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Abstract
Using a Kaluza-type of model, describing the laws of electromagnetism within the formalism of differential
geometry, provides a coherent, comprehensive and quantitative description of phenomena related to particles,
including a convergent series of quantized particle energies, with limits given by the energy values of the
electron and the Higgs vacuum expectation value, and the values for electroweak coupling constants. The
geometry of the solutions for spin 1/2 defines 6 lepton-like and 6 quark-like objects and allows to calculate
the fractional electric charges as well as magnetic moments of baryons.
Electromagnetic and gravitational terms will  be linked by a series expansion,  the corresponding relation
suggests the existence of a cosmological constant in the correct order of magnitude.
The model can be expressed ab initio, necessary input parameters are the electromagnetic constants.

1 Introduction 
Theodor Kaluza in 1919 developed a unified field theory of gravitation and electromagnetism that produced
the formalism for the field equations of the general theory of relativity (GR) and Maxwell's equations of
electromagnetism (EM) thus unifying the major forces known at his time. His 5-dimensional model [1] is not
suited to give properties related to particles, a problem addressed by Oskar Klein [2] who introduced the idea
of compactification and attempted to join the model with the emerging principles of quantum mechanics.
Therefore the theory is mainly known as Kaluza-Klein theory today. This version became a progenitor of
string  theory.  The  original  Kaluza  model  was  developed  further  as  well  [3],  Wesson  and  coworkers
elaborated  a  general  non-compactified  version  to  describe  phenomena  extending  from  particles  to
cosmological problems. The equations of 5D space-time may be separated in a 4D Einstein tensor and metric
terms representing mass and the cosmological constant, Λ. Particles may be described as photon-like in 5D,
traveling on time-like paths in 4D. This version is known as space-time-matter theory [4]. Both successor
theories give general relationships rather than providing quantitative results for specific phenomena such as
particle energy. 
Kaluza realized that Maxwell’s equations may be described within the formalism of GR. To get both these
and the Einstein field equations (EFE) he needed an additional dimension and had to insert the constant of
gravitation, G, in his metric. However, usually one effect dominates, gravitation on the scale of astrophysics,
EM on the scale of particles. Since the latter is the main subject of this article the minor - gravitational -
terms will be neglected in 1st approximation, eliminating the need for introducing the extra coefficient G.
Gravitation may be recovered by a series expansion and G may be expressed as an EM-term.
Curvature of space-time based on an electromagnetic version of the field equations of GR will be strong
enough to localize a photon in a self-trapping kind of mechanism, yielding energy states in the range of the
particle zoo. Circular polarized light is part of conventional electromagnetic theory, in the following this
feature will  be treated equivalently with the terms angular momentum or spin as intrinsic property of a
photon. In particular, unless noted otherwise, it is assumed that particles posses spin 1/2 or are composed of
spin 1/2 components. Spin will be a necessary boundary condition to determine an integration limit for the
equations used. Since at this point there is no obvious ansatz for integrating spin into the metric of this
model, any metric discussed in the following should be considered as an approximation only. 
The basic proceeding will be as follows:
Kaluza’s equations for flat 5D-space-time may be arranged to give [4, chapter 6.6]
1) Einstein-like equations for space-time curved by electromagnetic and scalar fields (equ. (2)),
2) Maxwell equations where the source depends on the scalar field,
3) a wave-like equation connecting the scalar Φ with the electromagnetic tensor (equ. (3)).
Solutions of (3) for Φ in a flat 5D-metric will be used in a general ansatz for a metric. Due to 3) Φ has to be a
function of the EM-potentials, in the static approximation of this work the electric potential, Ael. The only
other parameter included in Φ will be a function of the fine-structure constant 1, α, which enters the equations

1 The relation of the masses e, µ, π with α was noted first in 1952 by Nambu [5]. MacGregor calculated particle mass 
and constituent quark mass as multiples of α and related parameters [6].
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through the boundary condition spin 1/2[ħ], see chpt. 2.4 2. Since a geometric interpretation allows to give α
in terms of Γ-functions,  the results of this model can be calculated  ab initio,  using electromagnetic and
mathematical constants only.
The model yields absolute particle energies in the range expected for a neutrino and as a set of converging
series  with limits given by the energy of the electron and the Higgs vacuum expectation value (VEV).
Assuming that a 2nd order term in a series expansion of EM-terms represents gravitation and should not
exceed the EM-term, some of  the α-terms included in  Φ can be identified with  the ratio of electron and
Planck energy, see chpt. 2.6, 4. With this ansatz additional minor terms in the field equations will be in the
correct order of magnitude for the cosmological constant, Λ.
Focusing on the angular momentum aspects of the model, in chpt. 3 the rotation of a set of orthogonal E, B,
C-vectors, attributed to the electromagnetic fields and the propagation with the speed of light, C, will be
modeled via quaternions. This gives 3 possible solutions for spin 1/2 defining 6 distinct geometric objects
with partial charges of 1/3 and 2/3. Combining 2 solutions gives 6 lepton like entities as the simplest, node-
free case, combining 3 appropriate solutions allows to calculate magnetic moments of baryons.
Typical accuracy of the calculations is in the order of 0.0001 3. The deviation of calculated results from the
experimental values is typically in the range 0.01 - 0.001, consistent with a variation of input parameters
related to elementary charge in an order of magnitude of QED corrections, which are not included in this
model.
To focus on the more fundamental relationships some minor aspects of the model are exiled to an appendix,
related topics will be marked as [A]. 

2 Calculation of energies and coupling constants
2.1 Kaluza theory
Kaluza theory is an extension of general relativity to 5D-space-time with a metric given as  [cf. 4, equ. 2.2]:

g AB  = [(gαβ−δ 2Φ2 Aα Aβ ) −δ Φ2 Aα

−δ Φ2 A β −Φ2 ]     (1)

In (1) roman letters correspond to 5D, Greek letters to 4D. δ corresponds to a general constant appropriate
for an EM unit system that turns δ Aα into a dimensionless quantity. To get the field equations of GR Kaluza
assigns  δ to a gravitational term, κ. A is the electromagnetic potential. In the context of the electrostatic
approximation of this model A will be assumed to be represented by the electric potential, Ael = ec/(4πεcr) =
ρ0/r  [-]. In the following ρ0 will refer to the Ael-term, while  dropping subscript 0  will indicate  a general
solution where ρ may contain additional terms. 
Assuming 5D space-time to be flat, i.e. GAB = 0, gives for the 4D-part of the field equations [cf. 4, equ. 2.3]:

Gαβ  = δ2 Φ2

2
T αβ

EM  - 1
Φ ( ∇α(∂α Φ) - gαβ □ Φ)     (2)

From R44 = 0 follows:

□ Φ  = − δ2 Φ3

4
Fαβ Fαβ     (3)

In  the  following  only  derivatives  with respect  to  r  of  a  spherical  symmetric  coordinate  system will  be
considered. A function ΦN

 ΦN  ≈ ( ρ
r )

N−1
exp(-( ρ

r )
N
/2) (4)

yields solutions for an equation of general type of (3), where  the term of highest order of exponential N,
given by Φ'' ~ ρ3N-1 /r3N+1, may be interpreted to provide the terms for Ael(r)’ ~ ec/(4πεcr2 ) ~ ρ0/r2, see [A1].The
significance of (4) lies in providing the relationship of exponential and pre-exponential terms and first of all
in the requirement to contain powers of (ρ0/r) in the exponent of ΦN. 

2 The coefficient of angular momentum may be interpreted as either σ, which will in general indicate the integration 
limit, (r/ρ)3 for calculating the incomplete gamma functions, or its main component αlim ≈ 1.5/α, see chpt. 2.4, 2.5. 
3 Including e.g. errors due to the numerical approximation of incomplete Γ-functions.
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2.2 Modification of Kaluzas metric
In the following the focus will be on EM-terms only, in particular Ael, minor terms and off-diagonal terms
will be omitted. Equation (1) will turn into:

g AB  = [−δ 2Φ2 Aα Aβ −1
−1 −1]     (5)

A term for  Φ according to 3f with N = 3 will be inserted in what is essentially a 4D-metric. According to
Campbells theorem [4] a flat N-D metric is mathematically equivalent to a curved (N-1)-D metric so both
approaches are compatible in principle. 
Concerning dimensions and unit systems, the 4D electrostatic term for energy density in the stress energy
tensor requires an expansion with some appropriate EM-coefficient, ε, turning the square of the electric field
into energy density: w = T00 = 1/ε (εδ2E2), with E being some general electric field. Since E is the derivative
of Ael, δ2 will be needed for consistent units.
When equating G00 with T00 coefficient δ will cancel, 1/ε will replace the G-term in the field equation, giving

(8 π )G /c0
4      =>     ≈   1 /ε     4 (6)

in Gαβ  = Rαβ  - 1
2

gαβ R  = −  1
ε

T αβ     (7)

2.2.1 System of natural units
A unit system that is particularly suited for such an approach, featuring a dimensionless Ael, will have charge
in units of energy. In the following a unit system based on SI 5 for units of mechanics but with modified EM-
units, indicated by subscript c, will be used. 
c0

2  = (εc μc)-1 (8)
 with εc = (2.998E+8 [m²/Jm])-1 = (2.998E+8)-1 [J/m] 

μc = (2.998E+8 [Jm/s²])-1 = (2.998E+8)-1 [s2/Jm] .
From the Coulomb term b0 = e2/(4πε0) = ec

2 /(4πεc) = 2.307E-28 [Jm] follows for the square of the elementary
charge: ec

2 = 9.671E-36 [J2]. In the following ec
 = 3.110E-18 [J] and ec/(4πεc) = 7.419E-11 [m] may be used

as natural unit of energy and length. 

