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Abstract
Batteryless energy harvesting devices compute intermit-
tently due to power failures that frequently interrupt the 
computational activity and lead to charging delays. To ensure 
functional correctness in intermittent computing, applica-
tions must exhibit several unique properties, such as guaran-
tees for computational progress despite power failures and 
prevention of stale operations caused by charging delays. We 
observe that current software support for intermittent com-
puting allows for checking only a fixed set of properties and 
leads to tightly coupled application and property-checking, 
thus hampering modularity, scalability, and maintainability.
In this paper, we present ARTEMIS, the first framework 

designed to facilitate flexible property checking of intermit-
tent programs at runtime. ARTEMIS is developed based on 
techniques from the area of runtime monitoring, offers a 
specification language for specifying an open set of proper-
ties, and provides automatic generation of monitors responsi-
ble for checking the properties. Our evaluation showed that 
ARTEMIS achieves comparable efficiency to state-of-the-art 
solutions while significantly preventing failure scenarios 
through its monitoring capabilities.

CCS Concepts: • Computer systems organization → Em-
bedded software; • Software and its engineering → Do-
main specific languages.
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1 Introduction
Providing a constant and wired power source for IoT de-
vices, especially those in remote areas, is often infeasible [3,
32], leading to limitations in system design, operation, and
maintenance [2]. In contrast, batteryless IoT devices (e.g.,
SuperSensor [7] and Camaroptera [24]) powered by ambi-
ent energy sources like radio waves, sunlight, or heat of-
fer sustainability, reduced maintenance, longevity, and cost-
effectiveness. These devices convert ambient energy into
electrical power using harvesters and store it in capacitors.
However, due to limited capacitor capacity and dynamic
ambient energy, they experience frequent power failures, re-
sulting in the loss of computational state (e.g., registers and
memory contents). Consequently, they perform intermittent
computations [29], periodically backing up their state when
power failure is imminent and restoring it when sufficient
energy is available to resume. Usually, a specialized software
called intermittent runtime is deployed on these devices to
handle the tasks of backing up and restoring the computa-
tional state. Various runtimes (e.g., [38, 40, 50]) have been
proposed to hide the intermittent execution complexitywhile
enabling power failure-resilient execution of applications.

Intermittent programs face challenges due to unpredictable
and uncontrollable energy sources [26]. Variability in en-
ergy availability leads to charging delays, power outages,
and repeated code execution [49]. These issues necessitate
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Figure 1. The ARTEMIS framework. The runtime executes
tasks and delivers observable events (Task 5 restart due to
power failure, steps 1○ and 2○) to the application-specific
monitor. Themonitor checks the programmer-specified prop-
erties and returns actions to be taken if they are violated
(data expiration, step 3○). The runtime checks the actions
and executes them (restarts the path, steps 4○ and 5○).

specific properties for intermittent programs’ functional cor-
rectness. An essential property of intermittent programs is
computational progress in case of power failures. This prop-
erty requires checking if the energy capacity of the device
is sufficient to execute the code between two consecutive
backup points. Another property is timely execution [31, 35],
which prevents the use of data outdated due to lengthy charg-
ing delays. If such properties are not checked, intermittent
programs might fail, e.g., due to non-termination (i.e., no
computational progress) and stale outputs.

Recent works proposed compile-time solutions (e.g., ETAP
[26]) for assessing specific properties of intermittent pro-
grams without running them on the target platform. How-
ever, these compile-time solutions rely on prior information
about the target environment, necessitating extensive pro-
filing efforts and lacking consideration for unpredictable
runtime dynamics. In contrast, some studies introduced run-
time solutions, such as TICS [35] and Mayfly [31], to check
timely execution property during program execution. These
runtime solutions have limitations due to their rigid design,
resulting in several associated problems listed below:

(P1) Tightly-coupled Application and Property Checking. In
some approaches (e.g., TICS [35], where time constraints are
directly given in the source code), the property checking is
the responsibility of the developer (e.g., ensuring freshness
of data), resulting in code intertwined with the application
code. This tight coupling adds complexity to intermittent
applications, making it hard to adapt responses to property
violations or changing property requirements without modi-
fying the application code.

(P2) Tightly-coupled Runtime and Property Checking. Some
approaches support the separation of property specifica-
tion and application logic, delegating the property checks

to the intermittent runtime. For example, Mayfly’s runtime
integrates timeliness property checking and power failure-
resilient application execution [31]. However, as a conse-
quence, adjustments to property-checking logic might re-
quire alterations to the entire core runtime.
(P3) Unscalable Property Checking. Existing intermittent

computing runtimes often have limited property-checking
capabilities restricted to a fixed set of supported properties
(e.g., Mayfly [16] can detect timeliness violations but not
non-termination). As the runtime evolves with new features,
incorporating new properties to be checked or adapting ex-
isting ones becomes more challenging.
Our Contributions. In this paper, we introduce and as-

sess ARTEMIS, the first framework designed to facilitate
flexible property checking of intermittent programs at run-
time (see Figure 1). ARTEMIS is developed based on tech-
niques derived from the domain of runtime monitoring
(aka runtime verification) [10], which involvesmonitoring the
execution of a system to ensure the satisfaction of its desired
properties. ARTEMIS targets task-based intermittent appli-
cations [15, 38, 48] in which the programmer decomposes
the computation into atomic tasks with a control flow. The
ARTEMIS intermittent computing runtime executes these
tasks in a power-failure resilient manner, meanwhile feeding
one or more application-specific monitors with a sequence of
events indicating the start and end of task execution at spe-
cific timestamps. On top of these primitive events, ARTEMIS
enables defining an open set of properties, e.g., the maximum
allowed duration for executing a task and task periodicity. It
proposes a property specification language for expressing
such properties and provides automatic generation of moni-
tors responsible for checking the properties. The generated
monitors evaluate properties and recommend corrective ac-
tions to the ARTEMIS runtime, such as skipping or restarting
a task. We assessed ARTEMIS against Mayfly [31], demon-
strating its efficiency and superiority, particularly in prevent-
ing non-termination scenarios. ARTEMIS is open-source [6].
In summary, our contributions include:

(1) Improved separation of concerns between property speci-
fication and application logic that supports seamless integra-
tion of diverse property checking approaches without any
modification to the application code;

(2) Modular runtime architecture that decouples the generic
intermittent runtime functionality from the property check-
ing logic (implemented in monitors), retaining their ability
to evolve independently;

(3) Scalable property checking based onmonitoring an open
set of properties with minimal programming effort, facili-
tated by an expressive property language and automated
generation of monitor code.

2 Background on Intermittent Programs
Batteryless sensing applications (e.g., [3, 23]) face intermit-
tent power supply constraints since they rely exclusively on
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ambient power sources. To achieve power failure-resilient
execution in such contexts, various software solutions have
been proposed [13, 15, 35, 43, 48, 50]. Checkpointing sys-
tems [4, 5, 9, 11, 14, 34, 37, 43, 47] capture volatile state
snapshots, including registers, stack, and global variables,
in non-volatile memory at programmer-defined points, fa-
cilitating computation state recovery after power failures.
In task-based systems [8, 15, 38–41, 44, 48], programs are
decomposed into tasks with task-based control flow. The
runtime tracks active tasks, restarts them after power fail-
ures, ensures atomic completion, and progresses to the next
task. This study focuses on task-based systems.

2.1 Properties of Intermittent Programs

Intermittent programs face unpredictability due to unstable
ambient energy sources [26], resulting in frequent power fail-
ures, varying charging delays, and repeated code execution.
These factors introduce essential properties for intermittent
program correctness. In this paper, we primarily focus on the
following fundamental intermittent program properties (in
the context of task-based systems), which can be extended
and combined.

