Published May 7, 2018 | Version v1
Conference paper Open

Numerical Simulation of Contrail Ice Particle Growth in the Near Field of an Aircraft Engine

  • 1. Department of Mechanical Engineering, École de technologie supérieure Canada

Description

Contrails from aircraft may have a direct impact on the Earth’s radiative budget balance. The aim of this study is to examine the formation of contrails in the near field of a realistic configuration based on the CFM56 engine and consequently, on the soot and ice particles evolution. In this work, we focused on a primary exhaust jet laden with soot particles and mixed with a secondary jet (bypass flow) in the cold ambient air. The study has been performed using a 2D axisymmetric CFD calculation based on an URANS (Unsteady Reynolds Average Navier-Stokes) approach. Numerical simulations have been performed using STAR-CCM+, a commercial code for multiphysics. The particles are tracked using the Lagrangian approach. A microphysical model was used to calculate their growth. The results show the evolution of ice crystal sizes throughout the exhaust jets. As an example, the mean particle radius grows up to approximately 0.7 μm 0.5 s downstream in agreement with experimental data.

Files

GPPS-NA-2018-0167.pdf

Files (569.7 kB)

Name Size Download all
md5:6eb371471c5b12a50728033d7f127ba6
569.7 kB Preview Download

Additional details

References

  • [1] Bogey C., Barré S., Juvé D. & Bailly C. (2009). Simulation of a hot coaxial jet: Direct noise prediction and flow-acoustics correlations. Physics of Fluids. 21 (3): 035105. doi: 10.1063/1.3081561
  • [2] Buresti G., Petagna P. and Talamelli A. (1998). Experimental investigation on the turbulent near-field of coaxial jets. Experimental Thermal and Fluid Science. 17 (1): 18-26. doi: 10.1016/S0894-1777(97)10045-0
  • [3] Burkhardt U., Kärcher B. and Schumann U. (2010) . Global Modeling of the Contrail and Contrail Cirrus Climate Impact. Bulletin of the American Meteorological Society. 91 (4): 479-484. doi: 10.1175/2009bams2656.1
  • [4] Cd-Adapco (2016). STAR-CCM+ Documentation Version 12.04.010.
  • [5] Celik I. B., Ghia U., Roache P. J. and Freitas, C. J. (2008). Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. Journal of Fluids Engineering. 130 (7): 078001-0780 01-4. doi: 10.1115/1.2960953
  • [6] Eschricht D., Greschner B., Thiele F. and Jacob , M. C. (2009). Numerical Simulation of Jet Mixing Noise Associated with Engine Exhausts. In: Brun C., Juvé D., Manhart M. and Munz C.-D. (eds.) Numerical Simulation of Turbulent Flows and Noise Generation: Results of the DFG/CNRS Research Groups FOR 507 and FOR 508. Berlin, Heidelberg: Springer Berlin Heidelberg. 121-146
  • [7] Fukuta N. and Walter L. A. (1970). Kinetics of Hydrometeor Growth from a Vapor-Spherical Model. Journal of the Atmospheric Sciences. 27 (8): 1160-1172. doi : 10.1175/1520-0469(1970)027<1160:kohgfa>2.0.co;2
  • [8] Garnier F., Baudoin C., Woods P. and Louisnard, N. (1997). Engine emission alteration in the near field of an aircraft. Atmospheric Environment. 31 (12): 1767-17 81. doi: https://doi.org/10.1016/S1352-2310(96)00329-9
  • [9] Garnier F., Maglaras E., Morency F. and Vancass el X. (2014). Effect of Compressibility on Contrail Ice Particle Growth in an Engine Jet. International Journal of Turbo & Jet- Engines. 31 (2): 131. doi: 10.1515/tjj-2013-0039
  • [10] Georgiadis N. and Papamoschou D. (2003). Computational Investigations of High-Speed Dual Stream Jets. 9th AIAA/CEAS Aeroacoustics Conference and Exhibit, AIAA Paper 2003-3311
  • [11] Gleitsmann G. and Zellner R. (1998). A modeling study of the formation of cloud condensation nuclei in the jet regime of aircraft plumes. Journal of Geophysical Research : Atmospheres. 103 (D16): 19543-19555. doi: 10.1029/98JD01733