2.3 Point charge energy
The approach of chpt. 2.1, 2.2 is an approximation not only in neglecting contributions of the magnetic
potentials  but  also in not  considering spin.  It  is  therefore  not  possible  to  give a specific  metric for the
problem  considered  here  6,  [A2]  introduces  2  versions  for  illustrative  purposes.  However,  due  to  the
difference in order of magnitude between  ρ0 and ρ, to be elaborated on below, the leading term for particle
energy  in  a  large  class  of  approaches  for  a  metric  will  be  due  to  the  Christoffel  symbols  of  the  angular
coordinates, giving a “-1” component in the Ricci-tensor 7 and a result for G00 as:
G00 = -Φ2 E2 = - ρ0

2/r4 exp(-(ρ/r)3) = w/εc (9)
The exponential of function Φ allows to integrate the electric field of the point charge. The volume integral
over the energy density of (9) gives the energy of particle n according to:

W n  = εc ρ0
2  ∫

0

rn

exp(−(ρn/r)
3)r−4  d3 r  = 4 π εc ρ0

2  ∫
0

rn

exp(−(ρn/ r)3)r−2  dr (10)

Solutions for integrals over exp(-(ρ/r)3) times some function of r can be given by:

∫
0

r n

exp(−(ρn /r)
N )r−(m+1)dr  = Γ (m /N ,(ρn/rn)

3)  
ρn
−m

N
  =  ∫

(ρn/ rn)
3

∞

t
m
N

 −1
e− t dt  

ρn
−m

N
     (11)

4 In deriving the EFE an additional factor of 2 is needed to equate a perturbation term relative to a Minkowski metric to 
a gravitational potential term. The ansatz given here does not require this factor, however, it might be related to equ. 
(13) and factor 8 of (14)ff.
5 Note: In SI proper ρ0, ρ have units of [Vm]; coefficient δ [1/V] is part of the argument of the exponential.
6 On which the details of a solution for Φ will depend as well.
7 Consistent with curvature being due to the lateral extension of the E-vector in the quaternion model of chpt. 3;
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in this work used for N = {3; 4}, m = {-2; -1; 0; +1;+2}.  The term Γ(m/N, ( ρn/rn)3) denotes the upper
incomplete gamma function, given by the Euler integral of the second kind 8. In the range of values relevant
in this work, for m/N ≥ 1 the complete gamma function Γm/N is a sufficient approximation, for m/N ≤ 0 the
integrals have to be calculated numerically, requiring an integration limit, see 2.4. 
Equation (10)f will give as energy for a particle n: 

W n, elstat  = 4 π εc ρ0
2  ∫

0

rn

exp(−(ρn/r)
3)r−2  dr =  b0 Γ(+1/3, (ρn/rn)3) ρn

-1/3 ≈  b0 Γ+1/3 ρn
-1/3    (12)

including the integral for the energy of a point charge term modified by exp(-(ρ/r)3). Particles are supposed to
be electromagnetic objects possessing photon-like properties, thus it will be assumed that particle energy has
equal contributions of electric and magnetic energy, i.e.:
Wn = Wn,elstat + Wn,mag  = 2Wn,elstat  ≈  2 b0 Γ+1/3 ρn

-1/3                (13)

2.4 Angular momentum, coefficient σ 
The integral limits required for integrals of (11) with m/N ≤ 0 are rn („particle radius‟ of state n; with respect
to JZ; rn ≠ λC, see (64)) for integrals over exp(-(ρ/r)3) and (ρn/rn)3 for the Euler integrals. The latter will be
expressed via a constant defined as 8/σ  9: 
(ρn/rn)3 = 8/σ (14)

whose value may be derived from the condition for angular momentum Jz = 1/2 [ħ]. A simple relation with
angular momentum Jz for spherical symmetric states will be given by applying a semi-classical approach 10:

J z  = r2 x p (r 1) = r2 W n(r 1)/ c0 ≡ 1/2 [ħ] (15)
Using term 2b0 of equ. (13) as constant factor and integrating over a circular path of radius |r 2| = |r1|, equation
(11) will give for m = 0:

J z=∫
0

rn

∫
0

2 π

J z (r ,φ)dφ dr = 4 π
b0

c0
 ∫

0

rn

e
−( ρ

r )
3

r−1 dr =4 π αħ∫
0

r n

e
−( ρ

r )
3

= 4 π
3

αħ ∫
8/σ

∞

t-1e-t dt  ≡ [ħ ]
2

(16)

To obtain Jz = 1/2 [ħ] the integral over exp(-(ρ/r)3)/r dr of (16), has to yield α-1/8π.

∫
0

rn

exp(−( ρn /r)
3)r−1 dr  = 1 /3∫

8/σ

∞

t -1e-t dt  ≡  α−1

8π
 ≈ 5.45  (17)

Relation (17) may be used for a numerical calculation of the integration limit,  8/σ, giving a value of  σ0

(assumed to represent spherical symmetry), σ0 = 1.810E+8 [-]. Assuming the coefficient Γ-1/3/3 according to
(11) has to be part of the expression for σ0 11 this results in σ0 ≈ 8(1.5α-1Γ-1/3/3)3. This value may be interpreted
as a coefficient representing geometry, giving a value close to the numerical one:

σ0 ≈ 8 (1.5 α-1 Γ-1/3 /3)3  ≈ 8 (4 π Γ -1/3
3

3 )
3

= 1.772E+8 [-]      (18)

As a consequence a dimensionless volume-like term appears in the denominator of the energy expression
(13) for spherical symmetry. Expression (18) is closely related to the value of  α and will be used in this
context in chpt. 2.10.
In [A3] some additional aspects of the terms supposed to constitute σ will be discussed, giving an alternate
expression for (18) and demonstrating that coefficient σ has to be part of the exponent of Φ: ρn

3 ≈ σρ0
3,  

Φσ ≈ (ρ0/r)2 exp(-σ(ρ0/r)3) (19)
Calculating energy according to Φσ and (13) will give W ≈ 0.1 eV, a value in the estimated energy range for a
neutrino. 

8 Euler integrals yield positive values, the sign convention of Γ-functions gives negative values for negative arguments. 
Abbreviations such as Γ-1/3  for |Γ(-1/3)| will be used; 
9 Chosen to give coefficient σ as component in the argument of the exponential of Φ, see [A3.1]. 
10 In 0th approximation: using the term for energy (13) and length (29) requires σ1/3 to be of order of the inverse fine-
structure constant α-1: 1/c0∫w(r) dr * ∫dr ≈ b0/ρn * σ1/3ρn /c0 ≡  ħ/2   =>   σ1/3 ≈ α-1. 
11 Since according to (14) σ1/3 is proportional to a length parameter, rn, which according to (11) includes Γ-1/3 /3. 
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2.5 Lower limit of σ
The minimal possible value for σ is defined by the Γ-term in the integral expression for length, Γ -1/3/3, (11),
and the integers in (56): 
σmin = 8(Γ-1/3/3)3                                12 (20)

leaving a term
α lim  ≈ 1.5α−1 ≈ 4 π Γ-1/3

2 (21)
as variable part in σ to consider non-spherical symmetric states (see 2.7, [A3]) 13). 

2.6 Quantization with powers of 1/3n over α
Most relations given here are valid for any particle energy which should be expected as there is a continuous
spectrum of energies according to special relativity. However, a particular set of energies may be identified
by relaxing the condition of orthogonality of different states according to quantum mechanics to requiring
different states to be expressible in simple terms of a ground state coefficient, α0, in the exponent of Φ and
not to exhibit any dependence on intermediary states 14.
There are 2 lines of thought for an estimation of α0.
2.6.1 Condition a)
The condition that energy/length of a charged particle has to be higher/smaller than the value given by a pure
electrostatic term. 
Since rl according to (11), (14), (18)f will be proportional to α-2 the term in the exponential has to be:  α0 < α6.
The relationship between a photon-like object and a point charge object of elementary charge is based on the
coefficient α, suggesting a photon-like state to differ by a factor of α from a pure point charge state and to
use a ground state coefficient α0 ≈ α9. This fits the relationship of a set of fundamental particle energies with
the charged particle of lowest energy, the electron, as a ground state quite well, however, requiring an ad hoc
factor ≈ 3/2 for the electron itself. With We as ground state, Wn would be given by (22)ff relative to the
electron state as:

Wn /We  ≈ 3 /2 α ^(1.5 /3n)
α1.5  ≈  3 /2Πk=1

n α^(-3/3k )                                                             n = {1;2;..} (22)

see table 1. 
However, to calculate absolute values of energy requires another factor in addition to α0.
2.6.2 Condition b)
In a series expansion of the exponential in terms of force, potential,  etc.,  such as given below, particles
beyond the electron enter the terms according to their coefficients from (22)ff. In order for the 2nd order term
not to exceed the 1st order term the energy of spherical symmetric particles - including relativistic effects -
should not exceed α0

-1 = α-9. However, this restriction should apply for non-spherical symmetric particles as
well, requiring  αlim ≈1.5/α as additional factor. Including the additional factor of the electron,  ≈ 3/2, and
restricting to electrostatic contributions (cf. chpt. 4) gives:

1.53 α 0

2α lim
 = 1.52 α10/2  = 4.8 E - 22  = αPl  ≈ 

W e

W Pl
(23)

The additional factor of ≈ 3/2 of the electron might be related to this difference in α0 and αPl.  The electron
coefficient in the exponential of Φ and the energy term equ. (13) would be given as: αe ≈ (3/2)3 α9. ρn may be
given as (δ = 1 for electron, = 0 otherwise;   n = {0;1;2;..}):
 ρn

3 ≈ (1.5)δ σ0 αlim
-1/2 1.53 α9 α4.5/α^(4.5/3n)  (ec/(4πεc))3  ≈ (1.5)δ σ0 αPl α4.5/α^(4.5/3n)  (ec/(4πεc))3 (24)

2.6.3 Relationship with Lorentz boost
Interpreting the difference in wavelength of different states as a length contraction due to a Lorentz boost and
calculating the necessary velocity according to l = lo(1-v²/c0

2)0.5, the ratio of 2 consecutive steps will converge
to vn/vn+1 = 30.5. This is the ratio of the sum of 3 orthogonal vectors of equal length to a single vector, a simple

12 If the term of (18) is interpreted as a (cube of a) volume parameter, a term of the kind of (20) would represent the 
(cube of a) 1D parameter.
13 σ0 ≈ (αlim 2Γ-1/3/3)3 ≈ (Γ-1/3/α)3

14  cf. W n
2  ~ (α0

1 /3α0
1/ 9 .... α0

1/(3 ^(n-1)) α0
1/ (3^n ))  / (α0

1 α0
1/ 3 α0

1/ 9 .... α0
1 /(3 ^(n-1) ))  = α0

1 /(3 ^n)/ α 0
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vector addition that corresponds to a Wigner rotation in 3D for the non-relativistic limit [8]. By adding again
3 orthogonal vectors of the resulting vector sum (i.e. of length 30.5 of the original vector) one may construct
an infinite series of connected states. 
The associated angle of arccos(3-0.5) is the same as that between total spin J and its z-component for Jz =1/2,
indicating that alignment of magnetic moment / spin of sub-units of particle states may play a role. 