(1) Maximum Inter Task Delay (MITD) defines the allowed
maximum delay between two tasks. For instance, the sensed
data expires when it cannot be consumed within a specific
timeframe due to longer charging times [31, 35, 49].
(2) Maximum Task Re-execution Count defines the maxi-

mum number of successive re-execution attempts for a spe-
cific task. Limited ambient energy, wrong capacitor size se-
lection [17], or peripheral operations [12, 49] might lead to
successive power failures during the execution of the same
task, leading to a lack of progress and non-termination.

(3) Total Execution Time defines the maximum duration
allocated for completing a computation or generating a re-
sponse. It ensures timely decision-making and prevents un-
necessary computation by terminating tasks that exceed the
allocated time frame [40].

(4) Number of Samples defines the required number of
samples to execute a particular task. A sensing application
may necessitate varying sample counts from each sensor
(e.g., temperature) to determine the need for action.

(5) Periodicity defines the desired frequency of task execu-
tion. Programs may experience power failures and charging
periods, leading to unsuccessful sampling attempts. In such
cases, they may need to restart the sampling process anew.

2.2 Problems with Checking Program Properties

Current intermittent programming solutions lack clear sepa-
ration between the application and property checking codes,
resulting in several associated problems.

2.2.1 Tightly-coupledApplication andPropertyCheck-
ing. In Figure 2(a), the senseTemp task in Chain [15] is re-
sponsible for temperature sensing and storage. However, it

Task senseTemp(){
 ...
 // sense and store
 temp = senseTemperature();
 addList(temp);
 ...
 // check properties
 if(numSamples > 10 &&  
    timeElapsed < 1 sec) {
  // act if satisfied
  ...   
 }
 ... 
}

void main(){
 ...
 // runtime main loop
 while(1){
  // get the next task
  t = next_task();
  // check only limited
     supported properties
  if(props_satisfied(t,p)){
   // run task 
   execute(t); 
  }
 ...
}

(a) Application checks properties (b) Runtime checks properties

Figure 2. Integrating property checking in the application
code (e.g., Chain [15]) is error-prone and requires application
modifications when altering property checking logic. The
same drawbacks arise when the runtime checks properties
(e.g., Mayfly [31]), requiring modifications to the runtime.

also includes checking the number of collected samples (num-
Samples) and elapsed time (timeElapsed). This integration
of property checking logic within the application code re-
quires modifications to the application code for any property-
related changes or updates, which results in increased code
complexity. This intertwining of concerns within the same
codebase makes code comprehension, maintenance, and de-
bugging challenging as both application and property check-
ing logic complexity grows, raising the risk of errors.

2.2.2 Tightly-coupled Runtime and Property Check-
ing. Figure 2(b) portrays a representation of the main loop of
Mayfly runtime [31], wherein the monitoring is tightly cou-
pledwith the runtime logic. props_satisfied(t,p) verifies
the satisfaction of properties associated with task t during
its execution. This tightly coupled arrangement restricts the
adaptability of the runtime system, as any adjustments or en-
hancements to the property checking logic or the properties
examined necessitate modifications to the runtime code.

2.2.3 Unscalable Property Checking. Integrating prop-
erty checking logic directly into the runtime loop, as in
Figure 2(b), limits property-checking capabilities. The code
snippet implies that only a fixed set of properties is checked
using the props_satisfied(t,p) function, as these prop-
erties must be hardcoded in the main runtime loop. This
approach hampers the ability to accommodate more com-
plex or domain-specific properties that require additional
context or data. It introduces overhead and complexity into
the runtime system, as computational resources and mem-
ory are allocated for property checking logic unutilized. This
complexity can result in inefficiencies and potential perfor-
mance issues as the main runtime loop becomes burdened
with extraneous code.

3 The ARTEMIS Framework
ARTEMIS addresses the problems above through design
principles based on runtime monitoring, a dynamic analysis
method for checking system behavior against correctness
properties [10]. Runtime monitoring involves a software
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Figure 3. Application development flow in ARTEMIS frame-
work, which includes (i) the specification of application prop-
erties in property specification language, (ii) the generation
of the properties in intermediate language, and (iii) the gen-
eration of application-specific monitors.

component, the monitor, which checks properties using ob-
servations (input/output data or system state information)
obtained during system execution. Properties are typically
expressed in formal languages like temporal logic, regular
expressions, state machines, or grammars [28]. These lan-
guages are versatile but generic. Alternatively, a problem-
specific language can be designed and translated into a generic
language. ARTEMIS adopts this approach, introducing a con-
sise property specification language and an intermediate lan-
guage representing properties in a generic way as finite-state
machines.
ARTEMIS offers a modular architecture for scalable in-

termittent programs, separating property specification from
application code. It supports dynamic adaptation of intermit-
tent applications based on runtime conditions, improving
system robustness during energy disruptions and changing
operating conditions. Figure 3 shows the system overview of
ARTEMIS, comprising a runtime, property specification lan-
guage, and a transformation pipeline for creating application-
specific monitors.

In ARTEMIS, developers identify properties to monitor in
the intermittent systems, which entails considering energy
availability, timing requirements, and other pertinent fac-
tors that significantly influence the system’s behavior and
performance. They use the ARTEMIS property specification
language to express these properties independently from
the application code. This step involves setting property
thresholds, defining interactions between properties, and
specifying runtime actions performed in case of property
violations.

ARTEMIS uses a model-to-model transformation [45] to
create monitors in an intermediate language based on state
machine concepts. This language bridges the gap between
the ARTEMIS property specification language and the target

1 // Task definitions
2 Task bodyTemp() {
3 . . .

4 temp = convert(sampleADC());
5 . . .

6 }
7 Task accel() {. . .}
8 Task micSense() {. . .}
9 Task send() {. . .}
10 Task calcAvg(depData,&avgTemp) {. . .}
11 Task heartRate() {. . .}
12 Task filter() {. . .}
13 Task classify() {. . .}
14 //Execution paths of tasks
15 (Path: 1, bodyTemp, calcAvg, heartRate, send)
16 (Path: 2, accel, classify, send)
17 (Path: 3, micSense, filter, send)

Figure 4. Health monitoring application code.

C code, allowing for higher-level, domain-oriented prop-
erty representation. Employing a model-to-text transforma-
tion [42], ARTEMIS generates monitoring C code from the
intermediate language, seamlessly integrating it with the
application code and the ARTEMIS runtime. The monitoring
code captures runtime information (such as timing events
and task executions), evaluates it against specified properties,
and determines runtime actions for property compliance.

3.1 ARTEMIS Monitorable Applications

In ARTEMIS, developers employ a task-based programming
model [15, 31, 38, 48] to implement their applications. This
model enables the expression of desired properties at the
task level. Tasks are atomic units with all-or-nothing seman-
tics; any power interruption leads to the runtime rolling
back task modifications on nonvolatile memory before the
task restart. Successful task execution stores outputs in non-
volatile memory, and the next task in the control flow is
executed. This model permits ARTEMIS to check properties
upon task restart or completion.
Figure 4 illustrates code for a health monitoring applica-

tion in a wearable device, tracking health parameters. The
application employs sensors for data collection, including
body temperature, acceleration, and other vital signs. It con-
tinuously monitors the user and provides insights into her
health status, enabling proactive healthcare management
and early detection of abnormalities. The code snippet de-
fines tasks, e.g., bodyTemp (Line 2), which processes temper-
ature measurements, and others like accel, micSense, send,
calcAvg, heartRate, filter, and classify (Lines 7-13), handling
various functions within the application. The bodyTemp task
involves converting the output of the sampleADC() function
into a temperature value and storing it in the temp variable.
In addition, the calcAvg task states that a dependent vari-
able (avgTemp) needs to be monitored. This variable address
is kept in the task context and transmitted to the monitor
when calling the monitor. Specific task operations are not
detailed in this snippet but are represented by the ellipsis
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1 micSense: {
2 maxTries: 10 onFail: skipPath;
3 }
4
5 send: {
6 MITD: 5min dpTask: accel onFail: restartPath maxAttempt:

