Continuous Code Quality: Are We (Really) Doing That?

Carmine Vassallo
University of Zurich
Zurich, Switzerland

vassallo@ifi.uzh.ch

Alberto Bacchelli
University of Zurich
Zurich, Switzerland
bacchelli@ifi.uzh.ch

ABSTRACT

Continuous Integration (CI) is a software engineering practice
where developers constantly integrate their changes to a project
through an automated build process. The goal of Cl is to provide
developers with prompt feedback on several quality dimensions
after each change. Indeed, previous studies provided empirical ev-
idence on a positive association between properly following CI
principles and source code quality. A core principle behind CI is
Continuous Code Quality (also known as CCQ, which includes auto-
mated testing and automated code inspection) may appear simple
and effective, yet we know little about its practical adoption. In this
paper, we propose a preliminary empirical investigation aimed at
understanding how rigorously practitioners follow CCQ. Our study
reveals a strong dichotomy between theory and practice: develop-
ers do not perform continuous inspection but rather control for
quality only at the end of a sprint and most of the times only on the
release branch. Preprint [https://doi.org/10.5281/zenodo.1341036].
Data and Materials [http://doi.org/10.5281/zenodo.1341015].

CCS CONCEPTS

« Software and its engineering — Maintaining software;

KEYWORDS
Continuous Integration, Code Quality, Empirical Studies

ACM Reference Format:

Carmine Vassallo, Fabio Palomba, Alberto Bacchelli, and Harald C. Gall.
2018. Continuous Code Quality: Are We (Really) Doing That?. In Proceedings
of the 2018 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE ’18), September 3-7, 2018, Montpellier, France. ACM, New
York, NY, USA, ¢ pages. https://doi.org/10.1145/3238147.3240729

1 INTRODUCTION

“Improving software quality and reducing risks” [8]. This is how
Continuous Integration (CI) has been put forward by Duvall et
al. [8] and is widely perceived by developers and students [22].
Concretely, Cl is an agile software development process aimed at
continuously integrating changes made by developers working on a

ASE ’18, September 3-7, 2018, Montpellier, France

© 2018 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2018 33rd ACM/IEEE International Conference on Automated Software Engineering (ASE
’18), September 3-7, 2018, Montpellier, France, https://doi.org/10.1145/3238147.3240729.

Fabio Palomba
University of Zurich
Zurich, Switzerland

palomba@ifi.uzh.ch
Harald C. Gall

University of Zurich
Zurich, Switzerland
gall@ifi.uzh.ch

shared repository; a build server that is used to build every commit,
run all tests, and assess source code quality [15].

Duvall et al. [8] have proposed a set of principles that develop-
ers should methodically follow to adopt CI. For instance, CI users
should build software as soon as a new change to the codebase is
performed, instead of building software at certain scheduled times
(e.g., nightly builds). A key principle of CI, as advocated by Duvall et
al. [8], is continuous inspection, which includes running automated
tests and performing static/dynamic analysis of the code at every
build, as a way to ensure code quality. This aspect of CI is also
known as Continuous Code Quality (CCQ) [28].

Previous work provided evidence on the potential of CI in achiev-
ing its stated goals. Vasilescu et al. [35] quantitatively explored the
effect of introducing CI on the quality of the pull request process,
finding that it improves the number of processed pull requests.
Khohm et al. [17] studied whether and how shifting toward a
shorter release workflow (i.e., monthly releases) had an effect on the
software quality of FIREFOX, reporting significant benefits. Others
found evidence of reduced time-to-market associated with CI [39]
and the possibility to catch software defects earlier [14].

However, empirical knowledge is still lacking on the actual prac-
tice of CCQ: How strictly do practitioners adopt CCQ? What are
the effects resulting from practitioners’ approach to CCQ? To scien-
tifically evaluate CCQ and its effects, as well as to help practitioners
in their software quality efforts, one has to first understand and
quantify current developers’ practices. In fact, an updated empirical
knowledge on CCQ is paramount both to focus future research on
the most relevant aspects of CCQ and on current problems in CI
adoption, as well as to effectively guide the design of tools and pro-
cesses. To this aim, we conduct a large-scale analysis that involves
a total of 148,734 builds and 5 years of the development change his-
tory of 119 Java projects mined by SONARCLoUD and TRavISCI, two
well-known providers of continuous code quality and continuous
integration data, respectively. We study the adoption of continuous
code quality by measuring metrics like the number of builds subject
to quality checks and frequency of the measurements.