2.7 Non-spherical symmetric states
Assuming the angular  part  to  be related to  spherical  harmonics and exhibiting the corresponding nodes
would give the analog of an atomic p-state for the 1 st angular state, y1

0. With the additional assumption that
Wn,l ~ 1/rn,l ~ 1/Vn,l

1/3 ~ (2l+1)1/3 (Vn,l = volume) is applicable for non-spherically symmetric states  15, this
would give W1

0/W0
0 = 31/3  = 1.44 and σ1/3 = 3-1/3  σ0

1/3. The considerations of chpt. 3.1 support that a y1
0-like

symmetry for particle states has to be considered and a second partial product series of energies in addition
to (22) corresponding to these values approximately fits the data, see tab. 1. 
A change in angular momentum has to be expected for a transition from spherical symmetric states, y0

0, to y1
0

which is actually observed with ΔJ = ± 1 except for the pair µ/π with Δ J = 1/2. 
With σ1/3/2 = {4πΓ-1/3

3/3 (y0
0);  3-1/34πΓ-1/3

3/3 (y1
0); Γ-1/3/3 (max)} energy relative to the electron state may be

given as:

Wn /We  ≈ 3 /2
α ^(1.5 /3n)

α1.5

σ 0
1/3

σ 1/3  = 3 /2Πk=0
n α^(-3/3k ) 

σ0
1 /3

σ1 /3         n = {1;2;..}         (25)

According to the  variable part in  σ, (21), the maximum additional contribution to Wmax with respect to a
spherical symmetric state would be:
ΔWmax

 ≈ 3/2 α-1   (26)
With (22) and (26) the total maximum energy will be Wmax ≈ We 9/4 α-2.5 = 4.05E-8 [J] (= 1.03 Higgs vacuum
expectation value, VEV = 246GeV = 3.941E-8 [J] [7]) 16.

2.8 Results of energy calculation
Table 1 presents the results of the energy calculation according to (13), (24) for y0

0 (bold), y1
0. Only states

given in [7] as 4-star, characterized as „Existence certain, properties at least fairly well explored‟, are included,
up to Σ'0 all states given in [7] are listed. Coefficients given in col. 4 refer to  (22), (24), starting with the
electron coefficient in We, including its extra term of 2/3. Exponents of -9/2 for Δ and tau are equal to the
limit of the partial product of α(n), including the electron coefficient. The term [3/2α -1] represents (26).
In col. 5 equ. (13) and (24) are used to calculate energy with σ0 according to the value of the fit for JZ =1/2
and αPl given by We/WPl according to the experimental value of the electron and definition (40) for Planck
energy. 

W n= 2b0∫
0

rn

exp(−(1.53 δ σ0 αPl
α4.5

α(4.5 /3n) ( ec
4 πεc r )

3

))r−2 dr    =>    W µ= 2
3

Γ+1 /3 α−1

(σ 0α Pl)1/ 3  ec (27)

(n = {0;1;2;..}; 1.5δ = extra coefficient for the electron only, δ = δ(0,n); bold: particle coefficient; muon given
as example17).  In col.  6 an alternate version for calculating σ0 according to (62)f  of  [A3.3] is given for
comparison. Additional particle states and blanks in the table are discussed in [A6]. The values of physical
constants are taken from [7].
To illustrate possible QED-effects and the non-linearity of the Γ-functions, a calculation of σ0 with values of
(16)f varying within +/-1.00116 gives a range of energy values of +/-1.006, varying within +/-1.001162 gives
a range of energy values of +/-1.013 compared to the values given in table 1. Additional effects due to e.g.
different charge in particle pairs of same isospin have to be expected.
The accuracy of ~1% of the values calculated for leptons, mesons and baryons is comparable to that of
LQCD calculations for baryons [9].

15 Interpreting the 3rd power relationship of chpt. 2.6 as one between dimensionless coefficients attributable to volume /
length;
16 For the Higgs boson see [A6.3].
17 The term for the muon is given as reference to avoid ambiguities due to extra term ≈ 3/2 of the electron.
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Table 1: Particle energies; col.2: radial, angular quantum number; col.4: α-coefficient in Wn according to (27), n =
{0;1;2;..}; col.5,6: ratio of calculated energy, Wcalc according to (27), (63) and literature value [7] (* see (19), **
chpt. 2.7, [A6.3]); col.7: angular momentum Jz [ħ]; 

2.9 Photon energy
In the following a term for length expressed via the Euler integral of (11) will be introduced for λC,n: 

rx = ∫
0

rx

e
−( ρ

r )
3

dr  = ρn /3 ∫
(ρn/ rx)

3

∞

t -4/3 e-t dt ≈ Γ(-1/3, (ρn/rx)3)  ρn/3 (28)

In the limit (ρx/rx)N -> 0

Γ(-1/N, (ρx/rx)N) = ∫
(ρx /r x)

N

∞
t−(1/ N +1)e−t dt ≈ N (ρx/rx)-1 = N σ1/3/2     (29)

holds. Equation (29) inserted in the right side of (28) gives back rx, however, (28)f may be seen as expressing
rx in terms useful for this model, i.e. ρn, σ0 and Γ-functions. Using equ. (29) for the incomplete Γ-function and
multiplying rx in the integration limit (ρn/rx)3 by √3, the ratio of total angular momentum and its z-component
(see [A4, (64)]), gives in good approximation (using (18)):
λC,n  ≈ 31.5 σ0

1/3/2 ρn/3 ≈ 30.5 4π Γ-1/3
3/3 ρn (30)

With (30) energy of a photon may be expressed as:

WPhot,n = hc0/λC,n  = hc0  / ∫
λC , n

e
−( ρ

r )
3

dr =
2hc0

30.5 ρn σ 0
1 /3 ≈ 

3 hc0

30.5 4 π Γ−1/3
3 ρn

(31)
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n, l J

v -1* '~ E-7   0 - -
0, 0 0.51 1.014 1.002 1/2
1, 0 105.66 0.000 0.996 1/2
1, 1 139.57 1.101 1.088 0

K 495 [A6] 0
2, 0 547.86 1.002 0.990 0
2, 1 775.26 1.022 1.009 1
2, 1 782.65 1.012 1.000 1

K* 894 [A6] 1
3, 0 938.27 1.011 0.999 1/2

n 3, 0 939.57 1.010 0.998 1/2
958 [A6] 0

1019 [A6] 1
4, 0 1115.68 1.020 1.008 1/2
5, 0 1192.62 1.014 1.002 1/2

Δ 1232.00 1.012 1.000 3/2
1318 1/2

3, 1 1383.70 0.989 0.977 3/2
4, 1 1672.45 0.982 0.970 3/2

N(1720) 5, 1 1720.00 1.014 1.002 3/2
1776.82 1.012 1.000 1/2

Higgs ∞,∞ ** 1.25 E+5
1.042 1.066

0

VEV ∞,∞** 2.46 E+5 1.059 1.083

Wn,Lit       
[MeV] 

α-coefficient in Wn
                                         

α(n)-1/3 [f(l)]
Wcalc/ Wlit 
Equ.(27)

Wcalc/ WLit  
Equ.(63)

e+-  2/3 α-3

µ+-  α-3α-1

π+-  α-3α-1 [31/3] 

η 0  α-3α-1α-1/3

ρ0  (α-3α-1α-1/3) [31/3] 
ω0  (α-3α-1α-1/3) [31/3] 

p+-  α-3α-1α-1/3α-1/9

 α-3α-1α-1/3α-1/9

η'
Φ0

Λ0  α-3α-1α-1/3α-1/9α-1/27

Σ0  α-3α-1α-1/3α-1/9α-1/27α-1/81

∞, 0  α-9/2

Ξ
Σ*0  (α-3α-1α-1/3α-1/9) [31/3]  
Ω-  (α-3α-1α-1/3α-1/9α-1/27) [31/3]  

 (α-3α-1α-1/3α-1/9α-1/27α-1/81) [31/3] 
tau+- ∞, 1  (α-9/2) [31/3] 

 (α-9/2) [3/2 α-1] /2

 (α-9/2) [3/2 α-1] 



2.10 Fine-structure constant, α
The energy of a particle  is assumed to be the same in both photon and point charge description. Equating
(13) with (31) gives:

Wpc,n = WPhot,n = 2b0 Γ+1/3 ρn
-1 /3 ≈

2hc 0

30.5 ρn σ 0
1 /3 ≈

3 hc0

30.5 4 π Γ−1/3
3 ρn

(32)

Solving equ. (32) for α involves a term of two Γ-functions with an argument of same value and opposite sign
for which the relation Γ(+x)Γ (-x) = π /(x sin(πx) holds [10], giving for the Γ-functions of (13) and (31):

Γ+1/3 Γ−1/3  = 30.5 2π (33)
Using equation (32) with (33) will give (note: h => ħ):

α−1  = 
hc0

2π b0
 ≈ (2Γ +1/3

30.5 2π )  (4 π
3

Γ−1/3
3 )  ≈ 2

3
Γ−1/3

Γ +1/3
4 π Γ+1/3 Γ−1/3  ≈ 4 π Γ+1/3 Γ−1/ 3 (34)

The last expression is emphasized since it has a simple interpretation in terms of the coefficients of the
integrals over exp(-(ρ/r)N). Equations (32)ff are based on the integral over a 3-dimensional point charge term
modified by the exponential term according to (4) with N = 3, and  a complementary integral - in 3D for
length, λC - to yield a dimensionless constant. This may be generalized to N dimensions  (N ={3; 4}), to give
a point charge term (SN = geometric factor for N-dimensional surface, in case of 3D: 4π; 4D: 2π2):

∫
0

r

exp(−( ρ/ r)N)r−2( N−1)  d N r  = SN∫
0

r

exp(−(ρ /r)N) r−(N−1)dr (35)

that has to be multiplied by a complementary integral 

∫
0

r

exp(−(ρn /r)
N )r(N−3)dr      (36)

The exact result depends on the integration limit of the second integral, cf. [A4]. However, in terms of the Γ-
functions both electroweak coupling constants can be given in 1st approximation as

α N
−1  = SN  

Γ (+m /N )Γ (−m/ N)
m2  =  S N

Γ (+(N −2)/N )Γ (−(N−2)/ N )
(N−2)2     (m = N-2, cf. (11)) (37)

Table 2 shows the calculated results.

Table 2: Calculation of electroweak coupling constants 18

The ratio of α and αweak represents the weak mixing angle, θW, and may be expressed as:

sin2θW  = α
αweak

 = π3

4 π Γ+1/3 Γ−1/3
 = 0.227   (38)

(Experimental values: PDG [7]: sin2θW = 0.231, CODATA [11]: sin2θW = 0.222). The mass ratio of the W-
and Z-bosons will be given by cos θW,calc = (mW/mZ)calc = 0.879 = 0.998(mW/mZ)exp [7]. 

3 Quaternion ansatz
3.1 Basic approach
The model as described above emphasizes a Kaluza-like ansatz with spin as boundary condition. Reversing
the main focus, emphasizing angular momentum and implicitly assuming curvature of space as necessary
boundary condition for localization is a straight forward alternate way to get additional information about the
states of this model [9], details are given in [A5].