3 onFail: skipPath Path: 2;
7 maxDuration: 100ms onFail:skipTask;
8 collect: 1 dpTask:accel onFail: restartPath Path: 2;
9 collect: 1 dpTask:micSense onFail: restartPath Path: 3;
10 }
11
12 calcAvg {
13 collect: 10 dpTask:bodyTemp onFail: restartPath;
14 dpData: avgTemp Range: [36, 38] onFail: completePath;
15 }
16
17 accel {
18 maxTries: 10 onFail: skipPath;
19 }

Figure 5. An example property specification in ARTEMIS
for the example intermittent application code in Figure 4.

bodyTemp

calcAvg send

accel

classify

micSense

filter

Path #1

Path #2 Path #3

collect: 1
onFail: restartPath 

MITD: 5min
onFail: restartPath

maxAttempt: 3
onFail: skipPath 

maxTries: 10
onFail: skipPath 

maxTries: 10
onFail: skipPath 

collect: 1
onFail: restartPath 

collect: 10
onFail: restartPath 

Control flow
Properties

heartRatedpData: &avgTemp
Range: [36,38] 

onFail: completePath 

Figure 6. Paths, tasks, and properties from Figure 5.

("..."). Path execution is specified in Lines 15-17, showing the
task sequence for the intermittent application.

3.2 ARTEMIS Property Specification Language

The ARTEMIS property language is declarative. In declar-
ative programming, developers specify what they want to
achieve without detailing how. In ARTEMIS, developers use
this language to define desired properties of the intermittent
system, focusing on system properties rather than imple-
mentation specifics. Table 1 explains ARTEMIS property
language constructs. Figure 5 shows an example property
specification for the application in Figure 4. Figure 6 visual-
izes task paths and properties from Figure 5 for illustration
purposes, though not required by ARTEMIS.
The micSense task allows a maximum of ten execution

attempts before bypassing its path (Lines 1-3 in Figure 5). The
send task has a Maximum Inter-Task Delay (MITD) of five
minutes (Line 6) for receiving data from the accel task; non-
compliance results in path restart with up to three attempts
before bypassing its entire path. The send task also has a
maximum execution duration of 100 milliseconds (Line 7),
leading to the task skipping on failure. Additionally, the send

task requires one data item from the accel task and one from
themicSense task (Lines 8 and 9); failure triggers path restart.
Explicit path specification for skipping or restarting is only
needed for the send task (e.g., Path 2: accel, classify, send
for the MITD property in Line 6 and the collect property in
Line 8) due to path merging; other tasks (micSense, calcAvg,
and accel) do not require such specification as they do not
involve path merging. In Line 13, we specify that the calcAvg
task must collect ten data items from the bodyTemp task.
In Line 14, we also specify that the calcAvg task has a data
dependency with its final result (avgTemp - defined during
the Task declaration in Figure 4) to immediately complete
the current path without executing any other path. Thus, if
the average body temperature exceeds the given range (36 -
38 C◦), the current path is directly completed by executing
heartRate and send task without property checking to inform
the emergency case. Additionally, for the accel task (Lines
17-19), we set a maximum of ten execution attempts before
bypassing its path.

3.3 ARTEMIS Application-Specific Monitors

The ARTEMIS intermediate language supports the specifica-
tion of monitors as state machines. Each monitor is a single-
state machine, usually derived from a single property. The
triggers of the state transitions are the events that the run-
time sends: the start and end of tasks with a timestamp of the
event. State machines can define variables of commonly used
types (integer, boolean, and others), transitions may have
boolean expressions as guards, and transition bodies con-
tain statements like assignment and if-then-else construct.
Furthermore, each transition may signal property failure
with possible further actions to be taken by the runtime, for
example, skipping a task or path.
In most cases, developers interact with the intermediate

language for property specification indirectly, as the system
automatically generates it. While the primary interaction
occurs via the more concise property specification language,
there might be situations where this language lacks the nec-
essary expressiveness. In such cases, developers can engage
directly with the intermediate language.

Each property expressed in the ARTEMIS property speci-
fication language is translated into a single state machine in
the ARTEMIS intermediate language. Figure 7 presents state
machines for four properties.
The first property addresses the maximum number of

attempts to initiate task A, considering the system’s inter-
mittent nature where power failures may interrupt task exe-
cution. The initial state (NotStarted) indicates that task A has
not yet begun. A transition occurs when the event startTask,
carrying the task name and timestamp (stored as variable t),
is triggered - but only if the task name is A. The transition
body (marked after "/") contains an assignment action for
variable i, which tracks the number of attempts to start task
A. Within the state Started, two transitions are triggered
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Table 1. Summary of the ARTEMIS Property Specification Language Constructs.
Language Construct Type Explanation
period Property Specifies the time interval between consecutive executions of a task, defining its periodicity. It assumes a jitter. If

the time interval is exceeded, the specified onFail action is taken.
maxTries Property Defines the maximum number of attempts allowed for executing a task. If the task exceeds this limit, the specified

action will be taken.
maxDuration Property Defines the maximum duration or time limit for the execution of a task. If the task exceeds this limit, the specified

action will be taken.
MITD Property Stands for "Maximum Inter-Task Delay" and defines the maximum duration within which the current task should

receive data from another task.
collect Property Specifies the number of data items the current task requires to obtain from another task.
dpData Property Specifies the inter-task data dependencies (when the task has a dependency on its result or another task).
dpTask Variable Used within the context of a property to specify the dependency of a task on the execution of another task.
Path Variable Used within the context of a property to identify a specific path within the application code.
Range Variable Used within the context of a property to specify the range of the dependent data to decide the action of the

dependent task. If the dependent data is out of the given range, the onFail action is applied.
maxAttempt Control Flow Used within the context of a property to specify the maximum number of attempts allowed for executing a task. It

is used with time-related properties (period and MITD) to avoid non-termination.
onFail Control Flow Used within the context of a property to specify the case when a property fails to be satisfied. It is used with other

control flow constructs that specify the action (restarting a path, skipping a path, restarting a task, or skipping a
task) when the property fails.

onFail: restartPath Control Flow Represents an action to be taken when a property fails to be satisfied, causing the current path to be restarted.
onFail: skipPath Control Flow Represents an action to be taken when a property fails to be satisfied, causing the current path to be skipped.
onFail: restartTask Control Flow Represents an action to be taken when a property fails to be satisfied, causing the current task to be restarted.
onFail: skipTask Control Flow Represents an action to be taken when a property fails to be satisfied, causing the current task to be skipped.
onFail: completePath Control Flow Represents an action to be taken when a property fails to be satisfied, causing the immediate termination of

the current path without executing any further paths. This action preserves the next task, halts the monitoring
of other properties, and executes subsequent tasks within the same path until its full completion. Upon path
completion, execution resumes by monitoring properties starting from the preserved next task.