Our findings reveal that only 11% of the builds are subject to a
code quality check and that practitioners do not apply CCQ, rather
run monitoring tools just at the end of a sprint. Moreover, only 36%
of branches are checked.


https://doi.org/10.5281/zenodo.1341036
http://doi.org/10.5281/zenodo.1341015
https://doi.org/10.1145/3238147.3240729
https://doi.org/10.1145/3238147.3240729

ASE ’18, September 3-7, 2018, Montpellier, France

2 BACKGROUND AND RELATED WORK

This section provides an overview of the principles behind contin-
uous code quality as well as the related literature.

2.1 Continuous Code Quality

There are a few basic principles at the basis of continuous inte-
gration [8]. Besides maintaining a single source code repository,
the idea behind CI is to automate the correct integration of code
changes applied by developers as much as possible. This is normally
obtained by having a dedicated build server responsible for taking
all the new commits as input and automatically build, test, and
deploy them. In addition, code quality assessment tools are used
in order to control how much the performed change respects the
qualitative standards of the organization. Thus, the principle of con-
tinuous code quality translates into having a development pipeline
composed of a repository, a CI build server, and a CCQ Service.
The developer commits a change to a repository (e.g., hosted on
GiTHuUB [12]), triggering a new build on the CI build server (e.g.,
TrAVISCI [31]). The server transfers the change to a different server
(called CCQ Service) that is in charge of performing the quality
analyses and reporting back the outcome to the CI build server.
Based on its configuration, the CI build server decides on whether
the build fails depending on the results of the CCQ service.

CI build server users can configure the build in a customized
way, e.g., sending only specific builds or builds on specific branches
to the CCQ service for inspection. This configuration allows users
to depart from the continuous quality practice as prescribed [8]
and to follow a different strategy. The decision to depart from the
prescribed CCQ practice is at the basis of our work, which is focused
on a deeper understanding of the actual CCQ practices.

2.2 Related Work

In the last years, researchers have proposed a growing number of
studies targeting CI practices [2, 38, 39], also thanks to the increas-
ing availability of publicly available CI data [3].

Hilton et al. [14] employed a mixed-method approach to study
the use of CI in open-source projects. They first mined the change
history of 34,544 systems, finding that CI is already adopted by the
most popular projects and that the overall percentage of projects
using CI is growing fast. In the second place, the researchers sur-
veyed 442 developers on the perceived benefits of CI. The main
perceived advantage is that CI helps projects release more often.

Hilton et al. [13] proposed a qualitative study targeting the bar-
riers developers face when using CI. The study comprised two
surveys with 574 industrial developers, with the main findings
presenting the trade-offs between (i) speed and certainty, (ii) in-
formation access and security, and (iii) configuration options and
usability. The authors motivated the need for new methods and
tools able to find a compromise between those perspectives. The
results discussed so far were also confirmed by Laukkanen et al.
[21] and Kim et al. [18], who reported on industrial experiences
when using CL

Complementing the studies mentioned above, our investigation
aims at understanding how rigorously developers adopt CCQ.

Other researchers investigated the use of automated static anal-
ysis tools (know as ASATs) in CI. Specifically, Zampetti et al. [40]

Carmine Vassallo, Fabio Palomba, Alberto Bacchelli, and Harald C. Gall

observed that a low number of builds fail because of warnings
raised by ASATs, while Vassallo et al. [37] reported that developers
configured static analysis tools only at the beginning of a project.
Our study further elaborates on how developers use ASATs in CI,
by exploring how they use them in order to perform CCQ.

3 OVERVIEW OF THE RESEARCH
METHODOLOGY

As Duvall et al. stated in previous work [8], the time between
discovery and fix of code quality issues can be significantly reduced
by continuously inspecting the code. Thus, the application of the
continuous inspection principle is stated to be crucial for fulfilling
the main advantage of CI, i.e., “improving software quality and
reducing risks" [8].

The goal of the study is to quantify the gap (if any) between
the continuous inspection principle (also known as continuous code
quality [28]) and the actual practices applied by developers with the
purpose of providing initial guidelines and tools for future research
in the field of continuous integration. Thus, our investigation is
structured around one research question: how is CCQ applied to
projects in CI?.

The perspective is of researchers and practitioners interested
in understanding whether code quality assessment is performed
continuously in CL

In order to answer our research question and guide future re-
search on CCQ practice, we first need to construct a dataset con-
taining projects developed through a CCQ pipeline. The context of
our study consists of such a dataset, which includes 119 projects
selected as reported in Section 4.3.

