decision trees, KNN, and SVM 

* 

Kaggle (food and 

nutrition) 

Physiological data, food image 

(Physiological data re used to con-

struct user profile and food images to 

extract features and then recommend 

a food) 

Web application 

* 

Yera et. al. (2022) 

[73] 
KG * 

Coolpod, Allrecipe, 

Yammly, USDA, 

Created their own 

DB 

(This model does not use any inputs) - 

 

Li et. al. (2023) [74] KG * 
Food.com, Food 

KG 

Health data, preference data 

(Two KG are used for each data to ex-

tract features and then combine these 

outputs) 

- 

* 

Kansaksiri et. al. 

(2023) [75] 
Meta-AI, NLP * Recipe1M 

Food image, OpenAI-powered chat 

service 

(Input food image into the model to 

extract ingredients) 

- 

 

Safitri et. al. (2023) 

[76] 
GPT-3, NLP * 

Created their own 

DB 

Contextual information 

(User texts with the chat-bot) 
Desktop application 

 

C. Restaurant Recommendation Systems  

Hasan et. al. (2022) 

[77] 
AI * 

Dataset of restau-

rant menus 

Preferences, menu image 

(Menu item extraction from menu im-

age and combined with preferences to 

recommend a menu) 

Web application 

* 

Takahashi et. al. 

(2023) [78] 
Flow graph, CRF Cookpad 

Preferences 

(This model does not take any data as 

input. It is a flow graph which is being 

trained by the user and leads the user 

to preferred recommendations) 

- 

 

3.2. Data collection technologies 493 

A subject that emerges from the literature examined above is the usage of various 494 

sensors, devices, technologies, or processes to gather user’s nutrition/health related data. 495 

Data acquisition is typically done via two distinct processes: (i) user questionnaires, or (ii) 496 

automated data gathering utilising a multitude of diverse devices ranging from commu- 497 

nication devices to wearable sensors and from cameras to medical devices. 498 

Sonkusale et. al. (2022) [79] list an extensive array of sensors specifically designed for 499 

measuring and extracting vital body information. These sensors, readily available in the 500 
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market, play a pivotal role in supporting PN applications. Furthermore, a more in-depth 501 

technical analysis is presented in the review paper by Ates et. al. (2022) [80] offering a 502 

comprehensive and more technical examination of various wearable sensor technologies. 503 

This review emphasizes the end-to-end process that transforms raw sensor data into 504 

meaningful insights that can inform PN applications. The synthesis of insights from these 505 

papers underscores two key points: the abundance of diverse devices and sensors availa- 506 

ble for PN and the evolving technological landscape that underpins their functionality. 507 

This section presents the data collection technologies that are integral to the field of 508 

PN, drawing insights from the literature. It is structured into four subsections, each delin- 509 

eating distinct categories of data collection technologies based on their unique nature, 510 

scope, and roles in PN research, and a fifth subsection that summarizes this information 511 

in. 512 

3.2.1. Wearable sensing devices 513 

An avenue for collecting data in the realm of PN involves the utilization of wearable 514 

sensors. When discussing about wearable devices, we typically refer to items like smart 515 

watches and activity trackers, but there are also other devices, such as smart glasses and 516 

smart headphones, that can monitor metrics like heard rate, blood pressure, sleep perfor- 517 

mance, and feed this data to recommendation systems. 518 

The CarpeDiem app, as discussed by Migliorelli et. al. (2023) [81] integrates data from 519 

wearable devices and user questionnaires to analyse physical activity, sleep patterns, and 520 

nutritional habits, offering personalized recommendations to promote healthier lifestyles. 521 

A pilot study assesses its effectiveness in driving long-term behavioural changes, empha- 522 

sizing the utility of combining objective and subjective health data. Meanwhile, Wang et. 523 

al. (2022) [82] present NutriTrek, a wearable electrochemical biosensor engineered to con- 524 

tinuously analyse sweat for various metabolites and nutrients, including essential amino 525 

acids and vitamins. Its wireless communication facilitates real-time monitoring of nutri- 526 

tional needs, showcasing the potential of wearable sensors for developing effective per- 527 

sonalized nutrition plans through non-invasive and convenient data collection. 528 