Idle

task A {
  collect: 5
  dpTask:B
  onFail: restartPath
}

WaitStartA

NotStarted

Started

task A {
 max duration: 3.0 s
 onFail: skipTask
}

NotStarted

Started

task A {
  maxTries: 3
  onFail: skipPath 3
}

WaitEndB
task A {
  MITD: 2.0 s dpTask:B
  onFail: restartPath
  maxAttempt: 2
  onFail: skipPath
}

endTask(B, t) / endB = t

[t - endB > D && i = 2]
anyEvent(t) / skipPath

[t - endB <= D]
startTask(A, t)

[t - endB > D && i < 2]
anyEvent(t) / i++; restartPath

D = 2.0
c = 1

[i = 5] startTask(A, t)
/ i = 0i = 0

endTask(B, t)
/ i++

[i != 5] startTask(A, t)
/ i = 0; restartPath

startTask(A, t) / start = t

[t - started <= D]
endTask(A, t)

[t - started > D]
anyEvent(t) / skipTask

D = 3.0startTask(A, t) / i = 1

[i < Max]
startTask(A, t) / i++

endTask(A, t)

[i = Max]
startTask(A, t) / skipPath 3

Max = 3

Figure 7. Implementation of the ARTEMIS properties as finite state machines in the ARTEMIS intermediate language.

by the start event of task A, each with guards specified in
square brackets before the event. The counter is incremented
if the number of attempts is less than the maximum allowed.
Upon reaching the maximum attempts, the monitor signals
a failure and sends the corresponding action (in this case,
skipPath) to the runtime. Finally, upon observing the end of
task A, the property is considered satisfied, and a transition
back to the initial state occurs without reporting any failure.

The second property (second state machine in Figure 7)
addresses the maximum execution duration of task A, exem-
plified as three seconds in this example. The transition from
the initial state to the state Started occurs upon initiating
task A, with the start time stored in the variable start. Two
transitions are present within the state Started. The first tran-
sition signifies the satisfaction of the property: the end of
task A falling within the allowed time interval (represented
by variable D) after the start. If any event occurring beyond

this time interval is observed (indicating a failure to satisfy
the property), the failure is reported with the action skipTask.
The trigger anyEvent encompasses both the start and end
events of tasks. Events that do not have a specified transition
are always accepted, resulting in no actions taken and no
change in state (implicit self-transition). In our second ex-
ample, this scenario could correspond to the event startTask
that still falls within the permissible time interval.
The third property (third state machine in Figure 7)

addresses the number of data items task A needs to obtain
from another task (task B). The property is structured around
a single state, incorporating a transition that delineates the
successful execution of task B by incrementing the counter,
represented by variable i. To facilitate the start of task A,
two distinct transitions are delineated, each governed by
mutually exclusive conditional guards. In the example, if
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i is not 5, a failure is signaled through action restartPath,
concurrently resetting the counter to zero.
The fourth property (fourth state machine in Figure 7)

addresses the Maximum Inter-Task Delay (MITD) require-
ment, exemplified as task A should commence within a two-
second timeframe following the completion of task B. Failure
to meet this condition triggers a path restart. If the constraint
is violated twice, the entire path is skipped (withmaxAttempt
set to 2). The state machine logic involves recording the com-
pletion timestamp of task B in variable endB and monitoring
the elapsed time until the initiation of task A. The guards of
transitions from state WaitStartA to state WaitEndB capture
the possible cases.

Multiple propertiesmay fail concurrently for a given event,
such as both maximum duration and maximum start at-
tempts for a task. In such cases, multiple monitors will report
failures to the runtime. The runtime determines the appro-
priate course of action in response to the suggested ones. If
a proposed action involves path restart, monitors linked to
already initiated tasks within that path must be re-initialized.
Using an intermediate language provides several advan-

tages in translating property specifications from theARTEMIS
property language to the final C code. It closes the abstraction
gap between the domain-specific compact property descrip-
tions and their C implementation. In Figure 7, each property
has a fairly simple state machine representation. State ma-
chines’ translation to C is straightforward (multiple solutions
in the literature). The ARTEMIS architecture also enables
the creation of different property specification languages on
top of the intermediate language, enhancing reusability.

The shown state machines are abstract and do not account
for the intermittent nature of the generated C code, which
will run in tandem with the monitored application. Preserv-
ing the state machine variable values and machine current
state information throughout power failures is of paramount
importance. Section 4 elaborates on this.

3.4 ARTEMIS Runtime

The ARTEMIS runtime deploys monitors with the appli-
cation to evaluate properties during execution. Monitors
receive startTask and endTask events from the runtime, in-
dicating task initiation and completion. The startTask event
precedes task execution, while the endTask event follows
task completion, enabling post-task scheduling. This event-
based communication establishes a feedback loop between
the runtime and monitors, facilitating dynamic control dur-
ing execution.

4 ARTEMIS Implementation
We implemented ARTEMIS runtime in C language. Our tar-
get platform was an MSP430FR [46] series microcontroller,
the de facto standard computational platform for intermit-
tent systems with an internal FRAM. Like in many inter-
mittent computing solutions, e.g., TICS [35], InK [48], and

1 // Data structure to maintain observable monitor event
2 typedef struct _MonitorEvent {
3 eventkind_t kind; // StartTask, EndTask
4 float timestamp; // timestamp of the event
5 void* taskAddr; // current task pointer
6 } MonitorEvent_t;
7
8 // persistent variable to hold the last monitor event
9 MonitorEvent_t event;
10
11 int main {
12 ...
13 // Initialize constraints to be monitored
14 resetMonitor();
15 // Progress interrupted monitor operation
16 monitorFinalize();
17 ...
18 while(1){ // start running application tasks
19 // check current task properties
20 if (curtask == checkTask(curtask)){
21 run(curtask); // run the selected task
22 // commit current task and get the next task
23 curtask = taskFinish(curtask);
24 }
25 }
26 ...
27 }

Figure 8. ARTEMIS runtime main loop.

Mayfly [31], ARTEMIS requires keeping track of timestamps,
which implies persistent timekeeping [22, 31, 35, 51] helping
not to lose the notion of time due to power failures.
The ARTEMIS property and intermediate specification

languages are implemented in the Xtext language work-
bench [27] that uses the Eclipse Modeling Framework (EMF)
[45] for model manipulation. EMF supports tools for model-
to-model and model-to-text transformations used to imple-
ment the ARTEMIS generator pipeline. When generating
monitors, we used ImmortalThreads [50] library to enable
power failure-resilient execution of the generated monitors.

4.1 ARTEMIS Observable Runtime

Figure 8 presents the main entry of the ARTEMIS runtime.
Initial Hard Reset. When the system boots for the first
time, the monitor is initialized to reset its internal variables
(resetMonitor, Line 14), performed only once during the
application life cycle. This hard reset is necessary not only for
monitoring properties but also for task handling (not shown
in the code listing) since there are internal variables that
should be initialized for the consistent start of the system.
Reboot and Monitor Progress. Another issue is keeping
application-specific monitors always in a consistent state
since a power failure might interrupt monitoring. At each
reboot, ARTEMIS progresses the monitor to finalize its in-
terrupted task (monitorFinalize, Line 16).
Monitor Event Structure. ARTEMIS maintains a persistent
variable event of type MonitorEvent_t, which is a structure
that holds the event type (task start or task end), the event
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1 task_t *checkTask(task_t *curtask){
2 ...
3 // check current task status
4 switch(curtask->status){
5 case TASK_READY:
6 event.kind = StartTask;
7 event.timestamp = GetTime();
8 break;
9 case TASK_FINISHED:
10 event.kind = EndTask;
11 event.depData = curtask->depData;
12 break;
13 }
14 // monitor checks properties and returns the action
15 result = callMonitor(taskEvent);
16 // decide the next task using the monitor action
17 return getNextTask(result);
18 }
19
20 task_t * taskFinish(task_t *curtask){
21 // update finish time
22 curtask->finish = event.timestamp = GetTime();
23 // set the status of the task
24 curtask->status = TASK_FINISHED;
25 ...
26 return checkTask(curTask);
27 }

Figure 9. Calling monitor and determining next task.

timestamp, and a task pointer. This variable is used to pass
the event type and corresponding data to the monitor for
checking the system properties specified by the developer.

