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Abstract—In the realm of machine learning systems,
achieving consensus among networking nodes is a fun-
damental yet challenging task. This paper presents Proof
of Quality Inference (PoQI), a novel consensus protocol
designed to integrate deep learning inference under the
basic format of the Practical Byzantine Fault Tolerant
(P-BFT) algorithm. PoQI is applied to Deep Neural Net-
works (DNNs) to infer the quality and authenticity of
produced estimations by evaluating the trustworthiness of
the DNN node’s decisions. In this manner, PoQI enables
DNN inference nodes to reach a consensus on a common
DNN inference history in a fully decentralized fashion,
rather than relying on a centralized inference decision-
making process. Through PBFT adoption, our method
ensures byzantine fault tolerance, permitting DNN nodes
to reach an agreement on inference validity swiftly and
efficiently. We demonstrate the efficacy of PoQI through
theoretical analysis and empirical evaluations, highlighting
its potential to forge trust among unreliable DNN nodes.

Index Terms—Distributed Systems, Distributed Consen-
sus Protocols, BFT-Consensus Protocols, Proof of Work,
Decentralized DNN Inference

I. INTRODUCTION

Over the years, Machine Learning has undergone
significant evolution, reshaping our understanding of
automation across various domains and tasks [1]. Tradi-
tional Deep Neural Networks (DNNs) have a centralized
structure for data collection and training/testing, enabling
the generation of highly accurate and robust DNN infer-
ence. However, this centralized approach poses several
challenges. As the demand for data increases, concerns
about privacy emerge, as sensitive data must be stored
and maintained in a single location, raising confiden-
tiality risks [2]. Additionally, a centralized infrastructure
represents a single point of failure, rendering the entire
system vulnerable to disruptions. In addressing these
trade-offs, various distributed or decentralized DNN ar-
chitectures emerged [3], [4]. In an edge-to-cloud com-
puting enviroments, data typically reside locally on edge

devices, while intensive computations are offloaded to
the cloud for distributed computing. On the contrary,
on-device DNN inference, can be performed by leverag-
ing methods such as computational partitioning [5]–[7].
This entails the decomposition of complex DNN models
across disparate computing devices. A notable drawback
of such strategies is the necessity for all devices to be
concurrently available.

Many distributed or decentralized deep neural network
(DNN) methodologies operate under the assumption of
reliable communication links among participating nodes,
facilitated either through interconnected networks or by
presuming the unwavering honesty of nodes irrespec-
tive of circumstances. In numerous cases, conventional
aggregation techniques such as averaging [8] or simple
majority voting [9] are employed to integrate individual
DNN node outputs into a cohesive system-wide outcome.
However, employing conventional aggregation methods
like simple majority voting in decentralized systems
with unreliable nodes presents significant challenges
[10]. The presumption of consistent node honesty may
be unfounded, opening avenues for malicious actors to
infiltrate and manipulate transmitted data, compromis-
ing the system’s integrity. Consequently, the resulting
aggregation may be distorted by these faulty nodes,
leading to inaccuracies. Moreover, since simple majority
voting lacks built-in fault tolerance properties suitable
for such environments [11], the aggregated results may
not faithfully represent the network’s true consensus.
Ultimately, relying on majority voting in decentralized
systems with unreliable nodes undermines system ro-
bustness and jeopardizes decision-making integrity.

Motivated by this, in this paper, we introduce a novel
consensus protocol called Proof of Quality Inference
(PoQI) to investigate the fusion of the P-BFT algorithm
within the concept of decentralized DNN inference tasks.



By requiring DNN nodes to reach a consensus solely on
the final layer probability distributions, we significantly
reduce the amount of information that needs to be
exchanged between them. Consequently, DNN nodes op-
erating in our system can achieve consensus and locally
maintain a universally accepted DNN inference history
without relying on any centralized DNN aggregation,
thus making the system resilient to Byzantine failures.
Our experiments on classification tasks demonstrate that
PoQI is capable of achieving accurate results comparable
to traditional centralized aggregation schemes.

