
Reconstructing Chameleon Hash:
Full Security and the Multi-Party Setting
Kwan Yin Chan

kychan@cs.hku.hk

The University of Hong Kong

Pokfulam, Hong Kong

Liqun Chen

liqun.chen@surrey.ac.uk

University of Surrey

Guildford, United Kingdom

Yangguang Tian

yangguang.tian@surrey.ac.uk

University of Surrey

Guildford, United Kingdom

Tsz Hon Yuen
∗

john.tszhonyuen@monash.edu

Monash University

Clayton, Australia

ABSTRACT
Chameleon hash (CH) function differs from a classical hash func-

tion in a way that a collision can be found with the knowledge of a

trapdoor secret key. CH schemes have been used in various crypto-

graphic applications such as sanitizable signatures and redactable

blockchains. In this work, we reconstruct CH to ensure advanced

security and usability. Our contributions are four-fold. First, we

propose the first CH scheme, which supports full security, meaning

the inclusion of both full indistinguishability and full collision-

resistance. These two properties are required in the strongest CH

security model in the literature. We achieve this by our innovative

design of removing the CH public key during the computation of

the hash value. Second, we investigate the security of CH in the

multi-party setting and introduce the new properties of claimability
and deniability under this setting. Third, we present and implement

two instantiations of our CH scheme: an ECC-based one and a

post-quantum lattice-based one. Our implementation demonstrates

their practicality. Finally, we discuss the possible use cases in the

blockchain.

CCS CONCEPTS
• Security and privacy→Mathematical foundations of cryp-
tography.

KEYWORDS
Chameleon hash, Full Security, Multi-party Setting, Post-Quantum

Cryptography

ACM Reference Format:
Kwan Yin Chan, Liqun Chen, Yangguang Tian, and Tsz Hon Yuen. 2024.

Reconstructing Chameleon Hash: Full Security and the Multi-Party Setting.

In ACM Asia Conference on Computer and Communications Security (ASIA
CCS ’24), July 1–5, 2024, Singapore, Singapore. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3634737.3656291

∗
Corresponding author

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0482-6/24/07

https://doi.org/10.1145/3634737.3656291

1 INTRODUCTION
Chameleon hash (CH) function was introduced by Krawczyk and

Rabin at NDSS 2000 [21]. A chameleon-hash CH function is a trap-

door collision-resistant hash function parameterized by a public

key. Chameleon hash outputs a hash value ℎ and a randomness (or

check string) 𝑟 for a given message𝑚 and a public key pkch. The
owner of the secret key skch can use 𝑟,𝑚 to generate a different

randomness 𝑟 ′ for another message𝑚′. The hash output pairs (ℎ, 𝑟)
and (ℎ, 𝑟 ′) are valid for the message𝑚 and𝑚′ respectively. In the

classical CH construction [21]:

ℎ = 𝑔𝑚pk𝑟ch,

where 𝑔 is a generator and pkch = 𝑔skch . In order to adapt ℎ to a

different message 𝑚′, the owner of the secret key just needs to

calculate 𝑟 ′ such that:

𝑚 + skch · 𝑟 =𝑚′ + skch · 𝑟 ′ .

The operation of computing (𝑚, 𝑟) is referred to as “hashing" and

of computing (𝑚′, 𝑟 ′) as “adapting".
CH functions have been used as building blocks for many crypto-

graphic primitives and real-life applications, including online/offline

signatures [31], sanitizable signatures [1], double-authentication-

preventing signatures [27], ring signatures [24], asynchronous

payment channels [29], redactable blockchains [2] and privacy-

preserving payment channel networks [33].

1.1 Full Security in Chameleon Hash
A chameleon hash usually needs to achieve indistinguishability

(IND) and collision-resistance (CollRes). IND means that the ran-

domness associated with a chameleon hash does not reveal whether

it was derived from hashing or adapting. The full indistinguisha-

bility property [30] implies that any third parties cannot break

indistinguishability even if the secret key skch is generated by the

adversary. CollRes means that given the public key pkch, no third

parties can find two pairs (𝑚, 𝑟) and (𝑚′, 𝑟 ′) that are valid under

pkch andmap to the same chameleon hash valueℎ. The full collision-

resistance property [11] implies that the adversary can adaptively

query the CHAdapt oracle and use a queried message 𝑚 as the

attack on the collision-resistance property as long as the pair (ℎ,𝑚)
was not involved in the CHAdapt oracle query. The definitions

of IND and CollRes are various in the literature, including weak

[21], enhanced [2], standard [7] and full security [11] for CollRes,

1076

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-2703-5903
https://orcid.org/0000-0003-2680-4907
https://orcid.org/0000-0002-6624-5380
https://orcid.org/0000-0002-0629-6792
https://doi.org/10.1145/3634737.3656291
https://doi.org/10.1145/3634737.3656291
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3634737.3656291&domain=pdf&date_stamp=2024-07-01

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Kwan Yin Chan, Liqun Chen, Yangguang Tian, and Tsz Hon Yuen

and standard [7], strong [12] and full security [30] for IND. The
complete discussions can be found in [11, Section 5 & Appendix

A]. A CH scheme supporting IND (or CollRes) but not full IND
(or full CollRes) is said that it holds standard IND (or standard

CollRes). As discussed in [11], the full indistinguishability and the

full collision-resistance are the strongest security models in the

literature.
1

Full indistinguishability. The RSA-based CH construction from

Brzuska et al. [4] has full indistinguishability and standard collision-

resistance. In this scheme, the hash algorithm picks a randomness

𝑟 and sets the hash value ℎ = 𝐻 (𝑚) · RSA.Encpkch (𝑟), where 𝐻 is a

full domain hash function. By use of the secret key skch, one can
set

ℎ = 𝐻 (𝑚) · RSA.Encpkch (𝑟) = 𝐻 (𝑚′) · RSA.Encpkch (𝑟
′),

with different pairs (𝑚, 𝑟) and (𝑚′, 𝑟 ′). Hence, due to the security

of RSA.Enc, it achieves full indistinguishability. In the proof of

the standard collision-resistant, the CHAdapt oracle query is an-

swered by (the oracle of) the one-more RSA problem in [30]. In

the challenge phase, the adversary returns a new message𝑚∗ that
has not queried before, and hence the output of the adversary can

be used to solve the one-more RSA problem. However, the same

proof cannot work in the full collision-resistance model, since the

adversary is allowed to return some old message𝑚 that is queried

to the CHAdapt oracle before.