Khan et. al. (2022) [83] propose iHearken, a headphone-like wearable sensor system, 529 

employing ML techniques to automatically recognize food intake types in real-life set- 530 

tings. Through four phases, including data acquisition and classification using Bidirec- 531 

tional long short-term memory (Bi-LSTM) models, iHearken achieves high accuracy 532 

(97.422%), precision (96.808%), recall (98%), and F-score (97.512%), demonstrating supe- 533 

rior performance in food recognition compared to other models. This research under- 534 

scores the potential of wearable sensors and ML for dietary monitoring. Similarly, Xiao- 535 

Yong et. al. (2023) [84] introduce a smartwatch-based health management system utilizing 536 

physiological data transmitted via 5G and NarrowBand-Internet of Things (NB-IoT) tech- 537 

nologies. The system offers continuous monitoring and feedback for medical diagnosis 538 

and disease prediction, acknowledging challenges like power consumption and transmis- 539 

sion range that require attention for improved effectiveness. 540 

In conclusion, wearable sensors are an excellent way of gathering data from users 541 

and feeding them to recommendation systems. With wearable devices a recommendation 542 

system can be frequently updated with user’s physiological data and generate more accu- 543 

rate and on-site recommendations. 544 

3.2.2. Cameras 545 

Nowadays cameras can be found almost everywhere and in every device from 546 

smartphones with multiple cameras with great resolution to embedded cameras on wear- 547 

able devices like activity trackers. The work by Azzimani et. al. (2022) [44] involves an 548 

innovative technique that employs advanced image processing methods to accurately cal- 549 

culate the nutrient content of items depicted in RGBD images that were captured before 550 

and after a meal. Similarly, Aguilar et. al. (2022) [42] are trying to enhance the accuracy of 551 

existing image recognition networks using Bayesian networks. Given an image of one or 552 

multiple food plates, the enhanced model can better recognise the foods on the plate. 553 
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Along the same lines, in the work presented by Wu et. al. (2022) [70] images are fed to the 554 

AI algorithm for food classification, ingredient recognition, and nutrition analysis to pro- 555 

duce a nutrition report for the user. The evaluation and accuracy of these tree works was 556 

further discussed in section 3.1.1. 557 

All in all, cameras with the synergy of AI and ML algorithms can produce significant 558 

information for the recommendation systems. From calorie estimation to volume estima- 559 

tion and from food recognition to ingredient recognition the power of RGB and RGBD 560 

images plays a crucial role in the field of PN with much more to give in the future. 561 

3.2.3. Smartphones and applications 562 

Smartphones play a multifaceted role in the realm of PN. They are harnessed for di- 563 

verse purposes, such as capitalizing on their high-quality cameras to capture high resolu- 564 

tion images [42,44,70]. Additionally, the development of mobile applications dedicated to 565 

PN has emerged as another avenue [52,54,55,69,85]. An example is the work of Zamanillo- 566 

Campos et. al. (2023) [86] which discusses the development and evaluation of DiabeText, 567 

a personalized mHealth intervention aimed at supporting medication adherence and life- 568 

style change behaviour in patients with type 2 diabetes in Spain. The testing of the app 569 

showed a high level of personalization and patient-centredness. These applications, 570 

equipped with user-friendly interfaces, facilitate the input of personalised information 571 

and display results from recommendation systems. Furthermore, smartphones leverage 572 

wireless connection technologies like Bluetooth to link with various wearable devices. No- 573 

tably, Martínez-Rodríguez et. al. (2022) [87] underscore the efficacy of combining weara- 574 

ble sensors with mobile applications, showcasing superior outcomes compared to meth- 575 

ods that do not integrate smartphone applications. 576 

Additionally, gamification emerges as a significant factor in driving user engagement 577 

with PN mobile applications, as emphasized by Al-Rayes et. al. (2022) [88]. Similarly, Oc 578 

et. al. (2022) [89] explore motivational technology characteristics through the U-Com- 579 

merce lens, introducing the gaming, instructing, sharing, and teaching GIST model based 580 

on user preferences for gaming, instructing, sharing, and teaching features. This model, 581 

built on four principles, aims to cultivate autonomous motivation among users, facilitat- 582 

ing more effective and sustainable engagement with PN applications. 583 

In conclusion, smartphones and their synergy with mobile applications and wearable 584 