Then, we devise a set of CCQ metrics for assessing the actual
CCQ adoption (described in Section 5.1) and measure them over
the history of the projects in our dataset (Section 5.2).

4 CONTINUOUS CODE QUALITY DATA
COLLECTION

To conduct our investigation, we need to study projects that not
only use CI, but also: (i) adopt a CCQ pipeline, (ii) adopt a static
analysis tool that stores the quality measurements performed over
their history, and (iii) have CI-related events available, so that we
can contextualize CCQ measurements in their evolution.

Since an already built dataset that fulfills our criteria is not avail-
able, we build our own. The definition of an ad-hoc data collection
strategy is necessary because CCQ and CI events are stored on
different servers and the alignment of the CCQ change history
over the change history recording all the events occurred on the CI
build server required the definition of heuristics to properly match
the two sources. In the next sections, we describe the procedure
we follow to build the dataset, which is composed of three main
steps such as (i) collecting data from the CCQ server, (ii) collecting
data from the CI build server, and (iii) aligning the change history
coming from the two sources.



Continuous Code Quality: Are We (Really) Doing That?

4.1 Collecting CCQ Data

SoNARCLOUD! is a cloud service based on SONARQUBE [28] that
continuously inspects code quality and detects bugs, vulnerabilities,
and code smells. SONARQUBE is one of the most widely adopted code
analysis tools in the context of CI [28]. SONARQUBE is a SonarSource
product that is adopted by more than 85,000 organizations and that
support more than 20 languages—including the most popular ones
according to the TIOBE index [30]. SONARQUBE provides developers
with its own rules and incorporates rules of other popular static
and dynamic code analysis tools [28]. As an example, SONARQUBE
runs all the most popular code analysis tools (i.e., CHECKSTYLE,
PMD, FINDBUGS, COBERTURA) by default on Java projects. Thus,
the relevance of SONARQUBE in the context of CI motivates the
decision to focus on systems using SONARCLOUD as CCQ service.

Overall, 14,152 projects are actively using SONARCLOUD, even
though some of them are private and, thus, not accessible. We query
SoNARCLOUD using the available web APIs [27] and extract the list
of all the open source projects that use the free analysis service,
reaching 1,772 candidate systemsz.

4.2 Collecting CI Data

Starting from the initial population of 1,772 candidate systems, we
keep projects that use TrRavisCI as build server [31], as this ensures
that the project actually adopts a CCQ practice. We select TravisCI
as it provides the entire build history, as opposed to other build
servers (e.g., JENKINS) where only the recent builds are typically
stored [35].

Selecting projects using TRAavISCI as CI server and SONARCLOUD
as CCQ service is not trivial. While TRAvIsCI provides a direct
and easy integration with SONARCLoUD?, there is no explicit link
between those two services, meaning that one cannot directly in-
fer which projects use both services at the same time. Thus, we
need to create such a link. Among the information available on
SoNARCLOUD, the projects report the URL referring to the source
code repository; this URL provides us with an exploitable solution
to identify the desired systems. In particular, TRavVIsCI is used to
build projects hosted on GiTHUB: therefore, we first consider all
the projects available on SoNARCLOUD that expose a GiTHuB URL.
This step reduces the number of candidate projects to 439 (i.e., 25%
of all SoNARCLOUD systems). Subsequently, using the GrTHus URL
we query the TravisCI APIs [32] and check if a certain URL is
present on the platform: 390 projects match the selection criteria,
i.e., SONARCLOUD systems that are on TRAVISCI. As a final step, we
remove projects having less than 20 CCQ checks over their history*.
This filter is needed to avoid the analysis of projects that do not
really integrate a CCQ service in their pipeline; in other words, we
only consider projects that actively apply CCQ. At the end of this
process, our dataset comprises 119 projects.

4.3 Overlaying CCQ and CI Information

Once the explicit link between SoNARCLOUD and TravisCI is avail-
able, the final step of the data collection process is to overlay the

Uhttps://about.sonarcloud.io

2The complete list is available in our online appendix [36].
3https://docs.travis-ci.com/user/sonarcloud/

4The threshold of 20 is fixed in a similar way as done in previous work [6, 16, 24].