Full collision-resistance. Derler et al. [11] proposed a generic

construction of chameleon hashes (denoted as DSS20) by using

public key encryption (or a commitment [10]) and a zero-knowledge

proof. In DSS20 [11], the hash value ℎ = Encpkch (𝑚; 𝜌), which is the
encryption of𝑚 under the randomness 𝜌 . The randomness 𝑟 is the

non-interactive zero-knowledge (NIZK) proof of knowing 𝜌 with

respect to ℎ, or knowing skch with respect to pkch. They achieve

full collision-resistance by the use of NIZK proof in generating

𝑟 . By using the simulator of the NIZK proof, the CHAdapt oracle
query can be answered without the knowledge of the secret key

skch. However, DSS20 [11] cannot achieve full indistinguishability,
since they define the hash value ℎ = Encpkch (𝑚; 𝜌). By using the

decryption key, the original message𝑚 is decrypted and breaks the

full indistinguishability.

As summarized in Table 1, it is an open problem to design a

chameleon hash with full indistinguishability and full collision-

resistance.

1.2 High-Level Idea of Our Scheme
Before presenting our solution, we first describe a practical attack

on CollRes, which is not considered in the existing security model.

This attack inspires us to formulate our new generic construction

of chameleon hash with full security.

Security in the Multi-key Setting. The existing security models

of chameleon-hash only consider a single public key pkch. For
CollRes, no polynomial time attacker can output ℎ and two pairs

(𝑚, 𝑟) and (𝑚′, 𝑟 ′) that are valid under pkch. However, we consider
a key replacement attack for the classical CH construction [21] by

1
There is another property called uniqueness [7], but it is not considered as a funda-

mental property.

an attacker who knows a valid (𝑚, 𝑟) under pkch. He can pick a

random 𝑟 ′ and calculate:

pk𝐴 = pk
𝑟/𝑟 ′
ch · 𝑔

(𝑚−𝑚′)/𝑟 ′ ,

for any message𝑚′. Now we can see that (𝑚′, 𝑟 ′) and ℎ is valid

under pk𝐴 , since:

𝑔𝑚
′
pk𝑟

′
𝐴 = 𝑔𝑚

′
(pk𝑟/𝑟

′

ch · 𝑔
(𝑚−𝑚′)/𝑟 ′)𝑟

′
= 𝑔𝑚pk𝑟ch = ℎ.

We observe that this attack is outside the existing security model

of CollRes. In fact, this attack also applies to schemes in which

ℎ is additive/multiplicative homomorphic over pkch. Details can
be found in the Appendix A. A simple solution to avoid this key

replacement attack is to change the hash value to (ℎ, 𝐻 ′ (pkch))
for some hash function 𝐻 ′. An additional checking over 𝐻 ′ (pkch)
is needed to prevent the key replacement attack. Since the fix is

simple, we do not change the existing models to capture this attack,

and we also do not write𝐻 ′ (pkch) explicitly in the rest of the paper.

From this attack, we observe that even if we use pkch in the

calculation of ℎ, it cannot prevent the key replacement attack. On

the other hand, it may even harm the full indistinguishability with

the use of pkch (the case of [11]).

Our Solution: “Hashing" without CH Public Key. In this pa-

per, we reconstruct the chameleon hash and change the way we

calculate the hash value ℎ. Surprisingly, we find out that it is not

necessary for the “hash value" ℎ to contain any information about

the owner public key pkch. In contrast, we can use pkch only when

we calculate the “randomness" 𝑟 , i.e.:

ℎ = 𝐹ℎ (𝑚, 𝜌), 𝑟 = 𝐹𝑟 (𝑚, 𝜌, pkch),
for some functions 𝐹ℎ, 𝐹𝑟 and internal randomness 𝜌 . The hash

value ℎ itself is not bound to any public key, and hence it can

bind to anyone only when the creator generates 𝑟 . By using this

new structure, we can achieve full indistinguishability since the

knowledge of skch cannot help to distinguish if𝑚 is bound in ℎ.

We also choose to use a NIZK proof system for 𝐹𝑟 to achieve full

collision-resistance.

We give a new generic construction of chameleon hash by using a

one-way function 𝐹 , a collision-resistant hash function 𝐻 mapping

from the message space to the range of 𝐹 , and a NIZK proof system

for disjunctive relation (the so-called OR proof). Suppose that pkch
is generated from 𝐹 (skch). In order to hash a message𝑚, we first

pick a random 𝜌 and calculate

ℎ = 𝐹 (𝜌) ⊕ 𝐻 (𝑚),
where ⊕ is the bitwise XOR operation. The randomness 𝑟 is the

NIZK proof of knowing 𝜌 such that:

𝐹 (𝜌) = ℎ ⊕ 𝐻 (𝑚) ∨ 𝐹 (𝜌) = pkch .

The chameleon hash function outputs (ℎ, 𝑟). To verify the output

(ℎ, 𝑟), one just needs to validate the NIZK proof.

To adapt (ℎ, 𝑟) to another message𝑚′, the owner of skch calcu-

lates another NIZK proof 𝑟 ′ for the above relation, but proving the

knowledge of skch instead of 𝜌 , and it is now written as:

𝐹 (skch) = ℎ ⊕ 𝐻 (𝑚′) ∨ 𝐹 (skch) = pkch .

We can easily instantiate the generic construction in the elliptic

curve (ECC) setting and lattice-based setting. They are both practi-

cal for real-world use cases.

1077

Reconstructing Chameleon Hash: Full Security and the Multi-Party Setting ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Table 1: The comparison of security models between various CHs. − indicates IND is not required in [2, 21].

[21] [2] [7] [12] [30] [11] [10] Ours

CollRes Weak Enhanced Standard Standard Standard Full Full Full

IND - - Standard Strong Full Standard Strong Full

Multi-Party × ✓ × ✓ ✓ × × ✓

1.3 Chameleon Hash in the Multi-Party Setting
Apart from the generic construction, the key replacement attack

also inspires us to reconsider the security of chameleon hash, es-

pecially in the multi-party setting. Several CH schemes in Table 1

support multi-party setting, meaning that multiple trapdoor hold-

ers can perform adapting [12, 30]. Multi-party settings in the CH

scheme [9] and sanitizable signatures [5, 8] have been used in real

applications, such as content protection and secure routing.

The Creator and the Owner. The existing IND and CollRes secu-
rity models mainly consider attacks from a third party. In the model

of full indistinguishability [30] and strong indistinguishability [12],

the adversary can also obtain the secret key skch. However, none
of the existing models considers the ability of the original creator

of the hash output. To the best of our knowledge, there is not even

a formal name for this role. We name the one who created ℎ as the

Creator, while the one who owns the secret key skch as the Owner.