II. DISTRIBUTED CONSENSUS PROTOCOLS

In distributed systems, consensus presents a state
in which individual system nodes come to agreement
on the same data values [12]. To reach a consensus,
individual nodes operating within a network, are required
to frequently exchange information between them to
prevent any system abuse. That process is neither trivial
nor simple, relying on several factors, such as network
synchrony and systematic design, among others. It has
been proved that its impossible to reach a consensus
in an asynchronous network even if only one process
fails to respond [13]. In distributed settings, several
failures may occur during normal system operation.
These include crash failures, where a node abruptly stop
its execution, fail-to-stop failures, where a node fails
to halt its execution as expected and byzantine failures,
where a seemingly operational node transmits arbitrary
data to neighboring nodes in an attempt to mislead and
compromise the entire process.

A consensus protocol is characterized as Byzantine
Fault Tolerant (BFT) [14], [15],if it can tolerate a specific
number of f faulty nodes while it keeps normally
functioning. A BFT consensus protocol must full fill the
following requirements: termination (every non-faulty
node decides an output), agreeement (every non-faulty
node eventually decide on the same output y), validity (if
a non-faulty node receive a value x then, outputs y = x)
and finally integrity (every non-faulty node decision must
have been proposed by some other non-faulty node).
In order for the BFT requirements to be fulfilled, the
total number of nodes N participating in the distributed
network must satisfy the condition N ≥ 3f + 1 [10].
The correctness of a BFT consensus protocol is closely
tied to the accuracy of the safety and liveness properties
[16]. Safety states that every node successfully executes
the same sequence of requests, while liveness states that
all requests should be served.

To ensure that a BFT-consensus protocol meets the
aforementioned requirements, it typically adopts a clas-
sical State Machine Replication (SMR) architectural
design [11]. In this setup, the system state is replicated
across a set of N deterministic replicas (e.g., nodes) that

are synchronized by a clock. An SMR BFT consensus
protocol must guarantee three key properties: a) all
nodes start from the same initial state, b) all nodes
receive the same sequence of requests generated by
other nodes (e.g., atomic broadcast), and c) all nodes
receiving the same request produce the same execution
result (e.g., uniform output). SMR approaches often limit
the number of nodes involved to prevent scalability and
latency issues. However, classical SMR approaches face
challenges, when applied to DNN training applications
due to the message communication complexity, which
grows quadratically O(n2) with the node number n.
As a result, employing classical SMR approaches in
DNN training is impractical [7]. Instead, it may be
worthwhile to explore the potential application of these
approaches in scenarios involving pure DNN inference,
where computation complexity is limited.

The Practical Byzantine Fault Tolerance (PBFT) [17],
has long been regarded as a state-of-the-art consensus
protocol for handling Byzantine systems. It can tolerate
up to a 1/3 fraction of Byzantine faults in a system,
by employing a leader-based approach leading to a
O(|M |/n2) message complexity. In brief, one of the
participating nodes is designated as the leader and is
responsible for coordinating the consensus process. If,
for any reason, the leader is deemed faulty, the rest of
the nodes initiate a process known as a view change to
declare a new one until a consensus for a specific request
is reached. To date, several architectures, such as [18]–
[20], have been introduced to enhance the scalability and
efficiency of the above protocol. However, none of the
literature has explored the possibility of integrating it
with deep learning to foster trust within decentralized
DNN inference environments.

III. POQI: PROOF OF QUALITY INFERENCE

Let G = {A, E} be a graph consisting of N collaborat-
ing AI agents described in a set A = {α1, α2, ..., αN},
that are employed to perform a DNN inference task,
e.g., data classification of the form ŷ = f(x;θ) where
x is a data sample and θ are the DNN parameters. E
is as a set of fixed communication links allowing them
to communicate with each other. It is assumed that all
nodes have obtained access to the same test sample x,
while their goal is to produce a single prediction ŷ out
of ŷij ∀ iϵ[0, N ] and jϵC, where C is a set of valid
classes for the specific data classification task of the form
C = {c1, . . . , cc}. Furthermore, it is assumed that each
DNN node produces a softmax classification inference
result so that ŷi = fi(xi;θi) and

∑C
i=1 ŷi = 1. For

the nodes to coordinate on a single inference prediction,
we propose a novel consensus protocol to be formed
as a single inference rule and provide coordination in



the individualized nodes decisions under a fully de-
centralized structure, thus eliminating the need of any
kind of centralized coordination. The Proof of Quality
Inference (PoQI) protocol can be thought of as a new
hybrid consensus mechanism, where the core process is
achieved by adapting the traditional BFT SMR approach,
where N ≤ 2f + 1 DNN nodes are needed to tolerate
f faulty nodes who may fail during execution or who
may behave maliciously by transmitting tampered data
to the neighboring nodes. The normally operating nodes
are considered to be the honest ones.