18 Values of coupling constants refer to a rest frame, αweak is defined by the weak charge, g, not via lifetime. 
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4D
3D 136.8

Dimension – 
space

coupling 
constant Value of inverse of coupling constant, αN

-1

α4 = αweak 2π2 Γ+1/2 Γ-1/2 /4  =  π3  = 31.0
α3 = α 4π Γ+1/3 Γ-1/3  = 4π Γ+1/3 Γ-1/3 =



A circular polarized photon with its intrinsic angular momentum interpreted as having its E- and B-vectors
rotating around a central axis of propagation, C, will be transformed into an object of SO(3)-type symmetry
where the center of rotation is the origin of a  triple of  EBC-vectors, supposed to be locally orthogonal  19.
This has the following qualitative consequences:
1) Such a rotation is related to the group  SO(3) and  SU(2) as important special case. In the following a
quaternion ansatz will be used for modeling the respective rotations. 
2)  E-vector  constantly  oriented  to  a  fixed  point  implies  charge.  As  implicitly  assumed  above,  neutral
particles are supposed to exhibit nodes separating corresponding equal volume elements of reversed E-vector
orientation and opposite polarity.
3) A local coordinate system = rest frame implies mass.
4) In case of any lateral extension of the E-field, for r -> 0 the overlap of a rotating E-vector implies rising
energy density, resulting in rising curvature of space-time according to GR or its modification as of equ. (7).
5) The EBC-triple can be given in 2 different chiral states (left- right-handed).
6) As essentially electromagnetic waves such states are consistent with a “point-like” structure function on
the other hand imply a spatial distribution of energy density and angular momentum / spin.
7) Antiparticles may be constructed by reversing orientation of the fields.
For quantitative results 3 orthonormal vectors E, B, C, each described as imaginary part of a quaternion with
real part 0, will be subject to alternate, incremental rotations around the axes E, B and C. In the following
only solutions where one of the incremental angles of rotation has half the value of the other two will be
considered.  This  may  serve  as  a  primitive  model  for  spin  JZ =  1/2.  There  are  3  possible  solutions
corresponding to half the angular velocity for each of the components E, B, or C. The trajectory of the E-
vector encloses a  spherical  cone,  the spherical  cap of the cone encompasses a fraction of the area of a
hemisphere of 2/3, 1/3 and 1/3, respectively. Mirroring at the center of rotation gives the equivalent double
cone (dark grey in fig.1), the fractions of both caps in relation to the surface of the total sphere may be
interpreted  to  give  partial  charges  of  2/3,  1/3  and  1/3  according  to  Gauss’ law.  In  the  following such
components will  be assigned to uds-quark-like entities, the assignment (half-frequency-E-rotation, charge
+2/3, U),  (half-B, charge -1/3, D), (half-C, charge -1/3, S) will be used. 

Fig.1: Trajectories of the E-vector, enclosing spherical cones and spherical wedges

The E-vector might as well be interpreted to enclose the complement of the double cone of a 3D-ball (white
in fig.1), to be called a spherical wedge in the following. This gives the objects complement-U, complement-
D, complement-S with charges 1/3, 2/3, 2/3. These objects may be assigned to cbt-quark-like entities. 
A combination of two cones to give a double cone will always give a valid solution with any spin or chirality
and may be considered to correspond to the y1

0 solutions of chpt. 2.7  20.
The simplest combination of 2 entities (grey + white) of fig.1 will consist of 2 complementary segments of
same charge etc., to recover a simple sphere with no nodal planes (last row of fig. 1). Such particles should
represent the lowest possible energy state, JZ = 1/2 should still be valid and charge could have values of +/-1
or 0. An electron might be considered e.g. as an (anti-U + (U-Complement = B)) particle, however, unlike a

19 In the limit r -> λC  => |C| -> c0;
20 Composite objects - in particular if composed of 3 UDS-components – may feature sufficient spherical symmetry to
conform to the respective energy equation  (27). The spherical symmetry of nucleons as assumed in chpt. 2 may be
given by a suitable linear combinations of the states discussed in [A5], cf. [A6.2, η].
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B-meson with spin 1/2. While this is not possible with quarks, i.e. objects with particle character, it is the
simplest solution for such a type of an electromagnetic wave. 
The neutral configuration will have to be distinct from all other particles by representing a state where the
center of rotation is not at the “tip” of an E-vector, but at its “center”, see last row right in figure 1. This will
be an “intrinsically” neutral particle unlike particles consisting of components of opposite charge, such as the
neutron and a unique solution that for spatial reasons is not suited as component to build other particles. It
will not be subject to the conditions of 2.6.1, 2.6.2 and αPl, which are related to “charge”. 

3.2 Magnetic moments of baryons
There is a crucial test for the applicability of such a quaternion ansatz: calculation of magnetic moments of
uds-baryons. Though it is possible to give values for all combinations of the uds-octet of spin 1/2 that match
the experiment within a few percent they have to be selected from a large set of solutions. Unique solutions
require additional boundary conditions. For nucleons this will be isospin. Exchanging U- and D-components
results in switching the values for magnetic moment of p and n.
In the quaternion model both E- and B-fields are oriented to the center (magnetic monopole character on
particle level) and will feature average fields of 1/3 and 2/3 for quark-like objects. The B-field for u- and d-
entities will have Cartesian components of ± 2/9, ± 2/9, ± 1/9 (d)  and ± 4/9, ± 4/9, ± 2/9 (u). Permutations of
these values give a large set  of  solutions,  isospin will  be used to select  the nucleons.  Unique solutions
(except for arbitrary orientation in space) for B-field components of nucleons will  be e.g. (B avg=((∑xi)2+
(∑yi)2+(∑zi)2)0.5/3):
proton   - uud -4/9, -4/9, -2/9 / -2/9, -4/9, -4/9 / +2/9, -2/9, +1/9 Bavg = 1410.5/27 ≈ 0.440 
neutron - ddu -2/9, -2/9, -1/9 / -1/9, -2/9, -2/9 / +4/9, -4/9, +2/9 Bavg =660.5/27 ≈ 0.301
To get  absolute  values  one  has  to  multiply  by  ec0λC/2  =  2πµB (λC  = Compton wavelength,  µB =  Bohr
magneton), see tab. 3 22. The ratio of both values is (141/66)0.5 = 1.461631, which compared to the ratio from
experiments [7] gives 1.461631 / 1.459898 = 1.001187.  

Table 3: Magnetic moments for proton and neutron; For greater accuracy values of λC according to [7] are used;

These solutions are distinguished by one U and one D-component being collinear  23, indicating a particular
stable configuration involving oppositely charged components (see [A7]).
Table 4 compares some ratios of  baryon isospin pairs for calculations with the average of the B-field as
calculated above, i.e. geometry only, and calculations of the actual moment, using the experimental value of
the  Compton  wavelength.  A simple  analysis  for  particles  with  S-components  is  not  possible  due  to
differences in symmetry (cf. tab. 5 in [A5]).

Table  4:  Ratio  of  particle  magnetic  moments  of  baryon  isospin  pairs  compared  for  calculated  and
experimental values [7] (col.3: geometry only, B_avg; col.2 inc. exp. particle energy); 

3.3 Chirality / Color 
The orthonormal EBC-vectors feature two possible chiral configurations, right-handed “R” and left-handed
“L”, suggesting to be a possible source for a factor 3 frequently appearing in the quantitative interpretation of
processes involving a quark-antiquark-pair, such as the decay, e.g. of the W- or Z-boson, or in the coefficient
R of electron-positron-annihilation. While this is attributed to the 3 “colors” of quarks in the SM, the same
factor would result for any pair of quark-like states having the possibility to exist in triplet-like states, “LL”,
“RR” and (1/√2) (LR+RL) 24 (referring to an axial vector representing the EBC-configuration). 

22 Note: to allow for comparison with tabulated values of M in units of [Am2] the calculations in this chapter and in 
[A5.2] use e [C] not ec  [J], conversion factor: [m2C/s ] /[m2 J/s ] = e/ec = 1/19.4 [C/J]. 
23 Time average! All E,B-components involved are orthogonal at any given point in time. 
24 With a singlet state corresponding to destructive interference; alternatively: 3 simple combinations RR, LL, RL;
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U,D,S-components B_avg
M(p/n)_Calc/M(p/n)_Exp UUD/DDU 0.999809 1.001187

UUS/DDS 1.007813 1.001111
USS/DSS 0.974652 0.969601

|M|Calc (λC exp)

M(Σ+/Σ-)_Calc/M(Σ+/Σ-)_Exp
M(Ξ0/Ξ-)_Calc/M(Ξ0/Ξ-)_Exp

B_Avg |M|Calc/ |M|Exp
UUD 1.32E-15 3.17E-26 0.440 1.39E-26 1.41E-26 0.988

n DDU 1.32E-15 3.17E-26 0.301 9.55E-27 9.66E-27 0.988

λC e c0 *λC /2 ec0λC Bavg/2 |M|Exp[Am2]
p+-



4 Gravitation
Simplifying Kaluzas ansatz by considering only the leading terms in the metric would give the standard 4D-
metric in cases where EM-effects are negligible, ie. on the large scales of astrophysics and cosmology.

g AB  = [−δ 2Φ2 Aα Aβ −1
−1 −1] < g AB  = [(gαβ−δ2 Φ2 Aα Aβ ) −δ Φ2 Aα

−δ Φ2 A β −Φ2 ] > g AB  = [gαβ −1
−1 −1 ]  (39)

Some of the minor terms set to 1 in (39), in particular g55 = Φ2, may still play some role for phenomena that
are not fully understood, such as dark energy or dark matter.
Apart from that, a model for elementary mass, based on the concepts of GR and having the Planck-term as
one of its central parameters, might well be expected to provide a direct link to the interaction of masses. 

4.1 Planck scale
In this work the expression
b0 = G mPl

2 = G WPl
2 /c0

4             (40)
is used as definition for Planck terms, giving for the Planck energy, WPl

 :
WPl

  = c0
2 (b0 /G)0.5 = c0

2 (αħc0/G)0.5 = 1.671 E+8 [J] (41)
The value of WPl according to definition (41) allows to identify the ratio of We and WPl with the α-terms 
given in (23), i.e. the relation between We and WPl is given by αe ≈ (3/2)3 α9, the electron coefficient in the 
exponential part of Φ, divided by two times the limit factor, αlim, according to (21) 25. The constant G may be 
given as:

G  ≈ 
α Pl

2 c 0
4 b0

W e
2 (42)

Since αPl and We may be expressed as function of π, Γ+1/3, Γ-1/3 and ec only, (23), (34) and (27) / (63), G may 
be expressed as a coefficient based on EM constants only, G ≈ 2/3 c0

4α24/(4πεc) ≈ 2/3 c0
4 (4πΓ+1/3Γ-1/3)24/(4πεc).