Claimability and Deniability. Next, we consider the ability of

the Creator. Consider the application that the hash output (ℎ, 𝑟)
is written in a redactable blockchain by the Creator, and then it

is later modified to (ℎ, 𝑟 ′) by the Owner using a smart contract.

Theoretically, it is possible that the Creator can claim the authorship

of ℎ, or claim that the original message𝑚 is associated with ℎ. For

example in DSS20 [11], ℎ = Encpkch (𝑚; 𝜌). By outputting (𝑚, 𝜌),
the Creator can claim the creation of ℎ and the original message

𝑚 if the Owner cannot recover valid encryption randomness for

any message𝑚′ using his secret key (this condition holds for the

ElGamal encryption instantiation used in [11]). It implies that the

Creator can voluntarily break the IND property based on ℎ. This

kind of insider attack is not considered in the literature.

After defining the roles of the Creator and the Owner, we can

even consider more complicated situations. The Creator or the

Owner may claim the authorship of the randomness 𝑟 or 𝑟 ′ gener-
ated by himself. It implies that either party can voluntarily break

the IND property based on 𝑟 or 𝑟 ′. For example in DSS20 [11], the

Creator or the Owner can use the randomness used in the NIZK

proof to claim such authorship. These situations may have different

implications in real-world applications.

When we consider it from the opposite direction, the Creator

or the Owner may deny generating the randomness 𝑟 ′ or 𝑟 respec-
tively. If one party denies generating a randomness, then it must

be generated by the other party. It implies that the IND property

can also be broken by the counterparty. However, it is non-trivial

to construct schemes with this deniability property.

Multi-Owner Chameleon Hash. After defining the roles of the
creator and the owner, it is natural for us to extend CH to a multi-

owner setting. It means that multiple parties have the ability to

adapt the hash value ℎ. At first glance, it may look easy to extend

it from the classical CH construction [21]. For a message 𝑚 and

randomly chosen 𝑟1, 𝑟2, compute:

ℎ = 𝑔𝑚 (pk(1)ch)
𝑟1 (pk(2)ch)

𝑟2 ,

for two owner public keys pk
(1)
ch , pk

(2)
ch . However, if the first owner

wants to adapt it, he can only change 𝑟1 to 𝑟
′
1
such that𝑚+sk(1)ch ·𝑟1 =

𝑚′ + sk(1)ch · 𝑟
′
1
. After adapting, he outputs (𝑚′, 𝑟 ′

1
, 𝑟2). It trivially

violates (the multi-owner version of) indistinguishability, since the

hash outputs (𝑚, 𝑟1, 𝑟2) and (𝑚′, 𝑟 ′
1
, 𝑟2) are not generated by the

second owner pk
(2)
ch .

Therefore, it is an open problem to define the security model

of the multi-owner version of indistinguishability, and to give a

secure construction. Fortunately, our generic construction can be

easily extended to the multi-owner setting. Since the construction

of ℎ does not involve any public key, we do not need to change

it. We just need to extend the disjunctive proof to a multiple one

when generating 𝑟 .

1.4 Our Contributions
In this paper, we study two main open problems in chameleon-hash:

• Achieving full indistinguishability and full collision-resistance

at the same time.

• Evaluating the (in)security of chameleon-hash in the multi-party

setting.

We propose a new generic construction of chameleon-hash, which is

inspired by our key replacement attack on existing schemes. It is the

first chameleon-hash that can achieve full indistinguishability and

full collision-resistance simultaneously. We define different parties

(creator and owners) involved in chameleon hash, and investigate

their ability to claim or deny the generation of the chameleon hash.

We also extend our generic construction to give the first multi-

owner chameleon hash.

2 BACKGROUND
2.1 Chameleon Hash
We show the definition of chameleon hashes [7, 11], which is based

on the work done by [2, 4].

• CHPG: It takes a security parameter 𝜆 as input, outputs public

parameters ppch.
• CHKG: It takes public parameters ppch as input, outputs a chameleon

key pair (skch, pkch).
• CHash: It takes the chameleon public key pkch, and a message

𝑚 ∈ M as input, outputs a chameleon hash ℎ, a randomness 𝑟 .

Note thatM = {0, 1}∗ denotes a general message space.

1078

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Kwan Yin Chan, Liqun Chen, Yangguang Tian, and Tsz Hon Yuen

• CHCheck: It takes the chameleon public key pkch, a message𝑚,

a chameleon hash ℎ and a randomness 𝑟 as input, outputs a bit

𝑏 ∈ {0, 1}.
• CHAdapt: It takes the chameleon secret key skch, messages𝑚,𝑚′,
chameleon hash ℎ and randomness 𝑟 as input, outputs a new

randomness 𝑟 ′.

Correctness states that a pair (ℎ, 𝑟), computed by theCHash algo-
rithm, verifies with overwhelming probability. Also, the CHAdapt
algorithm always verifies if the given chameleon hash ℎ is valid,

or it outputs ⊥. In the definition above, hashing is assumed to be

randomized. The randomness 𝑟 (or check string) is a public value,

and the implicit random coins (or internal randomness) are secret.

This definition is a generalization of standard chameleon hashes

[21]. Now, we present two security guarantees: full indistinguisha-

bility [30] and full collision-resistance [11], which will be used in

the security analysis of our proposed constructions.

Full Indistinguishability. Informally, for a chameleon hash, an

adversary cannot decide whether its randomness was freshly gen-

erated using CHash algorithm or was created using CHAdapt algo-
rithm. The adversary is allowed to generate the keys which are used

for hashing and adapting. We define a formal experiment between

an adversary A and a challenger S in Figure 1. The security ex-

periment allows A to access a HashOrAdapt oracle which ensures

that the randomness does not reveal whether it was obtained from

CHash or CHAdapt algorithm.

We define the advantage of A as

AdvINDA (𝜆) = |Pr[Exp
IND

A (𝜆) → 1] − 1/2|.

Definition 2.1. A CH scheme is fully indistinguishable if for any

probabilistic polynomial-time PPT A, AdvINDA (𝜆) is negligible in 𝜆.

Full Collision Resistance. Informally, an adversary attempts to

find valid collisions without using trapdoors. The adversary can ac-

cess an CHAdapt oracle: it takes messages (𝑚,𝑚′) as input, outputs
a collision for the adversarially chosen hash and records (𝑚,𝑚′)
under a list Q. A wins if it outputs a collision for an adversarially

generated chameleon hash ℎ∗, while (ℎ∗,𝑚∗) was not previously
queried to the CHAdapt oracle. We define a formal experiment in

Figure 2.