sensors can provide not only a user-friendly interface for users to interact with a PN ap- 585 

plication but also the means by which valuable data and information can be collected by 586 

the recommendation systems. 587 

3.2.4. Other sensing devices 588 

In addition to wearable devices, a diverse array of non-wearable sensing devices 589 

holds substantial promise for personalised nutrition. Such devices range from simple 590 

smart scales to smart forks and even EEG signal capturing devices or DNA kits. As was 591 

mentioned previously, Islam et. al. (2023) [51] retrieve brain data using EEG signals as 592 

inputs for their recommendation system while Yang et. al. (2023) [54] use DNA kits to 593 

collect genetic information from the users. 594 

Likewise, Wilson-Barnes et. al. (2022) [19] employed a Volatile Organic Compound 595 

(VOC) sensor to analyse the breath of research participants in two population groups at 596 

nutritional risk: i) adults with poor-quality diets (PQD, less than 3 portions of fruit and 597 

vegetables per day) and ii) adults with iron deficiency anaemia. The analysis results were 598 

subsequently used to investigated correlations of specific compounds with the two 599 

groups. 600 

In summary, pivotal health and nutrition-related information can be gleaned from 601 

advanced non-wearable sensing devices; however, the process of obtaining, analysing, 602 

and applying the data is often more intricate compared to wearable sensors. Beyond the 603 

sheer volume of these devices, users may encounter challenges, such as the need to visit 604 

hospitals or specialized facilities. Moreover, the complexity of these devices can render 605 

them difficult to use and potentially expensive. 606 
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3.2.5. Summarization 607 

In the table below we provide an overview of the various data collection technologies 608 

that were presented in this section (Table 2). For each technology we identify the data 609 

capturing sensor or device used, its data output which is used as input to the method or 610 

model employed, and finally the scope of the method/model used in the respective work. 611 

Table 2. List of the data collection technologies presented in Section 4, indicating sensors/devices 612 
used, method/model input (which is also the output of the sensor/device), and method/model scope. 613 

Reference No. Sensor/Device used Method/Model input (sensor output data) Method/Model Scope 

Wilson-Barnes 

et. a. (2022) [19] 
VOC Human breath Nutrient estimation 

Aguilar et. al. 

(2022) [42] 
Camera RGB of a plate Food recognition 

Azzimani et. al. 

(2022) [44] 
Camera RGBD of a meal Meal personalisation 

Islam et. al. 

(2023) [51] 
EEG EEG signals Affects of different meals 

Yang et. al. 

(2022) [52] 
Mobile 

Genetic testing, physical examination, diet style, habits and cus-

toms, medical history, exercise data 
Tailored nutrition solution 

Yang et. al. 

(2023) [54] 
Mobile, DNA kit Lifestyle questionnaire, physical examination results, DNA data 

Evaluating users’ immune 

status, nutritional defi-

ciency risk 

Yang et. al. 

(2022) [55] 
Mobile, DNA kit Analysing genetic data, lifestyle data, physical examination data 

Genetic interpretation re-

port, personalized nutrition 

report, customized nutri-

tion packs 

Cunha et. al. 

(2024) [64] 
Food scale, body scale, smartwatches 

Food intake attributes, physical activity metrics, body parame-

ters 

BMI prediction, personal-

ised feedback, goal moni-

toring 

Ribeiro et. al. 

(2022) [69] 
Mobile Food preferences, restrictions, nutritional needs 

Meal recommendation sys-

tem 

Wu et. al. 

(2022) [70] 
Camera RGB of a meal Food classification 

Migliorelli et. 

al. (2023) [81] 
Activity tracker 

Step counter, physical activity, pulse, sleep hours and sleeping 

efficiency 

Physical activities, cardio-

vascular activities, sleep 

patterns, nutritional habits 

Wang et. al. 

(2022) [82] 
NutriTrek Age, BMI 

Health monitoring, preci-

sion nutrition 

Khan et. al. 

(2022) [83] 
Headphone-like Chewing sounds Food intake type 

Xiao-Yong et. 

al. (2023) [84] 
Smartwatches, mobile Pulse, heart rate, blood oxygen Health management 

Zamanillo-

Campos et. al. 