4.2 Gravitation from series expansion of exponential function
Terms for gravitation may be recovered via a series expansion of either Γ(+1/3 ,  (ρn/rn)3) of (12) [12] or the
exponential part of Φ in any suitable expression, e.g. potential ρ0/r, resulting in a general term such as:

 
ρ0

r [1  - σαPl ( ec

4 πεc r )
3]  ≈ Coulomb-term [1  - σαPl( ec

4 πεcr )
3 ] (43)

which is a very good approximation for r >  αλC. The 1st term is the classical Coulomb term, the 2nd term
contains by definition the ratio between Coulomb and gravitational terms for one electron, αPl. To turn this
into the exact Coulomb / gravitation relationship requires 
1) coefficient σ to approach unity, which may be approximately justified by considering the limit of chpt. 2.5
or [A3.2],
2) parameter r in ec /(4πεcr) to turn into a constant,
3) parameter r to approach the value ec/(4πεc).
For condition 2) one has to consider that r in the exponential may not be considered to be a free parameter
for r > λC, the limit of a real solution for an equation such as (56). Inserting the Compton wavelength of the
electron in (43) would give a value in the  parentheses two orders of magnitude off to yield the expected
value for the electrostatic / gravitation ratio. Since σ is essentially related to spin of a particle and it has to be
assumed that spin does not play a role for r > λC, one might omit the related coefficient in (43) as well as in
the term for λC 26 and thus by definition of αPl recover the exact gravitational term.
The general expression for the series expansion would be: 

Coulomb-term (1 - αPl). 
Coefficient αPl would be subject to the considerations of chpt. 2.6.2. Particle interaction would be given by

25 A factor 2 might correspond to relate only the electrostatic contributions of (13) for the electron with the 
electrostatically defined value of a Planck state. 
26 I.e. condition 2.6.1 would not have to apply with respect to wavelength anymore, while the more general condition 
2.6.2, 1st term ≥ 2nd term, would still require αPl in the series expansion;
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the square of the αPl term multiplied by appropriate coefficients from the α-series according to (22) for
particles of spherical symmetry in a rest frame.   
The approach using assumptions 1) - 3), is supported by the considerations of chpt. 4.3, yielding a term for
the cosmological constant in the correct order of magnitude.

4.3 Cosmological constant Λ
A metric of the generic type described in [A2] will in general produce minor terms that might be considered
as a natural candidate for the cosmological constant term, gαβΛ. In particular terms such as  ρn

3/r5 or ρn
6/r8

with all r originating from derivatives of the exponential only 27 will yield approximate values in the order of
magnitude of critical, vacuum density, ρc, ρvac if setting r = ec/(4πεc) as upper bound of r, as suggested in 4.2:

Φ ' '
Φ

 ≈ ρ3

r5  ≈ 
αPl

(ec/(4 π ε c))
5 ( ec

4 π εc
)
3

 =  αPl( 4 π εc

ec
)
2

= 0.089 [m-2] (44)

Multiplied by εc this gives an energy density of 2.97E-10 [J/m3].
Multiplied by the conversion factor for the electromagnetic and gravitational equations, equ. (6), 8πεcG/c0

4, 
equ. (44) gives as estimate for the cosmological constant, Λ:

αPl
(4 π )2 ε c

3

ec
2

8πG
c0

4  ≈ 6.17E-53 [m-2]    28 (45)

5 Discussion
Theory of everything is a somewhat ironic and pompous term and maybe an unachievable goal. At the time
Theodor Kaluza’s unification of general relativity and electromagnetism was conceived, it came pretty close,
yet the emerging theory of quantum mechanics  (QM) moved the finish line.  It is a common thought ever
since that the theory of GR somehow has to be unified with QM. The model presented here suggests that the
ansatz of Kaluza is sufficient to give an excellent model for particles, in particular in combination with the
boundary condition spin 1/2, bypassing QM in 1st approximation 29. The major deviation from conventional
GR is dropping the constant of gravitation in the field equations, a minor thing from a mathematical point of
view.  The resulting objects of interest are waves only, which naturally fits basic concepts of QM. General
features of quantum mechanics that emerge from such an ansatz include quantization of energy or the pivotal
constant of quantum mechanics, Planck’s constant, h, that may be derived from the electromagnetic constants
and geometry as expressed in the derivation of α. 
The results of the quaternion ansatz of chpt. 3 reproduce the set of elementary fermions of the standard
model of particle physics (SM). The number of 6 basic building blocks of matter can be traced back to the 3
possibilities to single out one of the orthogonal EBC-vectors and in a broad sense is a consequence of the 3
space dimensions in 4D space-time. While the properties of quarks, such as partial charges, are deduced from
experimental particle data, in particular symmetry, they can be derived in the quaternion ansatz. Leptons are
an integral part of the particle classification scheme.
There are several features of the model that indicate a close relationship with electroweak theory. In addition
to the obvious common root in EM there are: SO(3)/SU(2) symmetry, the energy of the Higgs boson /VEV
as upper limit for particle energy 30 and the possibility to calculate the IR-limits of the electroweak coupling
constants. As for chirality the inherent chiral character of a circular polarized EM-wave is transferred via the
orthogonal EBC-triple of the quaternion model to particles. 
On the other hand, though the ansatz of this model yields basic features that match those of valence quarks,
there seems to be no deeper connection with the concepts of QCD, such as color 31 or gluons. Properties such
as confinement or the need for adhering to the Pauli principle in e.g. the Δ++ are obsolete for an object that is
a (5D-) electromagnetic wave. The development of the SM from constituent quarks towards QCD, based on

27 Such as ρ3/r5 in [A2.1] though this term cancels in the specific example for G00;  The 1st term of (55), representing 
field-free space, i.e. vacuum, might be a suitable starting point as well.  
28 Λ ≈ 1.11E-52 [m-2] with Hubble constant H0 = 67.66 [km/s/Mpc] [13]
29 QED terms are considered to be a necessary correction for the results of this model. 
30 Some speculative energy relation for electroweak bosons is given in [A6.3].
31 Whose role in the production of quark-antiquark pairs is replaced by chiral pairs, see chpt. 3.3.
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valence and sea quarks plus gluons, was in part required by the limitations in explaining some scattering
experiments with 3 point-like objects only. The waves of this model are consistent with a point like structure
function and still feature spatial extension.
Thus not all the details of the SM are reproduced by the particle model presented here. However, the relevant
benchmark is the agreement with experiments anyway. Though there are several open questions left,  the
model provides a solid framework of very basic particle features using essentially no free parameters and a
minimal set of assumptions. Several assumptions of Kaluzas ansatz are not needed for this modification of
his work. Concerning the introduction of a 5th dimension, a flat 5D space-time is mathematically equivalent
to curved 4D space-time due to Campbells theorem. Apart from consistency in the units used no particular
assumption about the constant in the metric has to be made, i.e. the constant of gravitation does not have to
be introduced ad hoc. Kaluzas “cylinder condition” 32 is obsolete. The major specific assumptions actually
needed are: 
1.) spin 1/2, used for calculation of an integration limit and in the quaternion model of chpt. 3,
2.) assumptions concerning the ground state term, α0,  αPl - in the simplest case  αPl may be introduced as
We/WPl, a necessary limit in a series expansion.
Last  but  not  least,  a  description  of  particles  based  on  the  laws  of  GR and EM,  which  have  to  be  an
indispensable part of any approach for a TOE, is a step towards a theory that is as concise as possible.

Conclusion
A formalism based on  5D-differential geometry and electromagnetic concepts, with spin 1/2 as boundary
condition, provides a simple, coherent, comprehensive and first of all quantitative description of phenomena
related to particles, such as
- an energy range defined by the limits of ~ 0,1 eV, the expected range for neutrino energy, and the Higgs
VEV energy, including a convergent series of particle energies quantized as a function of the fine-structure
constant, α, equ. (25),
- a single expression for the values of electroweak coupling constants, equ. (37),
- 3D-space and spin 1/2 define a set of 6 lepton-like and 6 quark-like objects with the associated charges,
- basic properties of the nucleons, including their magnetic moments.
A series expansion links electromagnetic and gravitational terms with a cosmological constant in the correct 
order of magnitude.
The  model  works  ab initio without  free  parameter  and  allows  to  remove  some values  from the  set  of
fundamental constants: 
electromagnetic constants, h, G, α, αweak, energies of elementary particles   =>   electromagnetic constants.
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Appendix
In the following the exponential part of Φ2 is abbreviated as ev. 
[A1] Scalar potential Φ
Equ. (4) may in general be interpreted to refer to the highest order terms of exponential N in Φ'':

ΦN ' '   ~  ( ρ3 N −1

r3 N +1 )eν / 2  ~ ΦN
3  e−ν (Ael ')

2  ≈ [ ( ρ
r )

N−1
e ν /2 ]

3

e−ν ( ρ
r2 )

2
   =   ( ρ

r )
3 N −3

eν / 2  ( ρ
r2 )

2
(46)

The solutions for the scalar Φ depend on the complete metric used. The easiest method to get a solution of order N is to
use spherical coordinates of dimension N+1. Using e.g. the line element for a 4D metric of [4, equ. 6.76] 

ds2  = eν dt2−e λ dr 2−eµ r2(dϑ2+sin2 ϑ dφ2) (47)
and Aα = (Ael, 0, 0, 0) gives as solution for equ.(3) (cf. [4, equ. 6.77], prime corresponds to derivatives with respect to r):

Φ ' '+( v '−λ '+2µ'
2

 + 2
r
)Φ '  - 1

2
Φ3 e−v( Ael ')

2  = 0 (48)

This can be solved with a function of type (4) for N = 2:

 Φ2 '  = [−( ρ
r2 )  + 2 ( ρ3

r4 )]eν (49)

and

 Φ2 ' '  = [2( ρ
r3 )  - 10( ρ3

r5 )  + 4 ( ρ5

r7 )]e ν (50)

The ρ1 terms cancel in (48), the ρ3 terms can be eliminated by appropriate choice of v', λ' and µ', a remaining factor in
the ρ5 term could be compensated by assuming a corresponding factor in Ael. For N = 3 hyperspherical coordinates  with
the line element

ds2  = eν dt2−e λ dr 2−eµ r2(d ψ2+sin2 ψ(dϑ 2+sin2ϑ dφ2)) (51)
may be used. A more complex metric of the kind given in [A2] may be used as well to solve equation (48). 