The PoQI protocol is designed to tackle Byzantine
failures within the context of decentralized inference.
In our systematic design, a classical Byzantine failure
scenario is assumed, where malicious DNN nodes may
attempt to disrupt the entire DNN Inference process by
influencing honest DNN nodes with their incorrect infer-
ence predictions. Specifically, each DNN node processes
the same data sample x, and must collaborate with the
other N − 1 DNN nodes to achieve a consensus regard-
ing both the sample label and the sequential order of
DNN classifications. The adversaries within this model
are capable of exhibiting arbitrary behavior with the
intent of compromising the integrity of the overall DNN
Inference process. These adversaries may collude with
one another to maximize the extent of their influence
and undermine the established protocol. In response to
such adversarial behavior, the PoW Byzantine agreement
model assigns decision-making authority to the most
reliable DNN nodes, enabling them to manage situations
where decisions are contested [21].

The system operates within synchronous assumptions,
ensuring that the delivery schedule of DNN predic-
tions through messages, is reliably maintained. Efforts
are made to minimize communication delays within
this framework. Each DNN node is responsible for
broadcasting predictions, to all neighboring DNN node,
thereby ensuring that every DNN node receives inference
predictions in the same order. Consequently, each DNN
node maintains a comprehensive record of its own DNN
inference prediction history. Thus, PoQI is tasked with
ensuring the following properties:

• Validity: If an individual honest DNN node i
broadcasts a prediction ŷi, then every honest DNN
node eventually receives ŷi.

• Agreement: If an individual honest DNN node i
decides an inference ŷi, then every other honest
DNN node must also produce the same inference
decision ŷi.

• Integrity: A prediction ŷ for sample x appears at
most once in the delivery sequence of any honest
DNN node.

• Total Order: The ordered sequence of predictions

ŷi and ŷi+1 for samples xi, xi+1 must be the same
for all honest DNN nodes.

As previously stated, PoQI operates as a state machine
replication protocol, consisting of three primary sub-
operations: view change, normal operation, and conflict
decision agreement. The view change operation orches-
trates the primary election process, where a primary
DNN node initiates the consensus process, by dissemi-
nating its DNN inference prediction regarding the given
input sample x to all other DNN nodes. During normal
operation, the core execution of the PoQI protocol takes
place, wherein the proposed decision of the primary un-
dergoes evaluation for universal acceptance or rejection.
If universally accepted, the primary DNN node is respon-
sible for conveying the network’s final decision. Con-
versely, if the proposed primary decision faces universal
rejection, a view-change process ensues. Additionally, in
instances where the view change process fails to elect a
universally accepted primary node, a conflict decision
agreement mechanism is activated. This mechanism is
employed to address scenarios arising from inherent
characteristics of the DNN models themselves rather
than from malicious behavior. In such conflict decision
scenarios, the assurance of total ordering during the
specific decision period is not guaranteed.

DNN nodes operate through a sequence of actions
known as views vϵV where V = {v1, . . . , vk}. Given
that, PoQI protocol operates in consensus rounds, each
defined as one execution of the normal consensus pro-
cess, regardless if it is successful or not. Views describe
the consensus rounds that are required, in order for the
DNN network to reach a consensus about the label of a
given sample x. It is defined as an index of the form vϵV ,
containing a sequence of testing pairs whose DNN infer-
ence predictions have been scheduled in the time interval
t. At each view, one DNN node is operating as primary
node while the rest N − 1 nodes are operating as val-
idators. In the remainder of this work and for simplicity
reasons, each view refers to a single inference prediction
of the form (x, y). Our goal is that every honest DNN
node in N maintains an identical DNN inference history
set defined as Ŷ = {ŷij , ∀i ∈ V and j ∈ C}.

1) View Change: Leader Election. At any given
time, all DNN nodes must be synchronized and begin
from the same view. At the beginning, a primary DNN
node is selected from the DNN node set A to begin the
consensus process for the first round. From this moment
onwards, the rest N − 1 DNN nodes work as validators.
The primary DNN node is elected in circular order, from
the first a1 to the last one aN , ensuring that every node
has a chance to be elected as long as they strictly adhere
to the consensus rules. Let apϵA be the primary DNN



node, the election formula is defined as:

ap = v mod N, (1)

where vϵV represents the current view we are cur-
rently working on.