4.1.1 Task Execution ARTEMIS employs a task-based
model [15, 31, 38, 48], where tasks are atomic, and their re-
execution is idempotent. It executes a task and commits its
changes only after the task execution is finalized. ARTEMIS
maintains a structure to hold information to manage the
tasks, such as task status (TASK_READY and TASK_FINISHED),
task pointer, and timestamps regarding task start and finish.
ARTEMIS Main Loop. ARTEMIS executes tasks by execut-
ing the loop in Lines 18–25 in Figure 8. The runtime calls
checkTask (Line 20) to check the properties of the current
task. If the properties are satisfied (indicated by the equality
of the current task pointer and the returned value from the
checkTask), the task is run (Line 21). Otherwise, checkTask
returns the next task whose properties is checked in the
next iteration. If the task is run without a power failure,
taskFinish is called (Lines 23) to finalize the task execution
and get the next task to execute. If a power failure occurs,
the loop is called again without any inconsistency issue.

4.1.2 Property Checking and Executing Tasks. Func-
tion checkTask in Lines 1–18 in Figure 9 checks the proper-
ties of the given task and returns the task to be executed.
Path and Task Order. The path order in the task graph is
followed during task execution. Once a path is selected, its
tasks are executed sequentially in the specified order until the
path is completed or prematurely halted due the violation of

associated task/path properties. The subsequent path and its
tasks are executed similarly, ensuring application progress.
Property Checking. Upon its initial launch, ARTEMIS se-
lects the first task of the first path and sets the task status
as TASK_READY. As the main loop commences execution, it
invokes checkTask, which fills the event structure (event)
with the event information StartTask (Figure 9, Lines 5–8).
It calls the monitor via callMonitor to retrieve the prop-
erties to be checked by the monitor (Line 15). If a power
failure occurs after the first task is selected, ARTEMIS re-
invokes checkTask from the case TASK_READY (Line 5) and
re-engages the monitor with the StartTask event.
Property Violation. After calling callMonitor, the moni-
tor returns the property violation status and corresponding
action (Line 15). ARTEMIS checks the result and decides
the next task utilizing this information (getNextTask, Line
17). If all properties are satisfied, getNextTask returns the
current task to be executed by ARTEMIS (Figure 8, Line 21).
If there is a property violation, getNextTask returns a task
in the application graph based on the property specification.
Task Finish. Upon task completion, taskFinish is called
(Figure 9, Lines 20–27) to update the end-time fields of both
task structure and event data (Line 22) and set the current
task status to TASK_FINISHED. checkTask is invoked to send
the EndTask event to monitor, to let the monitor check the
properties, and to return the next task to execute (Line 26).

4.1.3 Timestamps Consistency. As depicted in Figure 9,
the assignment of timestamps to task start and end events
occurs at distinct sections of the code. In the event of a power
failure after the task status has been set to TASK_FINISHED,
ARTEMIS refrains from updating the timestamp of the End-
Task event, ensuring that callMonitor consistently receives
the accurate finalization time of the task. Conversely, during
the initial triggering of callMonitor by the StartTask event,
the monitor does not internally record the start time. Con-
sequently, although the timestamp of the StartTask event
is updated with each restart prompted by a power failure
(Lines 5–8), the monitor disregards these values and retains
the initial timestamp. These considerations bear significance
in checking time-related properties accurately.

4.2 Intermittently-Executable Monitors in C

The ARTEMIS specification and intermediate languages are
implemented using the Xtext languageworkbench [27], which
offers text-based syntax defined by an Xtext grammar. This
grammar enables automatic editor and parser generation.
After parsing, specifications become EMF models, allow-
ing the use of Model Driven Engineering (MDE) techniques
like model-to-model and model-to-text transformations. The
Xtext-generated editors provide advanced features such as
syntax highlighting, auto-completion, and type checking,
enhancing the development experience.
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Monitor Code Generation. Generating C monitoring code
from ARTEMIS property specifications involves a two-step
process. First, the specifications are transformed into state
machines in the ARTEMIS intermediate language through
a model-to-model transformation. This transformation con-
tains syntax-directed mapping rules, where each property
in the specification language corresponds to a template en-
coding the associated state machine. Furthermore, there are
transformation templates for the simpler syntactical con-
structs such as expressions, constants, and function calls.
The mapping rules are encoded in a Java-like language inte-
grated into the Xtext workbench.
Subsequently, the state machines are translated into C

code via a model-to-text transformation. This translation
is relatively straightforward, with various possible imple-
mentations documented in existing literature [25, 30]. The
transformation process navigates the state machine in a top-
down fashion (processing the states, the transitions, and the
statements in their bodies). The main challenge in designing
the resulting C code lies in ensuring its suitability for inter-
mittent execution, although this aspect does not pose a chal-
lenge for the transformation process itself. To overcome this
challenge, the state machines are translated into C code us-
ing the ImmortalThreads library [50], equipped with a com-
piler frontend facilitating source-to-source transformations
to generate intermittently executable binaries. This library
furnishes C macros for constructing power failure-resilient
monitors, employing a local continuation approach to re-
sume execution post-power failures. To advance the monitor
and conclude event handling after reboots, ARTEMIS invokes
the monitorFinalize function (Figure 8, Line 16).

4.2.1 Code Example. Figure 10 presents a simplified ren-
dition of the monitor code generated by the ARTEMIS frame-
work. This generated monitor code implements the interface
callMonitor, which functions to receive event notifications
and provide result feedback. callMonitor takes an event
parameter comprising the event type, timestamp, and task
pointer. It returns a result structure containing the action
type and path information.
Data Structures. The monitor maintains the property_t
data structure (Lines 1–9) to check the property violation
and decide on the action. This data structure encompasses
the properties and corresponding actions for each task in
the system. For instance, the MITD_t structure includes the
time limit, dependent task pointer, and the action type to be
applied in the event of a property violation.
MITD Example. The monitor checks the elapsed time by
using the finish time of the dependent task (Line 14), the
current time sent by the runtime via event e, and the time
limit field (Line 13) in MITD_t. If there is time a violation, the
action in the action field is returned to the runtime.
Maximum Attempt Example. The MITD_t structure em-
ploys the max (Line 16) and maxAction (Line 17) fields to

1 // Properties data structure for tasks
2 typedef struct {
3 MITD_t mitd[MAX_TASK];
4 Collect_t col[MAX_TASK];
5 ReExe_t reExecution;
6 ExeTime_t executionTime;
7 Periodic_t periodic;
8 ...
9 } property_t;
10
11 // Data structure of each constraint
12 typedef struct {
13 uint64_t timeLimit;
14 task_t *dependentTask;
15 type_action action;
16 uint64_t max; // maximum attempt
17 type_action maxAction; // maximum attempt action
18 ...
19 }MITD_t;
20
21 // monitor interface
22 void callMonitor (MonitorEvent e){
23 _begin // for ImmortalThreads
24 if(e.kind == startTask){
25 check_MITD_const(e.task);
26 ...
27 update_Exetime_const(e.task);
28 }else if (e.kind == EndTask){
29 check_Exetime_const(e.task);
30 update_MITD_const(e.task);
31 ...
32 }
33 _end // for ImmortalThreads
34 }

Figure 10. Generated monitor (simplified for readability).

check the MITD property, considering a number of attempts
determined by the user (maxAttempt in Table 1). As depicted
in Figure 5, the monitor monitors the consecutive attempts
for the MITD property. If the MITD property remains unsat-
isfied after three attempts, the monitor sends the skipPath
action (specified in the maxAction field, Line 17) to the run-
time to prevent non-termination.
Other Properties. Similarly, the monitor keeps required
parameters in the property_t data structure.