[A2.1] Metric / point charge
Equ. (9)f. would be the result of the following metric:

g µµ  = (ρ0

r )
2

exp(−(ρ
r )

3

) Ael
2 ,   −(ρ0

r )
2

exp((ρ
r )

3

)Ael
2 ,   − r2 Ael

2 ,   − r2 sin2ϑ Ael
2  = 

g µµ  = (ρ0

r )
4

exp(−(ρ
r )

3

) ,   −(ρ0

r )
4

exp((ρ
r )

3

) ,   − ρ0
2 ,   − ρ0

2sin2 ϑ

(52)

The following gives an alternate metric in some detail  to illustrate the significance and order of magnitude of the
relevant terms 33:

g αα  = (ρ0

r )
2

exp(−(ρ
r )

3

) ,   - (ρ0

r )
2

exp((ρ
r )

3

),   −r2 ,   − r2 sin2ϑ   (53)

33 The sign in the argument of the exponentials is chosen to enable Schwarzschild-like solutions in a series expansion.
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The variable r is marked bold if originating from the exponential term to facilitate a discussion of the implications of its
restricted range of validity. 
Γ01

0 = Γ10
0 = - 1/r1 + 3/2 ρ3/r4 Γ00

1 = - 1/r1 e -2v + 3/2  ρ3/r4e -2v

Γ11
1 = - 1/r1  - 3/2 ρ3/r4

Γ12
2 = Γ21

2 = Γ13
3 = Γ31

3 = + 1/r1 Γ22
1 = − r3/ρ0

2 e-v   = Γ33
1/sin2 ϑ 

Γ23
3 = Γ32

3 = cot ϑ Γ33
2 = − sin ϑ cos ϑ

R00  =  e2v [+1/r2  + 6 ρ3/r5 - 9/2 ρ6/r8)]
R11 = +3/r2  - 6 ρ3/ r5 + 9/2ρ6/r8

R22  = - 1+  e+v [+ r2/ρ0
2 + 3ρ3r3 /(ρ0

2r4)]
R = + 2/r2 +  ev [(- 4/ρ0

2 - 6ρ3r/(ρ0
2r4)+ 12 a ρ3 r2/(ρ0

2 r5) - 9 a2 ρ6 r2/(ρ0
2 r8)]

G00 = e2v [+1/r2 + 6ρ3/r5 - 9/2ρ6/r8)] - ev ρ0
2/r4 +  e2v [2/r2 + 3ρ3/(rr4) - 6 a ρ3/ r5 + 9/2 ρ6/(ρ0

2 r8)] = 
- ev ρ0

2/r4  +  e2v [3/r2 + 3ρ3 /(rr4)]  
Volume integrals over any ρn/rn+2 terms will yield energy results  εc∫ev  ρn/rn+2 d3r ≈ εc ρ ≈ 1E-22 [J] compared to the term
εc∫ ev ρ0

2/r4 d3r ≈ εc  ρ0
2 ρ-1  ≈ 1E-13 [J] (both with coefficients for the electron, σ0αPl) giving negligible contributions to

particle energy within the parameter range discussed here. This leaves the first term as leading order: G00 = − ev ρ0
2/r4  

[A2.2] General solution N = {1; 2; 3} 
This article has a focus on a solution of (4) with N = 3. However, all solutions in a 5D space-time according to [A1], i.e.
up to using hyperspherical coordinates,  N = {1; 2; 3}, might be used for the ansatz of a metric such as 

g00  = ∑
N =1

3

(ρ0

r )
N−1

exp(−(ρ
r )

N

)   (54)

With the approximation σ ≈ 1 this gives for g00:

g00  = exp(−αPl(ρ0

r ))   +  (ρ0

r )exp(−αPl(ρ0

r )
2

)   +  (ρ0

r )
2

exp(−α Pl(ρ0

r )
3

)   (55)

Each term might be expanded and split in EM and gravitational part as suggested in chpt. 4.2.
The 3rd term corresponds to the case discussed above, resulting in terms giving the square of the E-field in G 00 and
eventually  particle  energy  as  a  kind  of  self  energy  as  well  as  an  equivalent  term for  gravitation  from the  series
expansion. The second term is the linear version and might be used to construct  a Schwarzschild-like solution for
potential terms. The first term might represent a general vacuum solution, i.e. without presence of any field ρ0/r. A series
expansion would give the 1 for flat space-time, while the minor terms of G00 could give  Λ-like orders of magnitude
equivalent to the reasoning of chpt. 4.3.

[A3] Model coefficients
[A3.1] Coefficient σ as component in ρ
The exponential term, exp(-ρ3/r3), together with the r-2 dependence of the field of a point charge define a maximum of
particle energy near rW(max) ≈ ρ, rapidly approaching 0 for rW(max) > ρ, effectively allowing to calculate energy terms
without using a specific upper integration limit, rn 

34. On the other hand the weaker r-dependence of angular momentum,
~1/r results in the calculated values being completely dominated by an integration limit. The limit of the Euler integral
is given by ρn

3/rn
3, a constant which will be denoted 8/σ in this work.

A general exponential function of radius featuring a limit radius,  assumed to correspond to a damped oscillator-like
solution,  may be given in 1st approximation as:

  ev '  = exp(−( ßρ'3

2r3 +[( ßρ '3

2r3 )
2

– 4 ρ '3

2r3 ]
0.5

))   (56)

ß being some general coefficient. At the limit rn of the real solution (56)

(ßρ '3 /rn
3)2  = 8 ρ '3/rn

3     =>    ß  = 8 ( r
ρ

' )
3

= σ     (57)

holds, reproducing the definition of σ (14). Within the parameter range of this work the function ev’ ≈ exp(-(ßρ‘3/r3)) is a
very good approximation of an equation of the kind of (56) and coefficient σ will have to be part of the exponential. 

[A3.2] Coefficient σ, coefficient 1.5x
The basic relation of α(n) and σ with the fine-structure constant α and coefficient Γ-1/3 /3 is due to the considerations of
chpt. 2.4ff. To get a more detailed description in a range of 1 percent precision is difficult since there are several options

34 For an upper limit rn ≥ 10ρ other limitations supersede the attainable precision.
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conceivable and in this range of accuracy, QED and other minor effects may be expected which might be amplified due
to the non-linear nature of the Γ-functions involved. A factor ≈ 3/2 appears in several terms such as σ 0  ~ 1.5α-1 of (18),
the ratio of electron and muon energy =1.5088, Γ-1/3  /Γ+1/3 =1.516, π/2 = 1.5707 and the irregular electron coefficient in
the power series that is part of αPl as well. The following discusses some relevant aspects with a focus on identifying
possible underlying relationships while minimizing assumptions about the term ≈ 3/2 in particular. 
In this model elementary charge may be given as b0∫exp(-(ec/(4πεcr))3)r-2dr ≈ ec, the corresponding radial distribution of
energy has its maximum at rc ≈ ec/(4πεc). To get the exact value of ec coefficient  Γ(+1/3)/3 is required to appear as a
term in W(ec) due to the Euler integral, thus a counter term has to be part of ρ in (12)f:

W (ec)  = 
ec

2

4 π εc
∫ exp(−Γ+1 /3

3
e c

4 π ε c
)
3

r−2 dr  = 
ec

2

4 π εc

Γ+1 /3

3 ( Γ+1 /3

3
e c

4 π εc
)
−1

 = ec (58)

For rc follows, considering the basic coefficients only, using (30), (33)

λC  ~ 30.5∫exp−( Γ+1 /3

3
ec

4 π εc )
3

dr  ~ 
Γ−1/3 Γ+1/3

30.5  
ec

4 π εc
 = 

ec

2εc
(59)

again removing all coefficients that are not part of a Coulomb-expression and suggesting an additional term of 2π in the
denominator of ρ (note: for elementary charge σ = 1 has to be assumed; otherwise one gets (60)). 
Looking only at the basic mathematical coefficients entering the equation (28)ff (i.e.  σ -> 2Γ-1/3/3) an additional term
((2π)-1Γ+1/3 /Γ-1/3)3 (bold in (60)) in ρ would cancel redundant Γ-1/3/3 terms in the length expression as well:

λC  ~ 30.5 Γ−1 /3

3
 σ 1/ 3

2
ρ  ~ 30.5 Γ−1 /3

Γ−1/3

3
2 Γ−1/3

3
 

Γ+1/ 3

2 π Γ−1/ 3
 = 

2Γ−1/ 3

3 (60)

The term ((2π)-1Γ+1/3 /Γ-1/3)3 consists of components related to angular momentum and (with an additional factor 2) seems
to be a suitable replacement for 1/(2αlim) e.g. in (23) and may thus be used in expressions such as (61)ff 35. 
Using these coefficients considered essential for yielding basic quantities such as ec, including the term 2π associated
with angular momentum, and corresponding to the 3rd power structure of the equations best would give for σ0:

σ 0  = [ 1
4 ( Γ−1/ 3 2π

Γ+1 /3
)
3 2Γ−1/ 3

3 ]
3

 = [( Γ−1/ 3 π
Γ+1/ 3

)
3 4 Γ−1/3

3 ]
3

= 2.008E+8 [-] (61)

[A3.3] Model calculations for ev

In col. 6 of tab. 1 equ. (13) and (24) are used with σ0 according to (61), αPl will be replaced by αlim
-1/2 (3/2 α9) with αlim

being recalculated from αlim
-1 = σ0 

-1/3
 2Γ-1/3/3. This gives (62) as expression for ev  36.

exp (−[ ( ρn/ r )3] )  ≈ exp(−[1.53 δσ0 α Pl α (n+1)(ec

4 πεc r )
3])  ≈ exp(−[1.53δ [(Γ−1 /3 π

Γ+1 /3
)
3 4 Γ−1/3

3 ]
3
α (n)
2 αlim

(ec

4 πεcr )
3])

 ≈ exp(−[1.53δ [(Γ−1/3 π
Γ +1 /3

)
3 4 Γ−1 / 3

3 ]
3

2(Γ+1/3

Γ−1/3 2 π )
3

(32 )
3
Πk=0

n α ^(9 /3k)(ec

4 πεc r )
3 ])  ≈ 

(exp(−[1.53 δ
π2 Γ−1/ 3

3

Γ+1 /3
2

Πk=0
n α ^(3/ 3k)

ec

4 πεc r ]
3

))
2

                                                                     n = {0;1;2;..}

(62)

Inserted in the equation for energy, (12)f, follows:

W n  = 2b0∫
0

rn (exp(−[1.53δ
π2 Γ−1/3

3

Γ+1/3
2

Πk=0
n α ^ (3 / 3k)

ec
4 πεc r ]

3

))
2

r−2  dr    =>   

W µ  = 2 ec

Γ+1/3
3

 2−1/3[ Γ+1/3
2

π2 Γ−1 /3
3 α− 4]   =  2

2/3

3π2 (Γ+1/3
Γ−1/3 )

3

α−4  ec

        n = {0;1;2;..} (63)

(1.5δ = extra coefficient for the electron only, δ = δ(0,n); bold: particle coefficient; muon given as example)

35 The need of Γ+1/3 /Γ-1/3 to appear in (58)ff and its more pronounced relationship with angular terms is the reason to 
prefer (2αlim)-1 ≈ 2 ((2π)-1 Γ+1/3 /Γ-1/3)3 over (2αlim)-1 ≈ 2((2π)-1 2/3)3 which would give σ0=1.821E+8[-], i.e. a term very 
close to the value of σ0 fitted to Jz. 
36 Expression intended to emphasize 3rd power relationship, a remaining factor of 2 is attributed to ev/2 being squared.
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[A4] Coupling constant in N dimensions
The integration limits for calculating angular momentum in z-direction, r n of Jz, (15)ff, and (Compton-)wavelength, λC,
supposed to represent the rotating E-vector and in turn total angular momentum J should be related by the factor √3 of 
the ratio J/Jz:

                                             λC / rn  = (1/2(1/2 + 1))0.5 / (1/2)  = √3                  
37 (64)

The 3D case of the coupling constant is easy to interpret, for the 4D-case some assumptions have to be made concerning
the integration limit. The following gives an alternative, more detailed interpretation than 2.10 (ev(N) = exp(-(ρ/r)N)).