View Change. Once the primary DNN node of the
current view is detected as faulty, view change is per-
formed in order to replace the primary node. Specifically,
in the vth view, let the primary node to promote an
inference for the ith sample of the form:

ŷp = argmax (fp (xi;θp)) . (2)

The primary node communicates its inference predic-
tion ŷp to the validators by constructing and broadcasting
a pre-prepared message of the form pre − prepare <
ap, ŷp, vp, rp > where ap is the primary node id, ŷp ∈ C
is its inference output for the current sample xi, vp is
the view index and rpϵR is the rewards he has collected
so far. Set R is defined as R = {r1, r2, . . . , rN} and
is dynamically updated by the system according to each
primary node behavior.

Let ajϵA represent a random validator DNN node that
has just received the primary’s message. He calculates
its prediction value as:

ŷj = argmax (fj (xi;θj)) , j ̸= p. (3)

If its inference output differs from the one produced by
the primary (e.g., ŷj ̸= ŷp) or if vj ̸= vp then, from now
onwards, the jth DNN node recognizes the primary as a
faulty one. In such case, it must immediately multi-cast
a view-change message to the rest of the validators of
the form view − change < aj , vj + 1, voj , rj >. The
parameter voj is equal to 1 if ŷj ̸= ŷp, otherwise voj =
0. Once the validators receive a view change message,
they append it to a local log. If

∑N−1
i=1 voi
N ≥ 0.5 then the

primary node is globally recognized as a faulty one since
it has lost majority. To this end, consensus has failed and
DNN nodes transition to the new view, initiating the new
consensus round.

Reward System. The reward system incentivizes pri-
mary DNN nodes to gain the majority vote of validators,
by rewarding honest behavior with quality points q and
penalizing the loss of majority favor. As a result, each
DNN node must locally maintain a record of the rewards
acquired by each DNN node so far. For a given primary
ap, the reward and the penalty are calculated as:

rp =

{
q, if

∑N−1
i=1 voi
N < 0.5

0.5rp, if
∑N−1

i=1 voi
N ≥ 0.5

. (4)

A substantial amount of the collected primary points
are lost if majority support is not attained. The reward

policy ensures honest primary DNN node performance.
In the opposite case, it may result in reward loss, leading
to the identification of potentially faulty or malicious
DNN nodes for exclusion from the conflict decision
process.

2) Normal Operation: In a normal operation protocol,
the determined primary DNN node assesses decisions
from validators, selecting relevant ones and constructing
a final decision to be multicasted to honest validators.
For a primary agent ap, let Ŷp = {ŷp} denote the set
of the valid collected DNN inference outputs so far.
Then the set Ŷp is dynamically updated according to
his observations as:

Ŷp =

{
Ŷp ∪ {ŷj}, if ŷp = ŷj

Ŷp, otherwise
, (5)

and the final decision is produced by combining the
selected validators decisions using the average or median
rule on Ŷp entries.

Once the primary has reached to a final decision,
he multi-casts to all agents, including himself, an
encrypted prepare message of the form prepare <
ap, ŷp, ŷfinalp , vp, rp > where ap is the primary DNN
node id, ŷp is its initial predicted value for the current
sample, ŷfinalp is the final agreed decision, vp is the
view index and rp is the so far collected rewards.
Once a validator receives a prepared message from
the primary, it first ensures its validity by observing
if the vp matches its own view number and whether
ŷp matches its own locally produced prediction. If the
prepare message is indeed valid, it transmits the prepared
message to the rest validators. The validators await
for 2f + 1 identical messages from different agents
in order to proceed to the commit phase, where a
commit < aj , ŷj , ŷfinalp , vj , rj > is transmitted. Once
the validators ensure its validity, it transmits it back to the
primary. If the primary receives 2f +1 identical commit
messages from different validators, it recognizes that the
consensus is achieved for that specific sample.

3) Conflict Decision Agreement: In this subsection,
the inability of DNN nodes operating within the PoQI
protocol to classify an input data sample is examined.
A data sample in which the majority of DNN nodes
cannot reach a consensus on its label is termed a conflict
sample. In such cases, DNN nodes are ordered based on
the rewards R they have collected, in descending order,
for the conflict sample.