4.2.2 Extending Properties. Wepresent a scenariowherein
the property specification language undergoes expansion to
accommodate a new property type, analyzing its implica-
tions on the framework’s key components. In intermittent
systems, energy awareness is vital for estimating a task’s
likelihood of uninterrupted completion based on the current
capacitor energy level. This awareness can be integrated into
ARTEMIS as a novel property, enabling pre-task execution
energy level checks and potential task skipping if energy
levels are insufficient. Implementation of this extension in-
volves the following steps. Firstly, the ARTEMIS specifica-
tion language is updated to include the new property type
and a built-in primitive for retrieving current energy lev-
els, integrated as new grammar rules. Secondly, the runtime
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is augmented with a function to access capacitor energy
levels, contingent upon suitable hardware support. Subse-
quently, the property-to-intermediate-language generator is
expanded to include a template for the new property. Modifi-
cations in the application-specific monitor generator involve
translating calls to the new energy awareness primitive into
calls to the corresponding runtime function. These changes
are straightforward, additive, and non-disruptive, leaving
existing application code unchanged. Adopting the Xtext
language workbench in ARTEMIS facilitates these modifica-
tions with minimal effort.

This hypothetical scenario underscores the importance of
the design objectives of our work, which aims to establish a
clear separation of responsibilities between application code,
runtime, and monitoring code. The proposed extension im-
pacts multiple components, yet the modifications are minor
and confined to specific areas. While specialized language
engineering expertise is necessary, this constitutes a pre-
dominantly one-time endeavor. Moreover, the entire process
remains transparent to application developers.

4.2.3 Atomicity and Forward Progress of the Mon-
itor We leveraged the ImmortalThreads library and its C
macros to construct monitors that can withstand power fail-
ures. These monitors employ a local continuation strategy,
enabling them to resume operation from their previous state
following a power interruption. This resilience is achieved
by storing all monitor variables in nonvolatile memory, en-
suring their persistence across power cycles. Consequently,
our ImmortalThreads-based monitors can facilitate forward
progress without necessitating runtime updates to monitor-
ing variables. In ARTEMIS, task boundaries signify points at
which task statuses are updated, ensuring synchronization
of all monitoring variables at these junctures. Therefore, the
ARTEMIS monitor seamlessly resumes the finalization of in-
voked monitors without encountering data inconsistencies,
even if it is interrupted by a power failure. We illustrate this
data consistency assurance using a timestamping example
in Section 4.1.3.

5 Evaluation
We compared ARTEMIS with Mayfly [31], a state-of-the-art
task-based intermittent computing solution that checks data
freshness and collection properties.
Benchmark Application. To assess the performance of
ARTEMIS and Mayfly, we used a wearable health monitoring
application (see Figure 6) tracking human body conditions
with the help of several wearable sensors.
Experimental Setup. Figure 11 presents our experimen-
tal testbed. We used an MSP430FR5994 [46] microcontroller
(MCU) with 256KB of FRAM (Ferroelectric RAM) and 4KB
of SRAM. We set the operating frequency of the MCU to
1MHz. We used the Thunderboard EFR32BG22 board [1]
as a sensor node comprising all the necessary sensors for

Powercast Transmitter

Powercast
Receiver MSP430FR

Sensor
node EFR32BG2

Figure 11. Evaluation setup.

the wearable health monitoring application: the temperature
sensor for measuring body temperature, the accelerometer
and the microphone for breath rate and cough detection,
and the BLE 5.0 module for sending data. We used a Power-
cast TX91501-3W [19] transmitter as a source of RF (radio
frequency) energy and a P2110 [20] receiver to harvest RF
energy and power our boards.
Evaluation Metrics.We considered five evaluation metrics:
(1) Runtime and Monitor Overhead is the overhead load to
the system in both time and energy metrics; (2) Execution
Time represents the time to finish the application while con-
sidering the given properties; (3) Energy Consumption is the
energy consumed to complete a single execution of the ap-
plication; (4) Non-termination refers to conditions that could
lead to the non-termination of a task, explicitly concerning
energy and time properties; and (5) Memory Overhead refers
to the extra memory the runtime and monitor occupy.

5.1 Benchmark Application Paths and Properties

Our benchmark consists of three paths for three health indi-
cators (see Figure 6).

Path #1 collects ten body temperature readings and trans-
mits the average. Hence, the calAvg task is characterized by
the collect property. Thus, ARTEMIS restarts the first path
until enough samples are collected.

Path #2 is responsible for calculating the respiration rate.
According to ourmeasurements, the accel task is the highest
power-consuming among other tasks. Therefore, we use the
maxTries property to prevent non-termination. If the power
failures occur consecutively ten times within the accel task,
ARTEMIS skips the path and proceeds to the next one. Thus,
ARTEMIS allows the application to complete and transmit
the remaining data, even if some data is missing. We have
the MITD property also in the accel and send tasks in this
path: the acceleration data must have been collected within
the last five minutes when the send task starts sending data.
If this property is not met, ARTEMIS restarts the respective
path. However, since the send and accel tasks have high
energy consumption, it is likely to experience power failures
during these tasks. In scenarios where the duration of a
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Figure 12. ARTEMIS prevents non-termination when charg-
ing time increases.

power failure surpasses the given time constraint, the real-
time nature of acceleration data cannot be preserved. Thanks
to the maxAttempt construct, the path is skipped to ensure
the completion of the send task and to avoid non-termination
if up-to-date data cannot be obtained after three attempts.

Path #3 includes the maxTries property for the micSense
task to prevent non-termination. The collect property is
also defined between micSense and send to guarantee the
transmission of at least one sample.

5.1.1 MayflyVersion. Mayfly does not support maxTries
and maxAttempt. Therefore, the Mayfly version of our appli-
cation solely utilizes the collect and MITD properties.

5.2 Results on Intermittent Power

Figure 12 depicts the total execution time during intermittent
execution with power failure durations (i.e., charging times)
ranging from 1 to 10 minutes in our testbed. Under intermit-
tent operation, tasks with peripheral operations, due to their
high energy requirements, might be interrupted by power
failures frequently. These frequent interruptions might lead
to the violation of timely data semantics due to long charging
times, leading to application non-termination. For instance,
Mayfly restarts path #2 when the time between the accel
and send tasks exceeds five minutes. In this case, the appli-
cation cannot progress and, in turn, finalize the execution
of paths, as the MITD property required by the send task is
never satisfied. Mayfly continues its re-execution attempts of
task accel to meet the property after each reboot, resulting
in a prolonged non-termination state. Therefore, the send
task will not be executed as long as the MITD is not satisfied.
As seen in Figure 12, charging durations exceeding 5 minutes
led to non-termination since Mayfly could never complete
the application execution and deliver beneficial results.

Figure 13 depicts howARTEMIS prevents non-termination
in the benchmark application. The maxAttempt construct al-
lows the ARTEMIS runtime to skip paths repeatedly failing.
These path skips enable the completion of the application
by taking alternative paths given by the programmer. Af-
ter attempt #3, ARTEMIS skips the path and executes the
send task, ensuring progress toward completing the applica-
tion. Hence, ARTEMIS responds to changing conditions and
adapts application execution.

5.3 Results on Time Overheads

To assess the time overheads incurred by ARTEMIS and
Mayfly during the execution of our benchmark application,
we used a continuously powered setup. With continuous
power, all timing properties of our benchmark are met during
task transitions in both Mayfly and ARTEMIS. Thus, the
task execution flow is identical without property violations,
leading to a fair and repeatable comparison.

Figure 14 provides a comprehensive overview of the exe-
cution time of our benchmark application and the associated
overheads. The comparison focuses on the execution time of
the application logic and the minimal, acceptable overheads
imposed by both ARTEMIS and Mayfly.