We define the advantage of A as

AdvCRA (𝜆) = |Pr[Exp
CR

A (𝜆) → 1] |.

Definition 2.2. A CH scheme is fully collision-resistant if for any

PPT A, AdvCRA (𝜆) is negligible in 𝜆.

2.2 One-Way Function
Definition 2.3. A function 𝐹 : 𝐷𝐹 → 𝑅𝐹 is one-way, if the advan-

tage of PPT A defined in the following equation is negligible in

𝜆.

Pr[𝑥 ∈𝑅 𝐷𝐹 , 𝑥
′ ∈𝑅 A(𝐹 (𝑥)) : 𝐹 (𝑥) = 𝐹 (𝑥 ′)] .

We assume that the domain 𝐷𝐹 and range 𝑅𝐹 are defined by 𝐹 .

2.3 Non-Interactive Zero-Knowledge
Let 𝐿 = {𝑥 |∃𝑤 : 𝑅(𝑥,𝑤) = 1} be an NP-language with a relation

𝑅. A non-interactive proof system allows to prove membership of

Experiment ExpINDA (𝜆)
ppch ← CHPG(𝜆), 𝑏 ← {0, 1}
𝑏′ ← AHashOrAdapt(·· · ,𝑏) (ppch)

where HashOrAdapt(· · · , 𝑏) on input skch, pkch,𝑚,𝑚′, 𝑏 :

(ℎ0, 𝑟0) ← CHash(pkch,𝑚′)
(ℎ1, 𝑟 ′

1
) ← CHash(pkch,𝑚)

𝑟1 ← CHAdapt(skch,𝑚,𝑚′, ℎ1, 𝑟 ′
1
)

return ⊥ if 𝑟𝑏 = ⊥ ∨ 𝑟 ′
1
= ⊥

return (ℎ𝑏 , 𝑟𝑏)
if 𝑏′ = 𝑏, return 1; else, return 0.

Figure 1: Full Indistinguishability.

Experiment ExpCRA (𝜆)
ppch ← CHPG(𝜆), Q ← ∅
(skch, pkch) ← CHKG(ppch)
(𝑚∗, 𝑟∗,𝑚′∗, 𝑟 ′∗, ℎ∗) ← ACHAdapt(skch,· · ·) (pkch)
where CHAdapt(skch, · · ·) on input skch,𝑚,𝑚′, ℎ, 𝑟 :

return ⊥, if CHCheck(pkch, ℎ,𝑚, 𝑟) ≠ 1

𝑟 ′ ← CHAdapt(skch,𝑚,𝑚′, ℎ, 𝑟)
Q ← Q ∪ { (ℎ,𝑚), (ℎ,𝑚′) }
return 𝑟 ′

if 1 = CHCheck(pkch,𝑚∗, ℎ∗, 𝑟∗) = CHCheck(pkch,𝑚′∗, ℎ∗, 𝑟 ′∗)
∧(ℎ∗,𝑚∗) ∉ Q ∧𝑚∗ ≠𝑚′∗, return 1;

//(ℎ∗,𝑚∗) does not appear as first or second pair in CHAdapt query
else, return 0.

Figure 2: Full Collision-Resistance.

some statement 𝑥 in the language 𝐿. The formal definition is shown

below.

Definition 2.4. A non-interactive proof system Π for language 𝐿

includes the following three algorithms.

• PG: It takes a security parameter 𝜆 as input, outputs public com-

mon reference string (CRS) crsΠ .
• Pf: It takes the CRS crsΠ , a statement 𝑥 and a witness𝑤 , outputs

a proof 𝜋 .

• Vfy: It takes the CRS crsΠ , a statement 𝑥 and a proof 𝜋 , outputs

a bit 𝑏 ∈ {0, 1}.

Non-interactive proof systems typically satisfy three proper-

ties: correctness, zero-knowledge, and soundness. Correctness (or

completeness) says that an honest prover should always be able

to convince the verifier that 𝑥 ∈ 𝐿. Zero-knowledge says that the
receiver of the proof 𝜋 cannot learn anything except the validity

of the statement. Soundness says that a malicious prover cannot

generate a proof 𝜋 for any element 𝑥 ∉ 𝐿. We use a stronger for-

mulation of the soundness called simulation-sound extractability

[11, 13]. It says that every adversary who can generate a proof 𝜋∗

for a statement 𝑥∗ must know the witness 𝑤∗, even when seeing

simulated proofs for adaptively chosen statements not in language

𝐿. The distribution of the common reference string crsΠ generated

by PG and the distribution of the simulated crsΠ by SIM1 or Ext1
are assumed to be indistinguishable.

Definition 2.5 (Correctness). A non-interactive proof system Π
is correct, if for all 𝜆, for all crsΠ ← PG(𝜆), for all 𝑥 ∈ 𝐿, for all

𝑤 such that 𝑅(𝑥,𝑤) = 1, for all 𝜋 ← Pf (crsΠ, 𝑥,𝑤), it holds that
Vfy(crsΠ, 𝑥, 𝜋) = 1.

Definition 2.6 (Zero-Knowledge). We define a formal experiment

between a PPT adversary A and a simulator SIM = (SIM1, SIM2)
in Figure 3. Note that 𝜏 denotes a simulation trapdoor. We define

1079

Reconstructing Chameleon Hash: Full Security and the Multi-Party Setting ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Experiment ExpZKA (𝜆)
(crsΠ , 𝜏) ← SIM1 (𝜆), 𝑏 ← {0, 1}
𝑏′ ← A𝑃𝑏 (·,·) (crsΠ)

where 𝑃0 on input 𝑥, 𝑤 :

return 𝜋 ← Pf (crsΠ , 𝑥, 𝑤), if 𝑅 (𝑥, 𝑤) = 1

return ⊥
where 𝑃1 on input 𝑥, 𝑤 :

return 𝜋 ← SIM2 (crsΠ , 𝑥, 𝜏), if 𝑅 (𝑥, 𝑤) = 1

return ⊥
if 𝑏′ = 𝑏, return 1; else, return 0.

Figure 3: Zero-Knowledge.

Experiment ExpSimA (𝜆)
(crsΠ , 𝜏, 𝜌) ← Ext1 (𝜆), Q ← ∅
(𝑥∗, 𝜋∗) ← ASIM(·) (crsΠ)
where SIM on input 𝑥 :

𝜋 ← SIM2 (crsΠ , 𝑥, 𝜏)
Q ← Q ∪ { (𝑥, 𝜋) }
return 𝜋

𝑤∗ ← Ext2 (crsΠ , 𝜌, 𝑥∗, 𝜋∗)
if 1 = Vfy(𝑥∗, 𝜋∗) ∧ 𝑅 (𝑥∗, 𝑤∗) = 0 ∧ (𝑥∗, 𝜋∗) ∉ Q, return 1;

else, return 0.