ASE ’18, September 3-7, 2018, Montpellier, France

separate change history information available in two sources. Also,
in this case, there is no explicit way to link a data point available
SoNARCLOUD to one on TravVISCL We solve this as in the following.
For each of the 148734 builds available on TRAvIsCI we first collect
(i) build 1id, (ii) triggering commit (i.e., commit message and
id), (iii) build status (i.e., failed, errored, passed), (iv) starting
date, and (v) ending date. Then, we use the starting date pa-
rameter of the build to identify the corresponding data point on
SONARCLOUD.

Specifically, let b; € T; be a build done on the branch br in the CI
history T; of the project i available on TRavISCI, and let m; € Sk
be a measurement of a certain metric k for project i on the branch br
in the CCQ history H; available on SoNARCLOUD, we considered
m;j to be the measurement corresponding to b; if the following
relation held:

date(m;;) > startingDate(b;)
A date(m;p) < startingDate(bit1)

In other words, for each of the 119 considered projects, we com-
pute the time interval in which two subsequent builds (i.e., b; and
bi+1) are performed on TRAvISCI and assign a quality measure-
ment to the build b; if it was started within that time window. For
each considered project, the final result is an overlaid change his-
tory, which contains information about the measured metric(s) and
value(s), for each measured build (i.e., a build subject to a measure-
ment on SONARCLOUD).

5 CONTINUOUS CODE QUALITY IN
PRACTICE

In this section, we discuss how continuous code quality is applied in
the selected projects. Specifically, we first present the CCQ metrics
that we conceive to automatically assess the CCQ practice. Then,
we show how our projects perform against the CCQ metrics over
their development’s history.

5.1 Definition of CCQ Metrics

Our study aims at assessing the practical use of CCQ. Based on the
constructed overlaid change history of the 119 subject projects, we
devise four indicators for measuring the actual CCQ usage:

CQCR - Code Quality Checking Rate: Number of builds sub-
ject to a code quality check divided by the total number of builds.

EFC - Elapsed Frame between Checks: Average number of
builds between two builds subject to a code quality check.

ETC -Elapsed Time between Checks: Average number of days
between two builds subject to a code quality check.

CB - Percentage of Checked Branches: Number of branches
containing at least one build subject to a code quality check divided
by the number of total branches scheduled for build.

We design these CCQ usage indicators (based on the guidelines
by Duvall et al. [9]) to understand how well CCQ is performed from
different perspectives. CQCR is the basic metric that reveals the
fraction of builds that are qualitatively measured during the history
of a project, thus giving a view on the extent to which developers
use to check builds in their projects. EFC and ETC measure the
frequency of the quality checks in the considered projects, in terms



ASE ’18, September 3-7, 2018, Montpellier, France

Table 1: CCQ usage indicators applied to our projects.

Project Set CCQ Usage Indicators
Feature Level #projects CQCR EFC ETC CB
Low 30 0.14 7.72 1449 0.62
Age Medium 58 0.17 10.86 1833 0.25
High 30 0.06 39.08 16.49 0.33
Low 27 0.14 8.99 16.67 0.39
Contribution Medium 61 0.12  9.74 16.69 041
High 30 0.05 36.76 17.33 0.22
Low 30 0.14 942 15.63 049
Popularity Medium 58 0.12 10.61 1547 0.33
High 30 0.06 37.34 20.20 0.27
Overall 0.11 1830 1691 0.36

of the average number of builds and days, respectively, that are
waited before performing a new quality check. CB indicates if there
are branches that are not checked at all: in this case, we want to
measure whether there are branches that are more prone to be
subject of qualitative checks.

5.2 On the Current Application of CCQ

Table 1 reports the results of our study aimed at investigating how
CCQ is applied in practice. The table reports the overall values (row
“Overall”) of each considered metric, i.e., Code Quality Checking Rate
(CQCR), Elapsed Frame between Checks (EFC), Elapsed Time between
Checks (ETC), and Percentage of Checked Branches (CB). Moreover,
with the aim of deeper understanding whether the characteristics of
the projects influence our observations, we also report the overall
metric values when splitting the systems by age, contribution, and
popularity.

We exploit the GiTHUB APIs [12] to identify (i) the number of
performed commits, (ii) the number of contributors, and (iii) the
numbers of stars of a certain repository, respectively. For each
considered perspective (i.e., age, contribution, and popularity), we
split projects into three different subsets, i.e., low, medium, and
high. Specifically, we calculate the first (Q;) and the third (Qs)
quartile of the distribution representing the number of commits,
contributors, and stars of the subject systems. Then, we classify
them into the following categories: (i) low if they have a number of
commits/contributors/stars n lower than Qq; (ii) medium if Q1 <
n < Qs, and (iii) high if n is higher than Q3. As shown in Table 1
(column “# projects”), we inadvertently achieved a good balance
among the different subsets in terms of the number of contained
projects.