The final decision for each conflict sample is deter-
mined using the Group of Experts Rule, where DNN
nodes are grouped based on their decision similarity,
with the most qualified group making the decision.
Under this rule, each DNN node operates sequentially, in
descending DNN node reward score order. The highest



rewarded DNN node acts as the primary node and
produces a prediction of the form ŷp using (2). Any other
DNN node agreeing with this prediction, form a group of
experts and jointly propose ŷp, with their rewards being
combined as rg . Any DNN node that has grouped with
the primary is excluded from the remaining decision-
making process. This process continues until all DNN
nodes are grouped in group of experts, each having a
decided prediction and total reward reflecting the group’s
status. The final decision for the ith sample occurs when
consensus for the next sample i + 1 is reached. At this
point, let gi be one of the formed groups. If the primary
DNN node for the next sample ap ∈ gi and:

rgi∑N
i=1 ri

≥ 0.51 (6)

then the primary node ap, is responsible to decide for
the ith conflict sample as ŷp = argmax (fp(xi;θp)).

If this process fails, the Most Honest Rule is applied,
where the agent with the highest recorded rewards makes
the final decision. Under this rule, if the primary DNN
node group fails to meet the 0.51 quality threshold, the
decision for the ith conflict sample is made by the agent
with the highest reward score (e.g., ap = argmax(rj)).

IV. EXPERIMENTS AND DISCUSSION

In our experimental design, we assume a decentralized
network comprising several DNN nodes that communi-
cate with each other. Each DNN node contains a pre-
trained Convolutional Neural Network (CNN) model,
tailored to its unique task or domain. In the experi-
ments, we aim to explore the collective intelligence and
collaborative potential of the PoQI consensus protocol.
We compare the results with conventional centralized
DNN aggregation methods like majority voting and
weighted averaging. Lastly, to assess the Byzantine Fault
Tolerance (BFT) property of our protocol, we conduct
experiments to determine both the maximum number of
misbehaving nodes our system can effectively handle and
the behavior of majority voting and weighted average in
such settings.

We conduct experiments using three benchmark
datasets: SVHN [22], CIFAR-10 [23], and F-MNIST
[24]. SVHN comprises 26, 032 test images of labeled
street view numbers distributed across 10 classes. Both
CIFAR-10 and F-MNIST consist of 10, 000 labeled
testing images uniformly distributed across 10 classes.
Across all datasets, the experiments involve a total of 7
base DNN nodes for Cifar-10 and SVHN and 5 for F-
MNIST each equipped with one of the following CNN
architectures: VGG11, VGG16, ResNet20, ResNet32,
MobileNet v2, ShuffleNet v2, and RepVgg-a1. Unless

otherwise specified, all models are pre-trained on Ima-
geNet and fine-tuned on each dataset for a total of 100
epochs to achieve state-of-the-art results.

TABLE I
ACCURACY (%) COMPARISON BETWEEN THE POQI CONSENSUS PROTOCOL AND CONVENTIONAL

CENTRALIZED AGGREGATION METHODS ACROSS DIFFERENT DATASETS, ASSUMING ALL NODES ACT
HONESTLY, HIGHLIGHTING RESULTS OBTAINED FROM ONE NODE.

Model Dataset

F-MNIST Cifar-10 SVHN

ResNet 20 90.63 92.18 90.90
ResNet 32 90.99 92.65 91.38
VGG 11 87.85 91.53 88.28
VGG 16 90.35 93.68 93.18
MobileNet v2 91.02 92.57 90.83
ShuffleNet v2 - 89.96 89.69
RepVGG - 94.51 93.56

Weighted Average 92.51 95.12 94.09
Majority Voting 92.01 95.05 93.75
PoQI 92.33 95.27 94.12

Table I presents results from benchmark datasets,
aiming to approximate outcomes achieved by centralized
methods, under the assumption that all DNN nodes act
honestly. Regarding the centralized aggregation methods,
we applied them in a straightforward manner directly to
each DNN node to measure their collective performance.
Specifically, for the weighted average approach, we
assigned different weights to each node based on its
individual inference performance and then calculated
the average of these weighted outputs to obtain the
final result, thereby giving more importance to higher-
performing nodes. For the majority voting approach,
we treated each node’s inference output equally and
determined the final result based on the most frequently
occurring output among the nodes. For SVHN, PoQI
slightly outperforms centralized voting rules. CIFAR-
10 sees the highest accuracy with the PoQI consensus
protocol, surpassing centralized methods. However, on
Fashion-MNIST, weight average performs best, followed
closely by the PoQI consensus protocol. These findings
indicate that our proposed PoQI consensus protocol
produces similar results compared to the baseline ag-
gregation methods.