Figure 4: Simulation Sound Extractability.

the advantage of A as

AdvZKA (𝜆) = |Pr[Exp
ZK

A (𝜆) → 1] − 1/2|.

The non-interactive proof systemΠ for language𝐿 is zero-knowledge,

if for any PPT A, AdvZKA (𝜆) is negligible in 𝜆.

Definition 2.7 (Simulation-sound Extractability). We define a for-

mal experiment between a PPT adversary A and an extractor

Ext = (Ext1, Ext2) in Figure 4. We define the advantage of A as

AdvSimA (𝜆) = |Pr[Exp
Sim

A (𝜆) → 1] |.

The non-interactive proof system Π for language 𝐿 is simulation-

sound extractable, if for any PPT A, AdvSimA (𝜆) is negligible in

𝜆.

3 OUR CONSTRUCTIONS
In this section, we introduce a new generic construction of chameleon

hash from a one-way function (OWF) and a non-interactive zero-

knowledge (NIZK) proof.

Suppose that 𝐹 is a one-way function with its output uniformly

distributed in the range 𝑅𝐹
2
. We define an efficient NIZK proof of

knowledge 𝑥 for the following language:

𝐿 := {(𝐹,𝑦1, 𝑦2) |𝑥 : 𝐹 (𝑥) = 𝑦1 ∨ 𝐹 (𝑥) = 𝑦2}.

This is known as the disjunctive proof. The NIZK proof system Π
consists of three algorithms (PG, Pf,Vfy). Denote ⊕ as the bitwise

XOR operation
3
.

3.1 Generic Construction
Our generic CH algorithm is as follows:

2
For example, under the discrete logarithm assumption, 𝐹 (𝑥) = 𝑔𝑥 is uniformly

distributed in the group G when 𝑔 is a generator of G. Under the RSA assumption,

𝐹 (𝑥) = 𝑥𝑒 mod 𝑁 is uniformly distributed when given the RSA public key (𝑒, 𝑁) .
3
We can replace the bitwise XOR operation with an algebraic operation over the

range of 𝐹 , with some minor modification in the writing of the security proof and the

assumptions used. See section 3.2.

• CHPG(𝜆): It picks a collision-resistant hash function𝐻 that maps

the message space to the range 𝑅𝐹 of 𝐹 . It runs crsΠ ← PG(𝜆).
It outputs public parameters ppch = (𝐹, 𝐻, crsΠ).
• CHKG(ppch): It outputs a random skch (randomly chosen from

the domain of 𝐹) and pkch = 𝐹 (skch).
• CHash(pkch,𝑚): It picks a random 𝜌 from the domain of 𝐹 and

calculates ℎ = 𝐹 (𝜌) ⊕𝐻 (𝑚). It computes a zero-knowledge proof

𝑟 ← Pf (crsΠ, (𝐹, ℎ ⊕ 𝐻 (𝑚), pkch), 𝜌). It outputs (ℎ, 𝑟). Note that
𝑟 is a NIZK proof for the witness 𝜌 such that

𝐹 (𝜌) = ℎ ⊕ 𝐻 (𝑚) ∨ 𝐹 (𝜌) = pkch .

The parameters (𝐹, ℎ ⊕𝐻 (𝑚), pkch) are public in the NIZK proof.

• CHCheck(pkch,𝑚,ℎ, 𝑟): It outputs 𝑏 ← Vfy(crsΠ, (𝐹, ℎ ⊕ 𝐻 (𝑚),
pkch), 𝑟).
• CHAdapt(skch,𝑚,𝑚′, ℎ, 𝑟): It returns⊥ ifCHCheck(pkch,𝑚,ℎ, 𝑟)
= 0. Otherwise, it outputs another zero-knowledge proof 𝑟 ′ ←
Pf (crsΠ, (𝐹, ℎ ⊕ 𝐻 (𝑚′), pkch), skch).
Note that 𝑟 ′ is a NIZK proof for skch such that

𝐹 (skch) = ℎ ⊕ 𝐻 (𝑚′) ∨ 𝐹 (skch) = pkch .

3.1.1 Security. We prove the security of our generic construction

under the strong model of full indistinguishability and full collision-

resistance.

Theorem 3.1. Our CH scheme is fully indistinguishable if Π has
the zero-knowledge property and the output of 𝐹 is uniformly dis-
tributed in its range 𝑅𝐹 .

Proof. The proof is given by a sequence of games. We define

the following games:

• Game0: The same as the IND game.

• Game1: The output 𝑟0 from CHash(pkch,𝑚′) is given by the

simulator of Π.
• Game2: The output 𝑟1 fromCHAdapt(skch,𝑚,𝑚′, ℎ1, 𝑟 ′

1
) is given

by the simulator of Π.
• Game3: The output ℎ0 from CHash(pkch,𝑚′) is replaced by a

random number in 𝑅𝐹 .

• Game4: The output ℎ1 from CHash(pkch,𝑚) is replaced by a

random number in 𝑅𝐹 .

By the zero-knowledge property of Π, we can see that no PPT

adversary can distinguish between Game0 and Game1 (and also

between Game1 and Game2) with non-negligible probability.

If the output of 𝐹 is uniformly distributed in its range, then

𝐹 (𝜌) is indistinguishable with a random number chosen from the

range. Hence, no PPT adversary can distinguish 𝐹 (𝜌) ⊕ 𝐻 (𝑚′) (in
Game2) with a random number ℎ (in Game3) with non-negligible

probability. The same argument applies for Game3 and Game4.
Finally in Game4, the pairs (ℎ0, 𝑟0) and (ℎ1, 𝑟1) are randomly

generated. Hence no PPT adversary can win this game with non-

negligible probability. □

We need a new assumption to prove the full collision-resistance

property.

Definition 3.2 (Assumption 1). Given a one-way function 𝐹 and a

collision resistant hash function 𝐻 , no PPT adversary can output

𝑥0, 𝑥1,𝑚0,𝑚1 with non-negligible probability such that𝑚0 ≠ 𝑚1

and

𝐹 (𝑥0) ⊕ 𝐹 (𝑥1) = 𝐻 (𝑚0) ⊕ 𝐻 (𝑚1) .