Looking at the results, we can first observe that, overall, only
11% of the builds are qualitatively checked (CQCR value). This is
a quite surprising result, because it clearly indicates that projects
are not continuously inspected. In the lights of this finding, we
can claim that the continuous inspection principle is generally not
respected in practice.

When considering projects split by categories, i.e., low, medium,
and high for age, contribution, and popularity, we can perceive a
trend in the results. Young and medium-age projects exhibit higher
values for CQCR with respect to the more mature projects, yet still
have a pretty low percentage of monitored builds (14% and 17%,

Carmine Vassallo, Fabio Palomba, Alberto Bacchelli, and Harald C. Gall

respectively). This finding seems to suggest that the application of
CCQ becomes even harder when increasing the number of commits,
and consequently the number of builds of a software project. We
find that only 6% of the builds pass for a quality check in long-lived
systems, while the percentage is 5% in case of an high number
of contributors. This result triangulates the findings by Hilton et
al. [14], revealing that developers are still not very familiar with
all the CI principles and tend to not apply them properly. At the
same time, it seems that community-related factors play a role in
the application of CCQ. Indeed, our findings suggest that commu-
nities with a large number of contributors are less prone to apply
CCQ: this is in line with previous work that showed how large
communities generally have more coordination/communication
issues, possibly resulting in technical pitfalls [5, 11, 29].

The most popular projects are generally more likely to use
CI [14], however—according to our results—they do not apply CCQ
properly. This is visible in Table 1, where we observe that only 6%
of the builds of popular projects are qualitatively monitored. Con-
versely, low and medium-popular systems exhibit a higher number
of measured builds.

Finding 1. The projects using CI do not continuously inspect the
source code. Moreover, the percentage of qualitatively monitored
builds is lower for systems with large numbers of commits and
contributors.

Elapsed Frame between Checks (EFC) measures the average num-
ber of builds between two builds subject to a code quality check
on the same branch. The overall result for EFC strengthens our
initial findings on the lack of CCQ. On the average, developers
perform a code quality check every 18 builds. This number still
increases where taking into account the size of the projects. Indeed,
systems with a high number of commits and contributors have an
EFC score of 39 and 37, respectively. It is important to highlight
that such projects have a higher number of builds with respect to
small projects, and therefore might benefit more of a continuous
check of code quality.

Looking at and Elapsed Time between Checks (ETC), we can con-
firm what we observe for the elapsed time between quality checks:
developers do not perform a continuous code quality assessment,
but rather they monitor the quality at time intervals of 17 days. This
number is very close to the usual duration of a SCRUM Sprint [1],
which is often used in the CI context [20]: thus, our findings suggest
that likely the current practice merely consists of checking code
quality at the end of a sprint. This observation holds when splitting
projects based on their characteristics, as we confirm that quality
checks are performed at fixed intervals.

Finding 2. Developers perform a code quality inspection after several
builds (on average every 18 builds) and, most likely, at the end of a
sprint.

As the last indicator, we compute the percentage of Checked
Branches (CB). Table 1 shows a similar trend as for the other CCQ
usage indicators. Also in this case, the higher the number of com-
mits and contributors, the lower the percentage of branches that
are subject to a quality check. This result confirms the possible
role of community-related factors, as large communities tend to be
more reluctant to apply CCQ.



Continuous Code Quality: Are We (Really) Doing That?

Overall, only 36% of branches are checked, meaning that most
of them are developed without a formal quality control.

Finding 3. A low percentage of branches follow CCQ.