TABLE II
PER DNN NODE ACCURACY (%) COMPARISON BETWEEN THE POQI CONSENSUS PROTOCOL AND

CONVENTIONAL AGGREGATION METHODS, ASSUMING A SUBSET OF FAULTY NODES ACTING
ARBITRARILY

Dataset Faulty Nodes Method Accuracy (%)

N1 N2 N3 N4 N5 N6 N7

Weighted Average 95.12 95.12 95.12 95.12 95.12 95.12 95.12
Cifar-10 0 Majority Voting 95.05 95.05 95.05 95.05 95.05 95.05 95.05

PoQI 95.27 95.27 95.27 95.27 95.27 95.27 95.27

Weighted Average 16.40 15.87 15.92 16.24 15.35 16.11 -
Cifar-10 1 Majority Voting 94.63 94.86 94.76 95.02 94.72 94.56 -

PoQI 94.99 94.99 94.99 94.99 94.99 94.99 -

Weighted Average 15.27 15.41 15.37 15.33 - 15.13 15.52
SVHN 1 Majority Voting 93.21 93.36 93.17 93.12 - 93.04 93.77

PoQI 93.42 93.42 93.42 93.42 - 93.42 93.42

Weighted Average - 11.14 11.40 - 11.16 11.36 -
SVHN 3 Majority Voting - 92.56 93.12 - 92.94 91.82 -

PoQI - 93.18 93.18 - 93.18 93.18 -

Furthermore, we aim to determine the fault tolerance
property for our protocol and the traditional decision-
making methods such as weighted average and majority



voting. For the decentralized DNN Inference framework
to be properly functioning and act as a unitary system,
requires for every sample, the nodes to agree on the
same DNN inference estimation. In our second set of
experiments II, we introduce a subset of faulty DNN
nodes attempting to disrupt the consensus process by
transmitting randomized DNN inference results. In the
case of Cifar-10 with 0 faulty agents we can observe
that majority voting is stable, producing the same results
on every DNN node, thus the system as a whole is in
agreement and works as it is supposed to work. However,
in the rest of the experiments, we can observe that even
with a 1 faulty DNN node that is arbitrarily sending
randomized DNN inference results, the weighted average
is completely failing while the majority voting is not
stable anymore. This means that there is at least one data
sample, on which DNN nodes are no longer in agreement
and they produce randomized results. This instability on
majority voting proves that is not fault-tolerant at all, and
even with one faulty agent, it can not be used anymore to
establish a commonly accepted agreement on the system.
On the other hand, our protocol is able to coordinate
the decision-making process of the DNN nodes, even
in the present of faulty nodes, since the decision for
each sample is performed by the primary DNN node
and every honest DNN node must and will comply with
his decision. We assume that the faulty nodes are acting
completely arbitrarily so there results are not reported.

V. CONCLUSION

In this paper, the Proof of Quality Inference (PoQI)
is introduced. A pioneering consensus protocol, that
seamlessly integrates deep learning inference within the
Practical Byzantine Fault Tolerant (P-BFT) algorithm
framework. By harnessing DNNs to assess the quality
and authenticity of inference outcomes, PoQI empowers
distributed nodes to achieve consensus on a shared
prediction history autonomously, without dependence
on centralized infrastructures. Through the adoption of
PBFT, PoQI ensures byzantine fault tolerance, facilitat-
ing swift and efficient agreement on prediction valid-
ity. The theoretical analysis and empirical evaluations
presented herein underscore the effectiveness of PoQI
in establishing trust among unreliable DNN nodes. This
research not only contributes to the burgeoning field of
distributed systems but also paves the way for trans-
formative applications in decentralized networks where
trust and consensus are paramount. To this end, future
research directions could investigate the possibility of
integrating the proposed method with other deep learning
tasks, such as semantic segmentation and object detec-
tion. Additionally, it would be intriguing to explore the
potential of incorporating the PoQI protocol within the
systematic design of an AI-powered blockchain system.
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