1080

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Kwan Yin Chan, Liqun Chen, Yangguang Tian, and Tsz Hon Yuen

We note that the Assumption 1 should be analyzed in the con-

crete instantiation. For example in the discrete logarithm(DL)-

based setting, if 𝐹 (𝑥) = 𝑔𝑥 and ⊕ is point addition, then the

hard problem becomes outputting 𝑥0, 𝑥1,𝑚0,𝑚1 such that 𝑔𝑥0+𝑥1 =
𝐻 (𝑚0) · 𝐻 (𝑚1). It can be easily reduced to the DL problem if 𝐻 is

modeled as a random oracle. In the RSA-based setting, if 𝐹 (𝑥) = 𝑥𝑒

mod 𝑁 where (𝑒, 𝑁) is a RSA public key, and ⊕ is modular multi-

plication, the hard problem becomes outputting 𝑥0, 𝑥1,𝑚0,𝑚1 such

that (𝑥0𝑥1)𝑒 = 𝐻 (𝑚0)𝐻 (𝑚1) mod 𝑁 . It can be reduced to the RSA

problem if 𝐻 is modeled as a random oracle.

Theorem 3.3. Our CH scheme is fully collision resistant if 𝐹 has
the one-wayness property, Π has simulation-sound extractability and
assumption 1 holds.

Proof. The simulator S runs as the adversary of breaking one-

wayness property of 𝐹 . S is given 𝑦 and wants to find 𝐹−1 (𝑦).
S runs the extractor Ext1 ofΠ to obtain (crsΠ, 𝜏, 𝜌).S sets ppch =

(𝐹, 𝐻, crsΠ), pkch = 𝑦 and returns (ppch, pkch) to the adversary A.

For theCHAdapt oracle query with input (𝑚,𝑚′, ℎ, 𝑟),S runs the

extractor Ext2 ofΠ to obtain𝑥 ← Ext2 (crsΠ, 𝜌, (𝐹, ℎ⊕𝐻 (𝑚), pkch), 𝑟)
such that

𝑥 :𝐹 (𝑥) = ℎ ⊕ 𝐻 (𝑚) ∨ 𝐹 (𝑥) = 𝑦.

If 𝐹 (𝑥) = 𝑦, S simply returns 𝑥 as the solution of 𝐹−1 (𝑦) and aborts.
Otherwise, S runs the simulator of the zero-knowledge proof to

generate 𝑟 ′ ← SIM2 (crsΠ, 𝜏, (ℎ ⊕ 𝐻 (𝑚′), pkch)) and return 𝑟 ′ to
A.

In the output phase, the adversary returns (𝑚∗, 𝑟∗,𝑚′∗, 𝑟 ′∗, ℎ∗)
with 𝑚∗ ≠ 𝑚′∗ and (ℎ∗,𝑚∗) ∉ Q. We consider two cases: (1)

(ℎ∗,𝑚′∗) ∉ Q; (2)(ℎ∗,𝑚′∗) ∈ Q.
We first consider case 1. Since it passes CHCheck, it means that

S can use the extractor Ext2 to obtain

𝑥0 :𝐹 (𝑥0) = ℎ∗ ⊕ 𝐻 (𝑚∗) ∨ 𝐹 (𝑥0) = 𝑦,

𝑥1 :𝐹 (𝑥1) = ℎ∗ ⊕ 𝐻 (𝑚′∗) ∨ 𝐹 (𝑥1) = 𝑦.

Now we have two possible sub-cases:

• 1a. 𝐹 (𝑥0) = 𝑦 or 𝐹 (𝑥1) = 𝑦.

• 1b. 𝐹 (𝑥0) = ℎ∗ ⊕ 𝐻 (𝑚∗) and 𝐹 (𝑥1) = ℎ∗ ⊕ 𝐻 (𝑚′∗).
For the case 1a, S simply outputs 𝑥0 or 𝑥1 as the solution of 𝐹−1 (𝑦).
For the case 1b, it implies that

ℎ∗ = 𝐹 (𝑥0) ⊕ 𝐻 (𝑚∗) = 𝐹 (𝑥1) ⊕ 𝐻 (𝑚′∗) .
Since 𝐻 is a collision resistant hash function, 𝐻 (𝑚∗) ≠ 𝐻 (𝑚′∗) for
𝑚∗ ≠ 𝑚′∗. By assumption 1, this case happens with a negligible

probability.

Next, we consider case 2. If (ℎ∗,𝑚′∗) ∈ Q, there are two sub-

cases:

• 2a. There was a CHAdapt query with input (𝑚′∗, ·, ℎ∗, ·).
• 2b. There was a CHAdapt query with input (𝑚,𝑚′∗, ℎ∗, 𝑟).
For case 2a, by the simulation of the CHAdapt query, S already

extracts 𝑥2𝑎 such that 𝐹 (𝑥2𝑎) = ℎ∗ ⊕ 𝐻 (𝑚′∗). Similar to case 1, S
can use the extractor Ext2 to obtain

𝑥0 :𝐹 (𝑥0) = ℎ∗ ⊕ 𝐻 (𝑚∗) ∨ 𝐹 (𝑥0) = 𝑦.

Hence, S either returns 𝑥0 as the solution to 𝐹−1 (𝑦), or obtains
ℎ∗ = 𝐹 (𝑥0) ⊕ 𝐻 (𝑚∗) = 𝐹 (𝑥2𝑎) ⊕ 𝐻 (𝑚′∗),

which contradicts the Assumption 1.

For case 2b, by the simulation of the CHAdapt query, S already

extracts 𝑥
2𝑏 such that 𝐹 (𝑥

2𝑏) = ℎ∗ ⊕ 𝐻 (𝑚). Since (ℎ∗,𝑚) ∈ Q and

(ℎ∗,𝑚∗) ∉ Q, it implies that𝑚 ≠𝑚∗. Similar to case 1, S can use

the extractor Ext2 to obtain

𝑥0 :𝐹 (𝑥0) = ℎ∗ ⊕ 𝐻 (𝑚∗) ∨ 𝐹 (𝑥0) = 𝑦.

Hence, S either returns 𝑥0 as the solution to 𝐹−1 (𝑦), or obtains

ℎ∗ = 𝐹 (𝑥0) ⊕ 𝐻 (𝑚∗) = 𝐹 (𝑥
2𝑏) ⊕ 𝐻 (𝑚),

which contradicts the Assumption 1 since𝑚 ≠𝑚∗. □

3.2 ECC-based Construction
We instantiate 𝐹 in an ECC group G with prime order 𝑞 and its

generator is 𝑔. We define 𝐹 (𝑥) = 𝑔𝑥 for any 𝑥 ∈ Z𝑞 . 𝐹 is a one-way

function if the DL assumption holds in G. We can easily instantiate

our generic construction with a DL-based OR proof.