6 DISCUSSION AND FUTURE WORK

Our results highlight a number of points to be further discussed,
and in particular:

e CCQIsnot Applied in Practice. A clear result of our study
demonstrates a poor usage of continuous code quality, and
that indeed only a very low number of builds (11%) are quali-
tatively monitored. This finding opens up a number of obser-
vations. In the first place, the low use of CCQ may be due to a
general biased perception that developers have with respect
to source code quality [4, 25]: code quality is not the top-
priority for developers [10], who prefer not to improve the
existing code for different reasons, including time pressure
or laziness [34]. Most of the time developers and product
managers do not consider a quality decrement enough to fail
the build process, or they do not know how to properly set up
quality gates [26]. Besides this, our study somehow confirms
the findings reported by Hilton et al. [13], highlighting once
again that developers face several barriers when adopting
CI principles.

e The Relevance of a Development Community. A key
finding in our study reports that the size of a project plays
a role in the adoption of continuous code quality. While
projects having few developers perform a (slightly) higher
percentage of code quality checks, systems with a larger
community face more difficulties. This can be explained by
the presence of community-related factors that might pre-
clude an effective management of the development activities.
Indeed, wrong communication and coordination within soft-
ware communities have been not only largely associated
to the emergence of socio-technical issues [7, 11, 23], but
also related to continuous integration aspects. In particu-
lar, Kwan et al. [19] reported a strong negative impact of
socio-technical congruence, i.e., a measure indicating the
alignment between technical dependencies work relations
among software developers, on build success. Our findings
confirm the importance of studying such factors and how
they influence technical aspects of software systems more
deeply.

e On the Size of Change History. According to our results,
projects having a longer change history are less likely to
apply CCQ. This may suggest that a possible co-factor in-
fluencing the lack of continuous code quality control falls
in the difficulty of developers to switch toward such new
continuous monitoring in case the project is already mature.

Our initial findings pave the way to further study that we plan
to conduct in future work:

(1) On the Value of Continuous Code Quality. Despite pre-
vious work in the area of agile processes [17], there is still
a lack of study empirically assessing the benefits deriving
from the actual practice of code quality assessment in CIL.
We build a dataset of projects using both CI Server and CCQ

ASE ’18, September 3-7, 2018, Montpellier, France

Service (as explained in Section 2). Thus, compared to pre-
vious work [35, 40] we are able to analyze the decisions of
developers (i.e., whether perform code quality or not) and
the obtained measurements without rerunning the analysis
on projects’ snapshots that might cause several threats, such
as the unavailability of the configuration file or the impos-
sibility to build a snapshot [33]. As future work, we plan
to measure the effectiveness of the actual CCQ practice in
maintaining software quality.

(2) Key Scenarios in Continuous Code Quality. Given the
fact that code quality is not continuously assessed in CI, we
are interested in determining the circumstances (e.g., devel-
opment tasks) where the use of CCQ should be particularly
encouraged, as they can lead to significantly decrease the
quality of source code. It might be that CCQ is particularly
effective in certain scenarios compared to others.

(3) Code Quality Recommendation in CI. Slow builds are se-
rious barriers faced by developers using CI [13]. Automated
testing and code quality assurance tasks and are possible
causes in slowing down builds. Code quality tasks are usually
postponed and scheduled in nightly builds, thus preventing
CCQ to be performed. We aim at finding a good trade-off
between scheduling code quality tasks at every new change
and slowing down the build. Our vision is to predict which
quality measurements perform before triggering a new build.
Given the actual build context described in terms of several
features (e.g., checked-out branch, type of development task,
etc.), a recommender will automatically schedule a new code
quality task enabling the proper warnings.

7 THREATS TO VALIDITY

This section discusses possible threats that might have affected the
validity of our observations.

We mined information from different sources and combined
them using heuristics that were needed because of the lack of an
explicit link between them. To infer projects using both SONAR-
Croup and TravisCI we used their GiTHUB URL—exposed on the
first platform—as a means for understanding whether they also use
TravisCI as build server. This linking process can be considered
safe, as the GiTHUB URL of a project is unique and, thus, there
cannot be cases where the history of a project on SoNnarRCLOUD
was overlaid with the one of another project on TRAvVISCL. As for
the overlay of the change history information of the two platforms,
we exploited the build and measurement dates to understand to
which build a certain measurement referred to. Also, in this case,
the linking procedure cannot produce false positives because there
are not cases in which different builds might have been performed
between the dates considered.

As for the generalizability of the results, we conducted this study
on a large dataset composed of 119 projects. We also made some
precautions to take into account only projects that actively adopt
CI and CCQ. We limited our study to Java projects since some
of the exploited platforms (e.g., SONARCLOUD) mainly contained
information on this type of systems. Replications aimed at targeting
projects written in different programming languages as well as
industrial ones would be desirable.



ASE ’18, September 3-7, 2018, Montpellier, France

8 CONCLUSION

In this paper, we analyzed the current practice of Continuous Code
Quality (CCQ). Our findings showed that the theoretical principles
reported by Duvall et al. [8] are not followed in practice. We found
that only 11% of the builds are subject to a quality control. More
importantly, the current CCQ practice merely consists of checking
code quality at the end of a sprint, thus basically ignoring the CCQ
principle.