(2023)[86] 

Mobile Patient-elicited data Tailored brief text 

Martínez-

Rodríguez et. 

al. (2022) [87] 

Mobile, activity tracker 
Blood pressure, body weight, water intake, fruits intake, vegeta-

bles intake, physical activity 

Personalised reminders, be-

havioural tips, educational 

material, progress tracking 

Oc et. al. (2022) 

[89] 

Smartwatches, smart wristbands, mo-

bile 
Preferences Gamification 

4. Discussion 614 
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In this section, we discuss and summarise the findings from the preceding literature 615 

review, shedding light on the research challenges that emerge. Upon examining all pre- 616 

sented works, certain features have been identified as not only pivotal to each individual 617 

study but also shared across multiple works. A synthesis of such common features was 618 

done, and the result was presented in tabular format to show how each work/method 619 

incorporated them. Specifically, we focused on the methods/models/technologies pre- 620 

sented in the various works and for each we identified the specific datasets, input types 621 

and presentation platforms that have been used. The surveyed works employ a diverse 622 

array of methods, and even when multiple works employ the same method, they often 623 

leverage different technologies. Across the presented works, various approaches have 624 

been adopted, including image recognition models Azzimani et. al. (2022) [44], heuristic 625 

optimizations7 Geng et. al. (2023) [56], Bayesian networks8 Aguilar et. al. (2022) [42], DT9 626 

methodologies Sahal et. al. (2022) [57], deep convolutional neural networks10 Kaur et. al. 627 

(2022) [41], ontologies11 Buzcu et. al. (2022) [67], and more. It is evident that the reviewed 628 

works demonstrate a significant diversity by employing multiple and distinct approaches, 629 

highlighting the breadth of methodologies within the field. 630 

Conversely, when it comes to input types, commonalities emerge among the studies 631 

recommendation systems. For instance, user physiological data is a recurring input type 632 

[36,41,55], while food images play a central role in [41,42,44,70] and more. Specifically, 633 

input types have been categorised into four main groups: user profile data (including per- 634 

sonal information, physiological data, genetic data, physical activity, habits, etc.), user 635 

health data (including allergies, diseases, medical history etc.), user preferences/re- 636 

strictions (including dietary preferences/restrictions, food ratings, dietary patterns, pre- 637 

ferred cuisine, cultural aspects etc.), and food images (e.g., RGB or RGBD images). The 638 

radar chart depicted in Figure 3a visually represents how frequently each input type is 639 

used in the reviewed works. 640 

One significant finding related to the datasets used by the reviewed works is that, in 641 

most instances, researchers employ pre-existing well established datasets. However, there 642 

are cases where bespoke datasets tailored to the specific research goals are used, as evi- 643 

denced in Wu et. al. (2022) [70]. A second noteworthy observation is the considerable di- 644 

versity across the used datasets. For instance, [44,45,73] utilise national databases contain- 645 

ing nutrition values for various foods, while in Zhang et. al. (2022) [38] physiological data 646 

are extracted from the MyFitnessPal app. In contrast, Geng et. al. (2023) [56] employ ten 647 

heuristic optimization benchmark datasets, and Yang et. al. (2022) [55] rely on a database 648 

 
7 Heuristic optimization refers to a problem-solving approach that employs practical, experience-based techniques to 

find good-enough solutions for complex optimization problems, especially when traditional methods are computation-

ally infeasible. https://en.wikipedia.org/wiki/Heuristic_(computer_science) 

8 Bayesian networks are probabilistic graphical models that represent a set of variables and their conditional depend-

encies using directed acyclic graphs, enabling efficient reasoning and inference under uncertainty. https://en.wikipe-

dia.org/wiki/Bayesian_network 

9 Digital Twin is a virtual representation of a physical object, system, or process that is used to simulate, analyse, and 

optimize its real-world counterpart through real-time data and advanced algorithms. https://en.wikipe-

dia.org/wiki/Digital_twin 

10 Deep convolutional neural networks are a type of artificial neural network designed to process and analyse grid-like 

data structures, particularly images, by using multiple layers of convolutional filters to learn spatial hierarchies of fea-

tures automatically and adaptively from the input data. https://en.wikipedia.org/wiki/Convolutional_neural_network 