3D case:
The exact value of the product of the integrals (35)f, depends on the integration limit relevant for the second integral,
i.e. the lower integration limit of the Euler integrals, which can be expressed as 3D volume with Γ-1/3 as radius (18):

ρn
3 /λC , n

3  = 8/ (31.5 σ 0)  = (30.5 4 π
3

 Γ - 1/3
3)

−3

    (65)

The additional factor 30.5 may be interpreted as the ratio between rn of equ. (14) and λC,n as required in the expression for
photon energy. This gives Γ(-1/3, 1/σ0) ≈ 36π2Γ-1/3 and 

2∫
0

r

ev (3)r−2d r∫
0

r

e v(3 )dr  ≈ 2 [ Γ1 /3

3 ][2 π2 π9
Γ−1 /3

3 ]  = 4 π Γ1 /3 Γ−1/3  2π  = 2π  α−1  38 (66)

The result of (66) yields a dimensionless constant α' = h c0 4π ε/e2  and it is a matter of choice to include 2π in the
dimensionless coupling constant. Factor 9 cancels the corresponding factors from the Euler integrals. The remaining
factor of 4π is needed to yield the correct value of α. 

A general N-dimensional version of (65) may be given as:

8 /σN  = (30.5δV N  (Γ (- 1/N))N )−N /( N−2 )
    (67)

VN is the coefficient for volume in N-D, coefficient 30.5 will be omitted in 4D where coordinate r is considered to be
directly related to energy via rn ~ 1/Wn and rn might be directly identified with λC,n; subscript in σN corresponds to
dimension in the following.

4D case:
Using ev(4) according to the definition (4)  and (67) for 4D:

ρn
4 /rn

4  = 8/σ 4  = ( π2

2
 (Γ - 1/4)

4)
−2

= 1.232E-7   (68)

as integration limit, with (11) the non-point-charge integral in 4D will be given by:

∫
0

r

ev (4 )r dr  ~ Γ (−1/2 , 8 /σ 4)  = ∫
8 /σ 4

∞

t−1.5e−t dt  = 5687  ≈ 16 π 4 Γ−1/2 (69)

The 4D equivalent of (66) will be:

2∫
0

r

ev (4)r−3 dr∫
0

r

ev (4)r dr  ≈ 2 [ Γ1 /2

4 ][16 π 4 Γ−1 /2

4 ]  = π2

2
Γ1 /2 Γ−1 /2  4 π2  = π3 4 π2   = αweak

−1 4 π2 (70)

The interpretation is the same as in the 3D-case:
A 4π2 term originating from the second integral of equation (70) is required for turning h2 into ħ2 since the integral refers
to ρn

2 and thus to the square of energy and h, ħ. Factor 16 cancels the corresponding factors from the Euler integrals.
The remaining factor of π2/2 is needed to yield the correct value of αweak .

2D case: 
the 2D case is not as straightforward as the 4D case. The integral over the 1D point charge  

∫
0

r

ev (2)r−1dr  = Γ (0 , ρn
2 /r2

2)  /2        (71)

features Γ(0, x), with Γ(0, x) -> ∞  for x -> 0 and m = N-2 = 0 in the equations above. Setting nevertheless m=1 in the
2D equivalent of the integration limit

ρn
2 /λC , n

2  = 8/ (σ 2)  = (30.5 π  Γ−1/2
2 )−2

 ≈ 1/ 4676      (72)

and calculating Γ(0, ρ2
2/r2

2) numerically gives ∫ev(2)r-1 dr ≈ Γ(0, ρ2
2/r2

2)/2 = 7.872/2. In the 2D case the complementary
integral would be identical to the point charge integral, giving 2(∫ev(2)r-1 dr)2 ≈ 4π3/4 = π3  , i.e. the same value as 4D,
maybe giving an alternate candidate for αweak .

37 Alternatively: λC,n = 3ρhc0/(2b0Γ+1/3) = 3π α-1 ρ/Γ+1/3; rn = 3/2 α-1 ρ Γ-1/3/3  =>  λC,n/rn = 6π/(Γ+1/3Γ-1/3) = 6π/(2π√3) = 30.5

38 Factor 2 from adding electric and magnetic contributions to energy;
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[A5] Quaternion-based quark-like model 
[A5.1] Quaternion UDS-components 
In the following the model described in chpt. 3 will be explained in some more detail. A standard algorithm for rotation
with quaternions will be used. 
Three orthonormal vectors E, B, C described as imaginary part of a quaternion with real parts set to 0, will be subject to
alternate, incremental rotations around the axes E, B and C. For each E, B and C the following variables will be defined:
- de, db, dc: incremental step for rotation angle, 
- de_sum, db_sum, dc_sum: total rotation angle, 
- ex, ey, ez, bx, by, bz, cx, cy, cz: Cartesian components of the respective vectors,
- eex, eey, eez, bbx, bby, bbz, ccx, ccy, ccz: Cartesian components of the respective vectors to be buffered until rotation 
around the axes E, B and C is complete, 
- sih, qw, qx, qy, qz: internal variables for quaternion-rotation calculation.
The following part of the algorithm gives the rotation of B around the E axis for an incremental step de:
de_sum = de_sum + de;   sih = sin(de / 2);   qw = cos(de / 2);    qx = ex * sih    qy = ey * sih;    qz = ez * sih;   
bx = bbx;    by = bby;    bz = bbz;    
bxx = bx * (qx * qx + qw * qw - qy * qy - qz * qz)  + by * (2 * qx * qy - 2 * qw * qz) + bz * (2 * qx * qz + 2 * qw * qy);    
byy = bx * (2 * qw * qz + 2 * qx * qy)   + by * (qw * qw - qx * qx + qy * qy - qz * qz) + bz * (-2 * qw * qx + 2 * qy * qz);
bzz = bx * (-2 * qw * qy + 2 * qx * qz)  + by * (2 * qw * qx + 2 * qy * qz) + bz * (qw * qw - qx * qx - qy * qy + qz * qz);  
bx = bxx;  by = byy;  bz = bzz;
This has to be followed by rotation of C around the E axis; and equivalent routines for the rotation of E, B around the C 
axis and the rotation of E, C around the B axis. After each incremental step for de, db, dc the Cartesian components of 
the E, B, C vectors may be stored in a list.
The vectors are thought to indicate spatial orientation only, polarity (sign) of E and B has to be considered in the 
analysis of the results. Orientation of angular momentum remains a free parameter.
In the following only solutions where one of the incremental angles of rotation has half the value of the other two will
be considered. This may serve as a primitive model for spin J = 1/2.

Fig. 2: Flowchart quaternion calculation

There are 6 possible solutions for de, db and dv, respectively, to be called U, D, S, C, B, T:

Tab.5: Average of x,y,z-components (E,B-comp) and total average (E,B-avg) of E-and B-field for complete rotation;
The average of the x, y, z-components of the fields are multiples of 1/9th of the original vector length, the average total
sum of E- and B-fields is 1/3 or 2/3, respectively. Surface area / fractional charge of 1/3 and 2/3 correspond to an
average of the E-field of 2/3 and 1/3.
The diagram for the E,B, C-components as function of the angle dc_sum is given in fig. 3a for a U-entity.
From a coordinate transformation to  a  representation with one Cartesian coordinate as  axis of  rotation (in  fig.  3b
transformation of  z-axis  +26,6°,  x-axis  -41,8°,  to  give  y-axis  as  axis  of  rotation)  one  can  infer  that  the E-vector
circumvents a spherical cap of area 2πr 2/3r. Mirroring at the center of rotation gives a value of 2/3 of the surface of a
sphere, which according to Gauss’ law may represent 2/3 of a full point charge. The analogue procedure yields a value
of 1/3 of a point charge for D and S-rotations.
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Output E,B,C- coordinates
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Fig. 3.: a) E-components for Cartesian starting values  b)  E-components after coordinate transformation 

[A5.2] Magnetic moments of baryons from U, D, S-components
To calculate magnetic moments of uds-baryons three components of U,D,S will be combined that represent orthonormal
starting conditions for E, B. Spin/angular moment of the 3 components has to add up to J Z = 1/2. Within this model this
is not an assumption but may be calculated in principle in detail. In the following it will be sufficient to have two
components sharing the same orientation of the axis of rotation, i.e. both can be transformed according to fig. 3 above
with the same set of rotation angles, or - in a trivial case – to have 2 identical components. Together with the freedom in
choosing direction of rotation, allowing for canceling or adding up spin as needed, this will be sufficient to model JZ =
1/2 baryons. Table 6 gives an example for UUD and DDU. 