Based on the dataset that we built overlaying change history
information coming from SoNARCLOUD and TrAVISCI, we plan to
investigate the impact of the current CCQ practice on the software
quality and the circumstances where developers are particularly
encouraged to check code quality more frequently. Our future re-
search agenda includes also the definition of techniques for assisting
developers during continuous monitoring of code quality.

ACKNOWLEDGMENTS

Vassallo and Gall acknowledge the support of the Swiss National
Science Foundation for the project “SURFMobileAppsData” (SNF
Project No. 200021-166275). Bacchelli and Palomba also gratefully
acknowledge the support of the Swiss National Science Foundation
through the SNF Project No. PPO0P2_170529.

REFERENCES

[1] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
et al. 2001. The agile manifesto.

Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, my tests broke

the build: An explorative analysis of Travis CI with GitHub. In International

Conference on Mining Software Repositories.

[3] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: Synthe-
sizing Travis CI and GitHub for Full-Stack Research on Continuous Integration.
In Proceedings of the 14th working conference on mining software repositories.

[4] Nigel Bevan. 1999. Quality in use: Meeting user needs for quality. Journal of
systems and software 49, 1 (1999), 89-96.

[5] Andrea Bonaccorsi and Cristina Rossi Lamastra. 2004. Altruistic individuals,
selfish firms? The structure of motivation in Open Source software. (2004).

[6] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work.
ACM, 1277-1286.

[7] Nicolas Ducheneaut. 2005. Socialization in an open source software community:
A socio-technical analysis. Computer Supported Cooperative Work (CSCW) 14, 4
(2005), 323-368.

[8] Paul Duvall, Stephen M. Matyas, and Andrew Glover. 2007. Continuous Integration:
Improving Software Quality and Reducing Risk. Addison-Wesley.

[9] Paul M. Duvall. 2010. Continuous integration. Patterns and Antipatterns. DZone
refcard #84 (2010). http://bit.ly/18rfVS

[10] Neil A Ernst and John Mylopoulos. 2010. On the perception of software quality
requirements during the project lifecycle. In International Working Conference on
Requirements Engineering: Foundation for Software Quality. Springer, 143-157.

[11] Simon Gibbs, Eduardo Casais, Oscar Nierstrasz, Xavier Pintado, and Dennis

Tsichritzis. 1990. Class management for software communities. Commun. ACM

33, 9 (1990), 90-103.

GitHub. 2018. GitHub APIs. https://developer.github.com/v3/. Online; accessed

24 July 2018.

[13] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-Offs in Continuous Integration: Assurance, Security, and Flex-
ibility. In Proceedings of the 25th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2017. To Appear.

[14] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source projects.
In Proceedings of the 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). 426-437.

[15] Jez Humble and David Farley. 2010. Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation. Addison-Wesley Professional.

[16] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2016. An in-depth study of the promises and perils

[2

[

[12

Carmine Vassallo, Fabio Palomba, Alberto Bacchelli, and Harald C. Gall

of mining GitHub. Empirical Software Engineering 21, 5 (2016), 2035-2071.
Foutse Khomh, Bram Adams, Tejinder Dhaliwal, and Ying Zou. 2015. Under-
standing the impact of rapid releases on software quality - The case of firefox.
Empirical Software Engineering 20, 2 (2015), 336-373.

Seojin Kim, Sungjin Park, Jeonghyun Yun, and Younghoo Lee. 2008. Automated
continuous integration of component-based software: An industrial experience.
In Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering. IEEE Computer Society, 423-426.

Irwin Kwan, Adrian Schroter, and Daniela Damian. 2011. Does socio-technical
congruence have an effect on software build success? a study of coordination
in a software project. IEEE Transactions on Software Engineering 37, 3 (2011),
307-324.

Lina Lagerberg, Tor Skude, Par Emanuelsson, Kristian Sandahl, and Daniel Stahl.
2013. The impact of agile principles and practices on large-scale software devel-
opment projects: A multiple-case study of two projects at ericsson. In Empirical
Software Engineering and Measurement, 2013 ACM/IEEE International Symposium
on. IEEE, 348-356.

E. Laukkanen, M. Paasivaara, and T. Arvonen. 2015. Stakeholder Perceptions
of the Adoption of Continuous Integration — A Case Study. In Agile Conference
(AGILE), 2015. 11-20.