ARTEMIS and Mayfly adopt a graph-based programming
model for property checking during task transitions. Mayfly
focuses on time-related properties and data collection counts
between tasks; ARTEMIS checks a broader range of proper-
ties through separate monitors and takes actions specified by
these monitors in cases of property violations. This design
choice of ARTEMIS introduces a slightly higher overhead
due to the additional property checking and communication
between the runtime and monitors. However, despite this dif-
ference, the overall execution times of both systems remain
nearly identical.

Figure 15 presents a more detailed breakdown of the over-
heads. The x-axis is scaled in milliseconds for a finer resolu-
tion than the seconds scale in Figure 14. In this detailed view,
ARTEMIS incurs additional overhead compared to Mayfly,
primarily due to its thorough property checking and the sep-
aration of monitoring logic from the application. However,
these overheads are still deemed negligible. The distinction
in runtime and monitoring overheads reflects the design of
ARTEMIS, which enhances reactivity and flexibility. This
design choice empowers programmers to tackle power fail-
ures with a diverse set of solutions, making ARTEMIS an
adaptable and robust system for various scenarios.

5.4 Results on Energy Consumption

Figure 16 depicts the energy consumption in ARTEMIS and
Mayfly to complete the application for a single run in con-
tinuous and intermittent execution scenarios with different
charging delays. In conditions of continuous power and in-
termittent execution with one and two minutes of charging
delay, ARTEMIS and Mayfly demonstrate similar energy
consumption in completing the application. This parity is as
anticipated, given that the benchmark’s timing requirements
are satisfied, and the task sequence remains unchanged.
During intermittent execution with longer charging de-

lays, Mayfly exhausts its stored energy by repeatedly exe-
cuting the accel task to meet the MITD property between
the accel and send tasks. Consequently, the application’s
energy demands become effectively unbounded as it contin-
uously consumes energy without completing. Conversely,
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Figure 13. ARTEMIS prevents non-termination by using maxAttempt construct.
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Figure 14. Overheads introduced by ARTEMIS and Mayfly
during application execution on continuous power.
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Figure 15. A detailed view of overheads in Figure 14. Note
that the x-axis scale of this figure is in milliseconds.
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Figure 16. Energy consumption of ARTEMIS and Mayfly
for continuously and intermittently powered setups.

Table 2. Memory Requirements (in Bytes).
Mayfly ARTEMIS
Runtime Runtime Monitor

.text RAM FRAM .text RAM FRAM .text RAM FRAM

1152 2 6354 1512 2 4756 4644 0 15856

ARTEMIS utilizes the maxAttempt construct to bypass the
path after three failed attempts. This results in an energy
consumption three times higher compared to continuous
execution to finish the application.

5.5 Results on Memory Requirements

Table 2 shows the code size (.text segment) and RAM and
FRAM requirements of the benchmark application. Com-
pared to Mayfly runtime, ARTEMIS runtime requires less
FRAM since it has separate runtime and monitor compo-
nents. Additional memory overhead was incurred due to
the monitors generated for the benchmark application. Note
that monitors include data structures and variables stored in
FRAM to track properties and change the task flow to prevent
property violations, which are application-specific. In our
current implementation, this memory cost remains within
an acceptable range without performing any optimization.

6 Prior Works and Our Differences

Table 3 compares key characteristics of our approach with
the most relevant studies to our work, notably TICS [35],
InK [48], Mayfly [31], and ImmortalThreads [50]. These stud-
ies mainly focus on the timing properties of intermittent
programs. Mayfly [31], for instance, focuses on task-based
systems with a data freshness consideration. It features a lan-
guage to express data expiration during task transitions and
a runtime that checks if the data consumed by the current
task is still fresh. InK [48] also provides data freshness checks
at runtime. TICS [35] is a checkpoint-based system that uses
source-code annotations to enforce time consistency during
intermittent execution, inserting code to check data expi-
ration and ensure timely operations. ImmortalThreads [50]
follows a similar approach in this context.
Our Novelty. To be brief, all mentioned solutions propose
intermittent computing runtimes that keep track of only a
specific property of intermittent systems and detect viola-
tions regarding this property, e.g., mainly time consistency
violations. They do not provide a modular architecture; they
support limited runtime adaptation. Contrary to existing
approaches, ARTEMIS enables the specification of complex
properties based on a fixed set of primitives reflecting the ex-
ecution of a task-based application. It separates monitoring
logic from the runtime dealing with intermittent execution.
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Table 3. Comparison of the main features of ARTEMIS against state-of-the-art solutions.
Prior Art Property Specification Property Checking Runtime Adaptation

DINO [37], Chain [15], Alpaca [38],
HarvOS [11], Chinchilla [39],

Coati [44],
No language constructs Explicitly by programmer Explicitly by programmer

Capybara [16] No language constructs Non-termination checked by compiler Compile-time solution (NA)
Etap [26] No language constructs Timeliness checked by analysis tool Compile-time solution (NA)

Mayfly [31] Limited support for temporal properties Runtime checks (only expiration) Runtime restarts task-graph
InK [48] Limited support for temporal properties Runtime checks (only expiration) Runtime evicts thread upon expiration

TICS [35] Limited support for temporal properties Runtime checks (only expiration) Runtime executes programmer-specified code upon
expiration

ImmortalThreads [50] Limited support for temporal properties Runtime checks (only expiration) Runtime evicts thread upon expiration

ARTEMIS

Seperation of property specification from
application: Extendable and separate
language supports several properties.
Other property specification languages
can also be mapped to the intermediate

language.

Seperation of monitoring module from
runtime: Automatically generated
application-specific monitors check

properties. These monitors are generated
as a separate module interacting with the

runtime using generic interfaces.

Seperation of monitoring module from runtime:
Monitors interact with runtime to trigger

programmer-specified actions. These actions
enable intermittent systems to respond effectively to
energy disruptions and varying operating conditions.

Moreover, it automatically generates monitor code interact-
ing with the runtime module using a generic interface, which
allows scalability with minimal programmer effort.
Runtime monitoring is an established field with diverse

approaches, languages, and tools [10, 28]. While it primarily
focuses on evaluating properties based on system observa-
tions, our work goes further by defining specific actions for
failures. ARTEMIS addresses challenges specific to ambient-
powered devices with unique energy collection methods. To
our knowledge, no other approaches apply runtime monitor-
ing techniques in intermittent computing. ARTEMIS utilizes
state-based specifications as an intermediate language, simi-
lar to Larva [18] and Comma [36]. Unlike traditional runtime
monitoring approaches well-suited to continuously pow-
ered systems, ARTEMIS addresses the inherent challenges
of intermittent computing by considering the power-failure
resilience of monitors. Furthermore, ARTEMIS explores pos-
sible actions to be taken when monitoring reveals property
violations. This adaptability is crucial in intermittent com-
puting, where energy disruptions can occur at any moment.

Our approach alignswith the principles of Aspect-Oriented
Programming (AOP) [33]. AOP identifies code entangled
across multiple modules within the main program logic, re-
ferred to as crosscutting concerns, and extracts them into
separate modules called aspects. These aspects are then wo-
ven into the main code using specialized tools. In our ap-
proach, the properties related to the intermittent behavior
are treated as aspects and require a separate specification.
Unlike AOP, however, ARTEMIS does not merge the gener-
ated monitor code with the application code. Nevertheless,
in theory, this approach can also be applied to integrate the
two. Such integration could lead to a larger memory foot-
print, which is problematic for resource-constrained edge
devices where ARTEMIS is intended to operate efficiently.
For instance, when properties need to be monitored at mul-
tiple points in the application, duplicating the monitoring
code in various places can result in larger memory usage
(the same code for monitoring properties may need to be
repeated in multiple parts of the application). Separating the

monitoring code from the application code helps manage
these memory concerns efficiently, ensuring that ARTEMIS
remains practical for its intended use cases.