  • [12] Goulos I., Stankowski T., Macmanus D., Woodrow P. and Sheaf, C. (2017). Civil turbofan engine exhaust aerodynamics: Impact of bypass nozzle after-body design. Aerospace Science and Technology. 73: 85-95. doi: https://doi.org/10.1016/j.ast.2017.09.002
  • [13] Guitton A., Tinney C. E., Jordan P. and Delvil le J. (2007). Measurements in a Co-Axial Subsonic Jet. 45th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper 2007- 15.
  • [14] Jensen E. J., Toon O. B., Kinne S., Sachse G. W., Anderson B. E., Chan K. R., Twohy C. H., Gandrud B. , Heymsfield A. and Miake-Lye R. C. (1998). Environmental conditions required for contrail formation and persistence. Journal of Geophysical Research. 103 (D4): 3929-36. doi: 10.1029/97JD02808
  • [15] Klioutchnikov I., Olivier H. and Odenthal J. ( 2013). Numerical investigation of coaxial jets entering in to a hot environment. Computers and Fluids. 86: 490-499. doi : https://doi.org/10.1016/j.compfluid.2013.07.032
  • [16] Lee D. S., Pitari G., Grewe V., Gierens K., Penner J. E., Petzold A., Sausen R. (2010). Transport impacts on atmosphere and climate: Aviation. Atmospheric Environment. 44 (37). 4678-4734. doi: http://doi.org/10.1016/j.atmosenv.2009.06.005 .
  • [17] Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIA A Journal. 32 (8): 1598-1605. doi: 10.2514/3.12149
  • [18] Paoli R., Hélie J. and Poinsot T. (2004). Contrail formation in aircraft wakes. Journal of Fluid Mecha nics. 502: 361-373. doi: 10.1017/S0022112003007808
  • [19] Petzold A., Busen R., Schröder F. P., Baumann R., Kuhn M., Ström J., Hagen D. E., Whitefield P. D., Baumgardner D., Arnold F., Borrmann S. and Schumann U. (1997). Near-field measurements on contrail properties from fuels with different sulfur content. Journal of Geo physical Research: Atmospheres. 102 (D25): 29867-29880. doi: 10.1029/97JD02209
  • [20] Sausen R., Collins W. J., Johnson C. E., Kelde r H., Kingdon R., Köhler I., Kraabol A., Kraus A., Marizy C., Ramaroson R., Rohrer, F., Scheele M. P., Stevenson D., Stordal F., Strand A., van Vetthoven P. F. J., Waub en W. F., Gallardo-Klenner L., Gardner R., Hovo Grobler E. and Lee D. S. (1995). The impact of NO x emissions from aircraft upon the atmosphere at flight altitudes 8-15 km (AERONOX). Sub- Project 3, Global Atmosphere Model Simulations. In The Impact of NO x Emissions from Aircraft upon the Atmosphere at Flight Altitudes 8-15 km. (AERONOX), ed. Schuman n U. EC-DLR Publication on Research Related to Aeronautics and Environment. Oberpfaffenhoffen, Germany.
  • [21] Schroder F., Karcher B., Duroure C., Strom J., Petzold A., Gayet J. F., Strauss B., Wendling P. and Borrmann S. (2000). On the transition of contrails into cirrus clouds. Journal of the Atmospheric Sciences. 57 (4): 464-80 . doi: 10.1175/1520-0469(2000)057<0464:OTTOCI>2.0.CO;2
  • [22] Schumann U. (1996). On Conditions for Contrail Formation from Aircraft Exhausts. Meteorologische Zeitschrift. 5: 4-23
  • [23] Schumann U., Arnold F., Busen R., Curtius J., Kärcher B., Kiendler A., Petzold A., Schlager H., Schröder F. and Wohlfrom K. H. (2002). Influence of fuel sulfur on the composition of aircraft exhaust plumes: The experiments SULFUR 1–7. Journal of Geophysical Research: Atmospheres. 107 (D15): AAC 2-1-AAC 2-27. doi: 10.1029/2001JD000813
  • [24] Sta ń kowski T. P., Macmanus D. G., Sheaf C. T. and Christie R. (2016). Aerodynamics of aero-engine installation. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 230: 2673-2692 . doi: 10.1177/0954410016630332
  • [25] Timmerman B. H., Skeen A. J., Bryanston-Cross P. J. and Graves M. J. (2009). Large-scale time-resolved digital particle image velocimetry (TR-DPIV) for measurement of high subsonic hot coaxial jet exhaust of a gas turbine engine. Measurement Science and Technology. 20 (7): 074002.
  • [26] Yoder D. A., Debonis J. R. and Georgiadis N. J . (2015). Modeling of turbulent free shear flows. Computers and Fluids. 117: 212-232. doi: https://doi.org/10.1016/j.compfluid.2015.05.009