Eero Laukkanen, Maria Paasivaara, and Teemu Arvonen. 2015. Stakeholder
Perceptions of the Adoption of Continuous Integration-A Case Study. In Agile
Conference (AGILE), 2015. IEEE, 11-20.

Mikael Lindvall, Dirk Muthig, Aldo Dagnino, Christina Wallin, Michael Stup-
perich, David Kiefer, John May, and Tuomo Kahkonen. 2004. Agile software
development in large organizations. Computer 37, 12 (2004), 26-34.

Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. 2013. Impression formation
in online peer production: activity traces and personal profiles in github. In
Proceedings of the 2013 conference on Computer supported cooperative work. ACM,
117-128.

Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and An-
drea De Lucia. 2014. Do they really smell bad? a study on developers’ perception
of bad code smells. In Software maintenance and evolution (ICSME), 2014 IEEE
international conference on. IEEE, 101-110.

Gerald Schermann, Jiirgen Cito, Philipp Leitner, and Harald C. Gall. 2016. Towards
quality gates in continuous delivery and deployment. In International Conference
on Program Comprehension.

SonarCloud. 2018. SonarCloud Web APIs. https://sonarcloud.io/web_api. Online;
accessed 24 July 2018.

SonarSource S.A. 2018. SonarQube. https://www.sonarqube.org.

Damian A Tamburri, Rick Kazman, and Hamed Fahimi. 2016. The Architect’s
Role in Community Shepherding. IEEE Software 33, 6 (2016), 70-79.

Tiobe. 2018. Tiobe Ranking. https://www.tiobe.com/tiobe-index/. Online;
accessed 24 July 2018.

TravisCI. 2018. Travis CL https://travis-ci.org. Online; accessed 24 July 2018.
TravisCL 2018. Travis CI APIs. https://developer.travis-ci.com. Online; accessed
24 July 2018.

Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and back again:
Can you compile that snapshot? Journal of Software: Evolution and Process 29, 4
(2017).

Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano
Di Penta, Andrea De Lucia, and Denys Poshyvanyk. 2017. When and why your
code starts to smell bad (and whether the smells go away). IEEE Transactions on
Software Engineering 43, 11 (2017), 1063-1088.

Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar T. Devanbu, and Vladimir
Filkov. 2015. Quality and productivity outcomes relating to continuous integra-
tion in GitHub. In ESEC/SIGSOFT FSE. ACM, 805-816.

Carmine Vassallo, Fabio Palomba, Alberto Bacchelli, and Harald C. Gall. 2018.
Continuous Code Quality: Are We (Really) Doing That? Online Appendix. https:
//doi.org/10.5281/zenodo.1341015

Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy
Zaidman, and Harald C. Gall. 2018. Context is king: The developer perspective
on the usage of static analysis tools. In SANER. IEEE Computer Society, 38—49.
Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp
Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. 2017.
A Tale of CI Build Failures: An Open Source and a Financial Organization Per-
spective. In ICSME. IEEE Computer Society, 183-193.

Carmine Vassallo, Fiorella Zampetti, Daniele Romano, Moritz Beller, Annibale
Panichella, Massimiliano Di Penta, and Andy Zaidman. 2016. Continuous De-
livery Practices in a Large Financial Organization. In 32nd IEEE International
Conference on Software Maintenance and Evolution (ICSME). 41-50.

Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Mas-
similiano Di Penta. 2017. How open source projects use static code analysis
tools in continuous integration pipelines. In Proceedings of the 14th International
Conference on Mining Software Repositories. IEEE Press, 334-344.


http://bit.ly/l8rfVS
https://developer.github.com/v3/
https://sonarcloud.io/web_api
https://www.sonarqube.org
https://www.tiobe.com/tiobe-index/
https://travis-ci.org
https://developer.travis-ci.com
https://doi.org/10.5281/zenodo.1341015
https://doi.org/10.5281/zenodo.1341015

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Continuous Code Quality
	2.2 Related Work

	3 Overview of the Research Methodology
	4 Continuous Code Quality Data Collection
	4.1 Collecting CCQ Data
	4.2 Collecting CI Data
	4.3 Overlaying CCQ and CI Information

	5 Continuous Code Quality in Practice
	5.1 Definition of CCQ Metrics
	5.2 On the Current Application of CCQ

	6 Discussion and Future Work
	7 Threats to Validity
	8 Conclusion
	References