To further simplify the assumption we need, we change ⊕ to the

point addition operation. The scheme has to be modified slightly,

by introducing some inverse operation.

The algorithm is as follows:

• CHPG(𝜆): On input the security parameter 𝜆, it outputs public

parameters ppch, including the elliptic curve group G of prime

order 𝑞, a generator 𝑔 ∈ G, and collision-resistant hash function

𝐻 : {0, 1}∗ → G and 𝐻 ′ : {0, 1}∗ → Z𝑞 .
• CHKG(ppch): It picks 𝑥 ∈ Z𝑞 , and outputs (skch = 𝑥, pkch = 𝑔𝑥).
• CHash(pkch,𝑚): It picks 𝜌 ∈ Z𝑞 and sets ℎ = 𝑔𝜌 · 𝐻 (𝑚). Then
we compute a NIZK proof 𝑟 by:

(1) It picks 𝑡2, 𝑧1 ∈ Z𝑞 and computes𝑇2 = 𝑔𝑡2 , 𝑐1 = 𝐻 ′ (𝑇2, pkch, 𝑔𝜌 ,𝑚),
𝑇1 = 𝑔𝑧1pk𝑐1ch.

(2) It computes 𝑐2 = 𝐻 ′ (𝑇1, pkch, 𝑔𝜌 ,𝑚).
(3) It computes 𝑧2 = 𝑡2 − 𝑐2𝜌 . It returns 𝑟 = (𝑧1, 𝑧2, 𝑐1).
It outputs (ℎ, 𝑟).
• CHCheck(pkch,𝑚,ℎ, 𝑟): It parses 𝑟 = (𝑧1, 𝑧2, 𝑐1). It computes

𝑦′ = ℎ/𝐻 (𝑚). It outputs 1 if

𝑇1 = 𝑔𝑧1pk𝑐1ch, 𝑐2 = 𝐻 ′ (𝑇1, pkch, 𝑦′,𝑚),
𝑇2 = 𝑔𝑧2𝑦′𝑐2 , 𝑐1 = 𝐻 ′ (𝑇2, pkch, 𝑦′,𝑚) .

Otherwise, it returns 0.

• CHAdapt(skch,𝑚,𝑚′, ℎ, 𝑟): It returns⊥ ifCHCheck(pkch,𝑚,ℎ, 𝑟) =
0. Otherwise, it generates another NIZK proof 𝑟 ′ with respect

to (pkch, 𝑦′ = ℎ/𝐻 (𝑚′)), using the secret key skch = 𝑥 and the

message𝑚′.
(1) It picks 𝑡 ′

1
, 𝑧′

2
∈ Z𝑞 and computes𝑇 ′

1
= 𝑔𝑡

′
1 , 𝑐′

2
= 𝐻 ′ (𝑇 ′

1
, pkch, 𝑦

′,𝑚′),
𝑇 ′
2
= 𝑔𝑧2𝑦′𝑐

′
2 .

(2) It computes 𝑐′
1
= 𝐻 ′ (𝑇 ′

2
, pkch, 𝑦

′,𝑚′).
(3) It computes 𝑧′

1
= 𝑡 ′

1
− 𝑐′

1
𝑥 . It returns 𝑟 ′ = (𝑧′

1
, 𝑧′

2
, 𝑐′
1
).

It outputs 𝑟 ′.

Theorem 3.4. Our ECC-based scheme is fully indistinguishable
in the random oracle model (ROM).

Theorem 3.5. Our ECC-based scheme is fully collision-resistant if
the DL assumption in G holds in the random oracle model.

We show the security proofs in the Appendix B.

1081

Reconstructing Chameleon Hash: Full Security and the Multi-Party Setting ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

3.3 Lattice-based construction
We define 𝑞 as an odd modulus and 𝑅𝑞 as a ring Z𝑞 [𝑋]/(𝑋𝑑 + 1)
of dimension 𝑑 . Define ®𝐼𝑛 as the identity matrix with size 𝑛, 𝔘𝑘 as

a set of polynomials in Z[𝑋]/(𝑋𝑑 + 1) with infinity norm at most

𝑘 ∈ Z+, andU as the uniform distribution. The Euclidean ∥·∥ and
infinity ∥ · ∥∞ norms of a polynomial (or a vector of polynomials)

are defined in the standard fashion w.r.t. the coefficient vector of

the polynomial. The symbol 𝑥 ←𝑠 X means randomly picks 𝑥 from

X. Define the following challenge space:

C = { 𝑐 ∈ Z[𝑋]/(𝑋𝑑 + 1) : ∥𝑐 ∥∞ = 1 }. (1)

Observe that |C| = 3
𝑑
. That is, for 𝑑 = 128, we have |C| = 3

128 >

2
202

.

We review the hardness of Module-SIS (M-SIS) and Module-LWE

(M-LWE) problems [17].

Definition 3.6 (M-SIS𝑛,𝑚,𝑞,𝛽𝑆𝐼𝑆 Assumption). For all PPT adver-

saries A, the probability

Pr

[
®𝐴′ ←𝑠 U(𝑅𝑛×(𝑚−𝑛)𝑞),
®𝐴 = [®𝐼𝑛 | | ®𝐴′], ®𝑧 ← A(®𝐴)

:

®𝐴®𝑧 = ®0 ∈ 𝑅𝑛𝑞 ,
0 < ∥®𝑧∥ ≤ 𝛽𝑆𝐼𝑆

]
is at most negl(𝜆).

Definition 3.7 (M-LWE𝑛,𝑚,𝑞,𝜒 Assumption). Let 𝜒 be a distribu-

tion over 𝑅𝑞 and ®𝑠 ←𝑠 𝜒𝑛 be a secret key. Define LWE𝑞,𝑠 as the

distribution obtained by sampling ®𝑎 ←𝑠 𝑅
𝑛
𝑞 , 𝑒 ←𝑠 𝜒 and outputting

(®𝑎, ⟨®𝑎, ®𝑠⟩ + 𝑒). For all PPT adversaries A, the probability of dis-

tinguishing between 𝑚 samples from LWE𝑞,𝑠 and U(𝑅𝑛𝑞 , 𝑅𝑞) is
negl(𝜆).

