This learner provides fitting procedures for xgboost
models, using the
xgboost
package, using the xgb.train
function.
Such models are classification and regression trees with extreme gradient
boosting. For details on the fitting procedure, consult the documentation of
the xgboost
package.
Lrnr_xgboost
R6Class
object.
Learner object with methods for training and prediction. See
Lrnr_base
for documentation on learners.
nrounds=20
Number of fitting iterations.
...
Other parameters passed to
xgb.train
.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners: Custom_chain
,
Lrnr_HarmonicReg
, Lrnr_arima
,
Lrnr_bartMachine
, Lrnr_base
,
Lrnr_bilstm
, Lrnr_condensier
,
Lrnr_cv
,
Lrnr_define_interactions
,
Lrnr_expSmooth
,
Lrnr_glm_fast
, Lrnr_glmnet
,
Lrnr_glm
, Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_independent_binomial
,
Lrnr_lstm
, Lrnr_mean
,
Lrnr_nnls
, Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_randomForest
,
Lrnr_ranger
, Lrnr_rpart
,
Lrnr_rugarch
, Lrnr_sl
,
Lrnr_solnp_density
,
Lrnr_solnp
,
Lrnr_subset_covariates
,
Lrnr_svm
, Lrnr_tsDyn
,
Pipeline
, Stack
,
define_h2o_X
,
undocumented_learner