7 Discussion and Future Work
Power Failure-Resilient Runtime. We discussed the gen-
eration of power failure-resilient monitors in Section 4.2.
The ARTEMIS runtime can be a subject of the same consider-
ation: in case of power failure during the runtime operation,
do we have guarantees that the execution of the runtime,
application tasks, and monitors will continue correctly after
the system restart? Rigorously demonstrating these guaran-
tees and possibly formalizing the interaction among runtime,
tasks, and monitors is a point for future work.
Enhanced Modularity. ARTEMIS enables the separation of
the property specification from the application code. This ap-
proach allows for a more organized and clear code structure,
facilitating easier management and maintenance of intermit-
tent systems. By decoupling property descriptions, ARTEMIS
promotes code reusability and facilitates the addition, mod-
ification, or removal of properties without impacting the
underlying application logic. This modularity simplifies sys-
tem development and enhances code maintainability.
Usability of Property Specification Language. The sup-
port for modularity frees the developer from handling the
complex task of integrating the application logic and moni-
toring logic. However, it comes with the price of learning the
ARTEMIS property language. We believe that this is not a
serious obstacle. The examples in the paper demonstrate that
the property specifications are simple, expressed in compact
syntax, and very close to annotation-based approaches.
Adaptive System Execution. One advantage of ARTEMIS
is its support for adaptive runtime monitoring. The property
specification language enables dynamic adaptation of inter-
mittent systems’ execution based on properties monitored,
such as timing behavior or task executions. This adaptive
execution capability enables intermittent systems to respond
effectively to energy disruptions and varying operating con-
ditions. ARTEMIS empowers developers to create systems
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that can autonomously adjust their execution strategies, en-
suring reliable and efficient execution in the face of changing
energy availability or other runtime factors.
Abstraction and Simplification. The intermediate lan-
guage provides an abstraction layer between the ARTEMIS
property specification language and the target C code. This
abstraction enables the representation of the desired proper-
ties in a higher-level language closer to the problem domain.
It simplifies the translation process by capturing the essen-
tial semantics and concepts of the property specifications in
a more concise and manageable form.
Support for Other Languages. The intermediate language
can play a pivotal role in supporting other property specifi-
cation languages (e.g., Mayfly [31]) in ARTEMIS. By leverag-
ing model-to-model transformations [21], we can map the
constructs and semantics of diverse specification languages
to the common intermediate language. This mapping en-
ables the utilization of multiple specification languages, each
tailored to specific properties, while still benefiting from
the unified representation provided by the intermediate lan-
guage. Developers can choose the most suitable language for
their needs while maintaining compatibility with ARTEMIS
and its code-generation capabilities.
Property Consistency Checking. Generally, we admit the
possibility that the simultaneous use of time-related proper-
ties such as periodicity, maximum duration, and inter-task
delays may lead to inconsistent specification. Here, incon-
sistency means that there is no sequence of task executions
that satisfies all constraints. Consistency checking of prop-
erty specifications is a non-trivial future work. We envis-
age translating constraints to time-aware models that allow
model checking with state-of-the-art tools. This translation
can ensure that specifications accurately capture the desired
properties of the intermittent system to be monitored.
ImplementationAlternatives. Several different implemen-
tation alternatives merit examination as future work. One
approach that brings performance gains is compiler instru-
mentation that automatically inlines the monitoring code
within the application and runtime. Inlining enables a more
tightly integrated system by eliminating calls between differ-
ent modules for property checking. However, this implemen-
tation comes at the cost of an increased memory footprint, as
mentioned in Section 6. Another approach can be deploying
monitors onto external devices that communicate wirelessly
with the device that executes the application to be moni-
tored. Wireless communication is way more energy-hungry
compared to computation, which can result in significant
overheads when observing events and providing feedback.
However, employing external monitors offers modularity
and facilitates the deployment of new monitors and adapting
existing ones directly on external devices without recompil-
ing and deploying the application and runtime. Evaluating
these alternatives (and probably others) involves a trade-off

between resource utilization, code maintainability, and per-
formance efficiency, emphasizing the need for a carefully
tailored solution that aligns with unique constraints and
requirements of intermittent computing scenarios.

8 Conclusion
We introduced ARTEMIS, a novel runtime and monitoring
framework for intermittent systems. Utilizing a dedicated
property specification notation and having separate runtime
and monitor components in ARTEMIS enhance its flexibil-
ity and scalability. It offers a robust and adaptable solution
that addresses non-termination conditions and incorporates
specific actions for property violations. In our experiments,
ARTEMIS demonstrated comparable efficiency to a state-of-
the-art solution, while its unique features provided distinct
advantages in preventing non-termination scenarios. Future
work could focus on minimizing further the runtime and
monitoring overhead while exploring its additional applica-
tions where intermittent computing is prevalent.
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A Artifact Appendix
A.1 Abstract

ARTEMIS is the first framework designed to facilitate flexi-
ble property checking of intermittent programs at runtime.
ARTEMIS is developed based on techniques from the area

of runtime monitoring, offers a specification language for
specifying an open set of properties, and provides automatic
generation of monitors responsible for checking the proper-
ties. In ARTEMIS, developers use a language to define desired
properties of the intermittent system, focusing on system
properties rather than implementation specifics.

A.2 Description & Requirements

A.2.1 How to access All the project source codes are avail-
able in the following Github repository: https://github.com/
tinysystems/ARTEMIS. The artifact evaluation materials are
reachable from d87e02906c79c6e04c84e0d6c25af5f59d7559e6
commit.

A.2.2 Hardware dependencies ARTEMIS requires Texas
InstrumentsMSP430FR series FRAM-enabledmicrocontrollers.
Our evaluation is performed on MSP430FR5994 LaunchPad
Development Kit.

A.2.3 Software dependencies ARTEMIS Languages and
Code Generator can be loaded and used in Eclipse, distri-
bution Eclipse IDE for Java and DSL Developers. Once the
projects are loaded in the Eclipse workspace they can be built
as any regular Xtext project and used in a runtime Eclipse
instance. The provided example project can be loaded in this
runtime instance.

A.3 Set-up

ARTEMIS consists of two main components ARTEMIS Code
Generator ("src" folder) and ARTEMIS runtime/monitor (run-
time -monitor folder). The repository also contains the ex-
ample holder which includes a Heath Monitoring App.

A.3.1 ARTEMIS Languages and Code Generator The
implementation of the ARTEMIS languages is located in the
"src/dsl" folder. There are three languages: Base (provides
commonly found constructs), Spec - the ARTEMIS property
specification language, and SM - the language for express-
ing monitors as state machines. All languages are imple-
mented in the Xtext language workbench. The grammars
can be found in the "src" folders of projects org.artemis.base,
org.artemis.spec and org.artemis.sm. The code generator
from property specifications to state machines can be found
in project org.artemis.spec, package org.artemis.spec.generator.

A.3.2 ARTEMIS Runtime/Monitor The ARTEMIS run-
time and monitor are located in the "runtime-monitor" folder
as a static C library. This library includes hardware configu-
ration for MSP430FR5994, as well as ARTEMIS source codes,
such as memory configuration MACROS for non-volatile
variables (mem.h), and a timekeeping simulator (clock.h).
The ARTEMIS runtime’s source code and headers can be
found in the "libartemis" folder, while the ARTEMIS moni-
tor’s source code and headers are located in the "monitor"
folder. Additionally, the Artemis C library includes a small
version of Immortal Threads in the "ImmortalLib" folder,
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since the monitor code utilizes Immortal Threads to ensure
monitoring against intermittent execution constraints.

A.4 Evaluation workflow

A.4.1 ARTEMISExample The example is located in folder
"examples/ArtemisExample". It contains a model expressed
in the ARTEMIS language and is an implementation of the
example shown in Figure 5.
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