11 Formal representations of a set of concepts within a domain and the relationships between those concepts, used to 

model domain knowledge in a structured and interpretable way for purposes such as information sharing, integration, 

and reasoning. https://en.wikipedia.org/wiki/Ontology_(information_science) 

https://en.wikipedia.org/wiki/Heuristic_(computer_science)
https://en.wikipedia.org/wiki/Bayesian_network
https://en.wikipedia.org/wiki/Bayesian_network
https://en.wikipedia.org/wiki/Digital_twin
https://en.wikipedia.org/wiki/Digital_twin
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Ontology_(information_science)
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for autism as well as a database detailing gene-disease association. Additionally, [41,42,74] 649 

incorporate databases of food images, while Buzcu et. al. (2023) [67] adopt an Web Ontol- 650 

ogy Language (OWL), showcasing the rich spectrum of data sources and methodologies 651 

employed by researchers in this field. 652 

In terms of presentation platforms, the reviewed works exhibit commonalities as 653 

nearly half of the works in Nutrition Recommendation Systems and almost all the works 654 

in Recipe Recommendation Systems are using a platform or a method for users to interact 655 

with the recommendation system and for the recommendation system to collect infor- 656 

mation and data from the users. For instance, [36,52,54,55] utilise questionnaires for user 657 

interaction, while [41,66,68] opt for web-based applications. In general, presentation plat- 658 

forms have been categorised into four main groups: user questionnaires, mobile applica- 659 

tions, web-based applications, and desktop-based applications. The radar chart depicted 660 

in Figure 3b visually represents the usage frequency of the various presentation platform 661 

types among the works, highlighting the prevalent approaches adopted by researchers in 662 

facilitating user engagement and data collection in recommendation systems. 663 

The ultimate role of personalized nutrition recommendation systems is to assist in- 664 

dividuals in changing/sustaining their dietary habits to improve their health outcomes, 665 

such as balancing BMI, achieving weight loss, and preventing disease. To fully assess the 666 

effectiveness of these systems, long-term studies involving human participants are neces- 667 

sary. While our focus in this paper is on the technical evaluation and validation of these 668 

systems, as outlined in the introduction, we acknowledge that there is one study that has 669 

conducted such an experiment. Yang et. al. (2023) [54] demonstrated that personalized 670 

nutrition and nutritional supplements significantly improved the immune system of el- 671 

derly participants by tailoring nutrient intake based on individual genetic profiles, health 672 

indicators, and lifestyle factors. This personalized approach led to a marked improvement 673 

in immune markers, such as a 30% increase in T-cell activity and a 25% reduction in in- 674 

flammation-related markers, enhancing overall immune function and reducing suscepti- 675 

bility to infections and autoimmune conditions. 676 

Drawing upon the differences and similarities between nutrition RSs and recipe RSs 677 

it is not clear whether adding recipe recommendation over nutritional has additive value. 678 

However, one benefit or recipe RSs over nutritional ones is stated in Ribeiro et. al. [69] 679 

saying that the creation of multiple meals recommendations have extended control over 680 

users’ diet unlike single recommender systems. 681 

Finally, several reviewed works have taken the additional step of integrating their 682 

recommendation systems into practical applications, such as web or mobile platforms, 683 

which are currently available and can be used online. For example, Safitri et. al. (2023) [76] 684 

an application named CookPal which is a web site where a user can either upload an im- 685 

age of one or more products or write those products and the algorithm will produce a 686 

recipe with these products. Additionally, Hasan et. al. (2022) [77] provide a web site where 687 

users can find useful articles about foods, recipes, restaurants, and more. 688 
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(a) (b) 

Figure 3. Two radar charts regarding the inputs and the platforms of recommendation systems 689 
correspondingly. (a) Radar chart displaying how common each input type is. (b) Radar chart dis- 690 
playing how common each platform type is. 691 