Table  6:  Example  for  appropriate  combi-
nations of U- and D-components for proton
and neutron;

In D_inv and U_inv the sign of E- and B-components is inverted. The D and U for calculation of the effective B-field
include  the  appropriate  sign  from  their  charge  while  U_inv,  D_inv  components  represent  the  actual  geometric
orientation of the E, B-vector only, which is needed for calculation of the angular momentum J from the square of the
electromagnetic fields. In table 6 ”Rot_X_axis” and ”Rot_Z_axis” give the angle of rotation needed to transform to a
representation with y-coordinate as axis of rotation for the B-field. For U_1 and D_inv of the proton as well as for D_2
and U_inv of the neutron the angles of transformation are identical, so is their transformed y-axis, i.e. they posses
identical  orientation  of  spin  (average  of  B)  while  still  maintaining  their  orthonormal  relationship  (B(t)).  Since
orientation of rotation is a free parameter opposite spin may cancel both contributions, leaving the 3 rd component’s spin
of JZ = 1/2 as total spin of the nucleon. 
The U and D components of proton / neutron have equal sign and relative value of the components of the E- and B-
fields (given in tab. 6 only for the Bx, By, Bz-components (bold) relevant for calculating a geometry-based average
value of B, B_Avg). The starting values of E, B, C are given for reference only.
The results for U and D are exceptional in regard to the exchangeability of U and D-components. For other particle
pairs this is difficult to asses due to identical B-field components of U and S and the different internal symmetry of S-
components compared to U and D 39. 
In  the  case of  the solutions examined,  compliance with condition JZ =  1/2 for  the  lambda-particle  (UDS) can be
maintained  by  using  a  spin-cancelling  UD-solution  in  combination  with  an  S-component,  for  UUS,  DDS,  USS-
combinations trivial solutions with two identical components exist, in the case of DSS, Xi -, one can resort to the method
used for the nucleons to find a JZ = 1/2 solution. Results for the best fitting appropriate UDS-combinations are shown in
tab. 7. 

39 U and D are symmetric in their E and B-fields while in S-components E- and B-fields are symmetric to each other.
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UUD Proton DDU Neutron
U_1 D_1
-Ez -Bx Cy -Ex -Bz Cy

Bx, By, Bz -0.444444 0.444444 -0.222222 -0.222222 0.222222 -0.111111
E B E B

Rot_Z_axis -45 135 -45 135
Rot_X_axis 19.47 19.47 19.47 19.47

U_2 D_2
-Ex By -Cz Ey -Bx -Cz

Bx, By, Bz -0.222222 0.444444 -0.444444 -0.111111 0.222222 -0.222222
E B E B

Rot_Z_axis -26.57 116.56 -26.57 116.56
Rot_X_axis 41.82 41.81 41.82 41.81
E, B inverted D_inv U_inv

-Ey -Bz Cx -Ez -By Cx
E B E B

Rot_Z_axis -45 135 -26.57 116.56
Rot_X_axis 19.47 19.47 41.82 41.82

D U
Ey Bz Cx Ez By Cx

Bx, By, Bz 0.222222 0.222222 0.111111 0.444444 0.444444 0.222222

-0.148148 0.37037 -0.185185 0.037037 0.296296 -0.037037
B_Avg 0.439790 0.300890

Start value

Start value

Start value

Start value

Bx, By, Bz  
Avg(UUD)



Table 7: Combinations of UDS-components for calculating magnetic moments of baryons.
To calculate magnetic moments, above factors of B_avg, derived from the purely geometric quaternion model, have to
be multiplied by a factor considering the absolute strength of fields. Using a simple model for a current loop, M = I*S
(current * area),  gives equ. (73) for magnetic moments of baryons with JZ = 1/2.

Mn  ≈ ec0 λC /2  *  B_avg   (= 2 πµBohr∗ B_avg)       (73)
see tab. 8. Factor 2π of the Bohr magneton, µBohr, applicable for the electron and muon, is considered to represent a
degree of rotational freedom of simple particles that more complex structures composed of several U, D, S-components
do not exhibit.

Table 8: Magnetic moments for UDS-Baryons; col.3: Compton wavelength [7]; col.4: magnetic moment for current
loop;  col.5:  average  B-component  from quaternion  calc.;  col.6:  calculated  magnetic  moments;  col.7:  values  from
experiment  [7];  col.8:  ratio  calculated  /  experiment  value;  col.9:  ratio  (calculated  constituent  quark  model,  [7])  /
experiment [7]), *calc. via Clebsch-Gordan coefficients relative to p; Σ, Ξ via fit based on p, n, Λ0.

[A6] Additional particle states
Assignment of more particle states will not be obvious. The following gives some possible approaches.
[A6.1] Partial products
One more partial product might be inferred from considering the next spherical harmonic, y2

0 with a factor of (2l+1)1/3 =
51/3 as energy ratio relative to η, giving the start of an additional partial product series at 51/3 W(η) = 937MeV i.e. close
to energy values of the first particles available as starting point, η', Φ0. However, in general it is not expected that partial
products can explain all values of particle energies.
[A6.2] Linear combinations 
Though the model reproduces basic properties of the quarks the fundamental differences might offer some alternate
interpretations based on extended, non-point-like objects. 
Linear combination states of the kaons, the first particle family that does not fit to the partial product series scheme, and
the η-particle might be an example for such an interpretation:
The kaons are designated to the linear combination of (ds +/- ds)/√2 in the SM. They might be considered to be a linear
combination of 2 extended  y1

0  states (double cones of s|d,  s|d, etc., composition with 1 angular node) similar to the
linear combination of 2 atomic p-orbitals, assumed to exhibit 2 angular nodes. A linear combination which would yield
the basic symmetry properties of the 2 neutral kaons would be a planar structure such as:

        s          d
KS

o    d       s KL
o     s        s 

        d                        d
providing two neutral kaons of different structure and parity (considering either flavour or chirality), implying a decay
with different parity and MLT values.
A linear combination of 3 such states i.e. 3 orthogonal y1

0 states would imply an essentially spherical symmetric object
which might be attributable to the η-particle ((uu + dd - 2ss)/√6).

[A6.3] Electroweak bosons
The considerations of chpt. 2.7 give the Higgs VEV as upper limit, the Higgs boson has about half its energy value. 
The “rotating E-vector” of chpt. 3 may be interpreted to cover the whole angular range in the case of y 0

0 while a y1
0

object might be interpreted as forming a double cone. Increasing the number of angular nodes would close the angle of
the cone leaving in the limit l -> ∞, a state of minimal angular extension representing the original (E-) vector. This may
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USD Lambda UUS Sigma + DDS Sigma - USS Xi 0 DSS Xi -

U U D S S
Bx, By, Bz -0.444 0.444 -0.222 -0.222 0.4444 -0.444 -0.111 -0.222 0.222 -0.222 -0.444 -0.444 0.444 -0.222 0.444

S U D S S
Bx, By, Bz 0.444 -0.444 0.222 -0.222 0.4444 -0.444 -0.111 -0.222 0.222 -0.222 -0.444 -0.444 -0.444 0.444 -0.222

D S S U D
Bx, By, Bz 0.222 0.222 0.111 0.4444 0.4444 0.222 0.444 0.444 0.222 0.444 0.444 0.222 0.222 -0.222 0.111

0.074 0.074 0.037 0.000 0.444 -0.222 0.074 0.000 0.222 0.000 -0.148 -0.222 0.074 0.000 0.111
B_Avg 0.111 0.497 0.234 0.267 0.134

Bx, By, Bz  
Avg(UUD)

B_Avg
UUD 1.32E-15 3.17E-26 0.440 1.39E-26 1.41E-26 0.988 -

n DDU 1.32E-15 3.17E-26 0.301 9.55E-27 9.66E-27 0.988 0.973*
UDS 1.10E-15 2.64E-26 0.111 2.94E-27 3.10E-27 0.949 -
UUS 1.04E-15 2.50E-26 0.497 1.24E-26 1.24E-26 1.002 1.090
DDS 1.04E-15 2.50E-26 0.234 5.83E-27 5.86E-27 0.994 0.897
USS 9.43E-16 2.26E-26 0.267 6.05E-27 6.31E-27 0.958 1.152
DSS 9.38E-16 2.25E-26 0.134 3.01E-27 3.06E-27 0.983 0.784

λC e c0 *λC /2
|M|Calc =  
ec0λC Bavg/2 |M|Exp[Am2]

|M|Calc/  
|M|Exp

|M|Calc/|M|Exp 
Const. quark

p+-

Λ0

Σ+

Σ-

Ξ0

Ξ-



imply that essentially no space is left for rotation (i.e. Spin = 0) and a vanishing contribution of the magnetic field to
total particle energy according to (13), resulting in a factor 1/2 and giving the Higgs boson as alternate upper limit of
energy. 
Using  the  alternate  definition  of  the  Higgs  VEV  as <VEV>  =  VEV/√2  [7]  would  relate  a  Higgs  boson
to〈VEV〉through the  “1D”-term, Γ-1/3/3. Moreover, the Z boson would correspond to a 2D-object, the W bosons to a
3D-object  (if  the  inverse  of  the  coefficient  of  the  integral  for  energy,  3/Γ+1/3,  is  considered  to  represent  a  length
parameter attributed to λC). Except for a factor of 2 the volume term of (20) would give the Δ-particle as starting point
of the energy series from the high energy side. This seems to be another hint that some aspects of this model might be
expressible in terms of Euclidean geometry.

Tab. 9: Electroweak bosons and Δ-particle relative to the Higgs VEV/√2 

[A7] Nucleons – stability, bonding in nuclei, scattering
Apart  from the quantitative results  for  partial  charges  and magnetic  moments  some qualitative  trends for  nucleon
properties may be inferred from the quaternion-based model.
The spin-cancelling of a UD-unit involves 2 collinear components with opposite charges occupying approximately the
same spatial area (fig.4), which is energetically favorable. This suggests among other things:
1) Comparatively lower energy for particles with UD-component;
2) High stability / life time of the nucleons;
3) A possible contribution to bonding in nuclei via UD-U—D-UD, a direct U-D-bond even without meson intermediate;
4) If such an inter-nucleon UD-bond plays a role in bonding in nuclei this would suggest a significant change in UD-
structure between isolated and bound nucleons, which might play a role in the “EMC-effect” [14];
5) In DIS-experiments the ratio of the structure functions of neutron and proton, F 2

n(x)/F2
p(x) approaches 1 for x -> 0 (x

= Bjorken-scale) which would be in agreement with a supposed identical field distribution of E and B-fields in the
nucleons. For x -> 1 this model predicts the ratio F2

n(x)/F2
p(x) to approach

(z(UD)2 + Z(D)2)/(z(UD)2 + Z(U)2) = ((+1/3)² + (-1/3)²)/((+1/3)² + (+2/3)²) = 2/5 
which is in good agreement with high precision scattering experiments which yield values in the range 0.4 – 0.5 [15].

Fig. 4: Illustration of a UD-unit
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W  [GeV]

174.1
Higgs 125.4 128.6 1.026

91.2 95.0 1.041
80.4 84.8 1.055

Δ 1.232 1.24/2 1.006

Electroweak 
bosons + VEV/√2

Γ-coefficient 
relative to VEV/√2

VEV/√2 divided by 
Γ-coeff. [GeV]

W( calc)/ W( Lit.)

VEV/√2
Γ-1/3/3

Z0 (Γ-1/3/3)2

W+/- (Γ-1/3)2    /(3Γ+1/3)
4π/3 (Γ-1/3)3  