4.1. Research challenges in recommendation systems for personalised nutrition 692 

The field of PN revolves around customising dietary recommendations and interven- 693 

tions for individuals, considering their distinct characteristics, including their profile, ge- 694 

netic information, metabolism, microbiome composition, lifestyle, preferences, and health 695 

status. For example, Andres et. al. (2023) [90] focus on data engineering issues like data 696 

collection, cleaning, integration, and processing, alongside the design and implementa- 697 

tion of efficient data pipelines and storage systems while Sedrakyan et. al. (2023) [91] dis- 698 

cuss the importance of integrating sustainable food consumption into recommendation 699 

systems, limitations of existing food recommendation systems, and privacy among other 700 

challenges. 701 

Despite the considerable potential of existing PN approaches to enhance health out- 702 

comes, a careful examination and analysis of various reviewed works reveal several re- 703 

search challenges that demand attention. This chapter enumerates the research challenges 704 

derived from a meticulous review of the literature. 705 

 706 

Data Collection and Integration. PN often requires extensive collection of multi- 707 

modal data that can range from personal user profiles to microbiome and genetic data, 708 

and from physical activity data to clinical data. The majority of the above works use more 709 

than one types of data as input to get a more accurate result like [38,43,52] therefore more 710 

diverse datasets are needed. 711 

• Research challenge: Integration of diverse datasets and development of standardised protocols 712 

for multimodal data collection and analysis 713 

 714 

Several data collection devices or methods are either costly or time consuming (or 715 

both) for the user [19,51,54,55]. 716 

• Research challenge: Friendlier and more easily accessible means (devices, methods, etc.) for 717 

data collection. 718 

 719 

Precision and Accuracy. Achieving precise and accurate recommendations for indi- 720 

viduals is challenging due to the complex interplay of multiple factors. Combining multi- 721 

ple technologies and data like [36,41,55,63] can diverse the accuracy of a system. 722 
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• Research challenge: Understanding the interactions between genes, diet, lifestyle, the micro- 723 

biome, and more via novel sophisticated analytical methods and respective computational 724 

tools. 725 

 726 

Increasing data diversity leads to more accurate results [37,38,43,51,79,80]. 727 

• Research challenge: Improvement of existing or development of novel technologies (e.g., smart 728 

devices) for gathering of additional data. 729 

 730 

Genetic Variation and Gene-Diet Interactions. Genetic variation plays a crucial role 731 

in individual responses to dietary factors. People respond differently to the same dietary 732 

interventions due to variations in genetics, metabolism, and other factors. Only three stud- 733 

ies [52,54,55] include genetic data indicating the need to address this research challenge. 734 

• Research challenge: Developing personalised recommendation systems that account for ge- 735 

netic variability. 736 

• Research challenge: Identifying relevant genetic variants and understanding how they inter- 737 

act with specific nutrients or dietary patterns via large-scale studies and advanced statistical 738 

techniques. 739 

 740 

Long-Term Effects. Studying the long-term effects of PN interventions is essential to 741 

understand their impact on health outcomes. Many studies conducted surveys that in- 742 

cluded humans like [66,74,78] for a couple of months but not for more. 743 

• Research challenge: Conduct long-term studies with large sample sizes while overcoming any 744 

respective logistical challenges and financial constraints. 745 

 746 

Long-Term Results. To evaluate recommendation systems more comprehensively, 747 

there is a need for more long-term studies involving human participants, rather than fo- 748 

cusing solely on technical aspects. 749 

• Research challenge: Conduct long-term studies with large numbers of real users using diet 750 

recommendation systems, carefully monitoring their response throughout the process (nutri- 751 

tion behavioural changes, real health changes/outcomes achieved, etc.). 752 

 753 

Behaviour Change. PN recommendations often require individuals to make signifi- 754 

cant changes to their dietary habits and lifestyle. Studies like [48,70,81,88] try to leverage 755 

the challenge to motivate a user on keep using a diet but more effort is needed on this 756 

direction. 757 

• Research challenge: Understand how to effectively motivate and support individuals in mak- 758 

ing sustainable behaviour changes. 759 

 760 

Ethical and Privacy Considerations. PN almost inevitably involves the collection 761 

and use of sensitive personal data. The study Safitri et. al. (2023) [76] is an example of 762 

developing a system focusing on users’ data privacy. 763 

Research challenge: Facilitate privacy protection and address ethical concerns related to data 764 

ownership, consent, and potential discrimination. 765 

In addition to the challenges identified in the reviewed papers, we further highlight 766 

below the research challenges put forth by Food2030 [92], aiming to offer a more compre- 767 

hensive perspective on this subject. These challenges are not met (with one exception) in 768 

the above studies and therefore is it urgent to address them for feature works. While the 769 

overarching scope of Food2030 is “to achieve a resilient food system that is fit for the fu- 770 

ture”, specific requirements put forth include the need to also deliver co-benefits for peo- 771 

ples’ health, world’s climate, the planet, and communities. Hence, the imperative for the 772 

coexistence of PN and sustainability remains an ongoing consideration and represents a 773 
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crucial aspect that could be seamlessly integrated into recommendation systems. The chal- 774 

lenges that Food2030 addresses can be summarized as follows. 775 

 776 

Carbon footprint. One of the major challenges faced by modern society is the carbon 777 

footprint associated with food production and consumption. 778 

• Research challenge: Utilisation of technologies such as blockchain to trace the origin of 779 

food/products or geolocation systems to track their journey from farm to fork, with the aim of 780 

contributing to reductions in the carbon footprint. 781 

• Research challenge: Development of technological solutions to facilitate precise calculations, 782 

with the aim of contributing to reductions in the carbon footprint. 783 

 784 

Waste. Food waste is a pressing problem in contemporary societies, particularly in 785 

more developed countries with high populations and demand. 786 

• Research challenge: Development of technological solutions for improved accuracy of estima- 787 

tions regarding required quantities of food/products at each stage of the supply chain. 788 

 789 

Prices. Accessibility to affordable food/products remain a challenge in several im- 790 

poverished nations worldwide Wang et. al. (2022) [66]. 791 

• Research challenge: Development of technological solutions for the analysis of pricing dispar- 792 

ities, ultimately working towards greater affordability and accessibility. 793 

 794 

Sociocultural aspects. Reshaping societal behaviours can lead towards a more envi- 795 

ronmentally conscious and sustainable way of living. 796 

• Research challenge: Development of solutions/methods for incorporating technology in edu- 797 

cation and societal restructuring towards a greener and more sustainable society. 798 

 799 

In summary, the research challenges for data-driven innovation in the field of PN 800 

span across diverse domains. A critical focus is on the data sphere, demanding large-scale, 801 

precise, and readily accessible datasets. Ethical and privacy concerns emerge prominently, 802 

particularly in the utilization of personal user data. The inherent variability among indi- 803 

viduals poses a significant challenge for recommendation systems in PN, striving to tailor 804 

recommendations to each user effectively. Developing user-friendly applications and 805 

platforms is another substantial hurdle. Furthermore, the long-term effects of employing 806 

recommendation systems as well as their seamless integration with Food2030 goals pose 807 

complex challenges. Achieving harmony with existing technologies and exploring new 808 

ones becomes pivotal, especially concerning sustainability, food waste, and other chal- 809 

lenges outlined in Food2030. Consequently, the multidimensional nature of challenges in 810 

this research field necessitates comprehensive consideration across various facets. 811 

5. Conclusions 812 

This review paper describes a review in data-driven innovative technologies in the 813 

realm of PN, offering a comprehensive and holistic overview of the various technologies 814 

and their applications in this research field. Adhering to the PRISMA model, the reviewed 815 

works cover the period from 2021 to date, emphasising the synergy between Computer 816 

Science and PN. 817 

The findings indicate that the predominant approach to amalgamating these two 818 

fields involves the use of recommendation systems. These systems are further categorised 819 

into Nutrition, Recipe, and Restaurant Recommendation Systems. The diversity in tech- 820 

nologies and methods employed by these recommendation systems is noteworthy. Com- 821 

mon across nearly all recommendation systems are the inputs utilized, including user data 822 

and food images. Another shared feature is the mediums employed to gather inputs, typ- 823 

ically through questionnaires, web-based apps, mobile apps, and desktop-based apps. 824 
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A dedicated chapter delves into the technologies employed for data collection, high- 825 

lighting the crucial roles of wearable and non-wearable sensors, cameras, smartphones, 826 

and mobile applications. The development of user-friendly interfaces for these recommen- 827 

dation systems, coupled with the integration of wireless connected devices for data pro- 828 

vision, holds the potential to guide individuals towards healthier lifestyles using mobile 829 

apps for personalized nutrition. 830 

Finally, this literature review identified several research challenges. The paper lists 831 

the most significant challenges within the realms of nutrition, computer science technolo- 832 

gies, and sustainability, offering a comprehensive perspective on the research field. 833 
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