The algorithm is as follows:

• CHPG(𝜆): On input the security parameter 𝜆, it sets M-LWE

parameters 𝑘,𝑚,𝑑, 𝑞, picks ®𝐺 ′ ← 𝑅
𝑘×(𝑚−𝑘)
𝑞 , ®𝐺 =

[
®𝐼𝑘 ∥ ®𝐺 ′

]
and

collision-resistant hash function 𝐻 : {0, 1}∗ → 𝑅𝑘𝑞 and 𝐻 ′ :

{0, 1}∗ → C. It returns ppch = (𝑘,𝑚,𝑑, 𝑞, ®𝐺,𝐻,𝐻 ′)
• CHKG(ppch): It picks ®𝑥 ← 𝔘𝑚

1
and computes ®𝑦 = ®𝐺 · ®𝑥 . It outputs

(skch = ®𝑥, pkch = ®𝑦).
• CHash(pkch,𝑚): It picks ®𝜌 ← 𝔘𝑚

1
and computes

®ℎ = ®𝐺 · ®𝜌+𝐻 (𝑚).
Then we compute a NIZK proof 𝑟 by:

(1) It picks ®𝑡2 ← 𝔘𝑚
𝑚𝑑2

, ®𝑧1 ← 𝔘𝑚
𝑚𝑑2−𝑑 and computes ®𝑇2 = ®𝐺 · ®𝑡2,

𝑐1 = 𝐻 ′ (®𝑇2, pkch, ®𝐺 · ®𝜌,𝑚), ®𝑇1 = ®𝐺 · ®𝑧1 − pkch · 𝑐1.
(2) It computes 𝑐2 = 𝐻 ′ (®𝑇1, pkch, ®𝐺 · ®𝜌,𝑚).
(3) It computes ®𝑧2 = ®𝑡2 − 𝑐2 ®𝜌 . If ∥ ®𝑧2∥∞ > 𝑚𝑑2 − 𝑑 , restart from

step 1. Else, it returns 𝑟 = (®𝑧1, ®𝑧2, 𝑐1).
It outputs (®ℎ, 𝑟).
• CHCheck(pkch,𝑚, ®ℎ, 𝑟): It parses 𝑟 = (®𝑧1, ®𝑧2, 𝑐1). It computes

®𝑦′ = ®ℎ − 𝐻 (𝑚). It outputs 1 if
®𝑇1 = ®𝐺 · ®𝑧1 − pkch · 𝑐1, 𝑐2 = 𝐻 ′ (®𝑇1, pkch, ®𝑦′,𝑚),
®𝑇2 = ®𝐺 · ®𝑧2 + ®𝑦′ · 𝑐2, 𝑐1 = 𝐻 ′ (®𝑇2, pkch, ®𝑦′,𝑚) .

and ∥ ®𝑧1∥∞ ≤ 𝑚𝑑2 − 𝑑 , ∥ ®𝑧2∥∞ ≤ 𝑚𝑑2 − 𝑑 . Otherwise, it returns 0.
• CHAdapt(skch,𝑚,𝑚′, ®ℎ, 𝑟): It returns⊥ ifCHCheck(pkch,𝑚, ®ℎ, 𝑟) =
0. Otherwise, it generates another NIZK proof 𝑟 ′ with respect to

(pkch, ®ℎ−𝐻 (𝑚′)), using the secret key skch = ®𝑥 and the message

𝑚′. It outputs 𝑟 ′.

Theorem 3.8. Our lattice-based scheme is fully indistinguishable
if the M-LWE𝑚−𝑘,𝑘,𝑞,𝔘1

assumption holds in the random oracle model.

Theorem 3.9. Our lattice-based scheme is fully collision-resistant
if the M-SIS𝑘,𝑚+1,𝑞,𝛽SIS assumption and the M-LWE𝑚−𝑘,𝑘,𝑞,𝔘1

as-
sumption hold in the random oracle model, where 𝛽SIS ≈ 4𝑑 · (2𝑚𝑑2+√
𝑚𝑑).

The proofs are given in the Appendix C.

3.4 Comparison
Apart from the comparison of IND and CollRes models in Table 1,

we further compare various CHs in Table 2. We assume an ECC

group (G,Z𝑞), and RSA modulus Z𝑁 . Let 𝐸G be an exponentiation

on G, and this notation also applies to Z𝑁 . Let 𝐸𝑐𝑡 denote exponen-

tiation on an ABE ciphertext 𝑐𝑡 , and |𝑐𝑡 | denote its length. We refer

the reader to the listed schemes for explanations on assumptions

such as DL, DDH, OM-RSA, DLIN and the models like standard

model and ROM. We put [12, 30] together as their efficiency and

assumption are very similar. The RSA-based CH in [7] is similar to

the tag-based CH in [4]. We do not put the tag-based CHs [4, 23]

for comparison since the security model is different from the nor-

mal CH. According to Table 2, our ECC-based construction is the

shortest one and the fastest one except the classical CH. We use

the strongest model of full IND and full CollRes.
By following DSS20 [11], Derler et al. [10] introduced a new

framework of chameleon hash scheme with full collision-resistance.

The idea is to replace PKE used in [11] with a commitment scheme

(e.g., Pedersen commitment). They also present a quantum-secure

CH scheme using commitment and zero-knowledge proofs from

learning parity with noise [20]. They use a ZK proof with hash

output size = 3 bit. Hence it needs to repeat many times to achieve

soundness error ≤ 2
−128

. It implies that their ZK proof size is very

large and impractical. In contrast, our lattice-based construction is

very practical (4kB for the hash value ℎ, and 15kB for 𝑟), and the

running time is mainly a multiplication𝑀𝑘×𝑚 of a matrix with size

𝑘 = 9,𝑚 = 20 and a vector of length𝑚. The size of parameters are

discussed in the Appendix C.3.

Lastly, we implement our instantiations and present our source

code at https://github.com/kychancf/CCTY24_cham_hash. We run

our implementation in a Azure standard B2s virtual machines with

2vCPUs and 4GB RAM. We implement our ECC-based CH in Rust

using the curve secp256k1 from the Zengo-X curv library and

SHA256 for the hash function. The running time is 0.189ms for

CHash, 0.202ms for CHCheck, and 0.161ms for CHAdapt (exclud-
ing the CHCheck part). We implement our lattice-based CH in

Python3 using the library SymPy and SHA256 for the hash func-

tion. The running time is 2.413s for CHash, 1.617s for CHCheck,
and 1.653s for CHAdapt (excluding the CHCheck part).

3.5 Multi-owner CH
In this subsection, we focus on our generic construction in the

multi-owner setting. We assume that the scheme involves a creator

and 𝑛 owners. Specifically, the creator generates a chameleon hash,

and any owner can adapt the chameleon hash multiple times. We

only sketch the difference between our generic construction with a

single owner.

1082

https://github.com/kychancf/CCTY24_cham_hash

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Kwan Yin Chan, Liqun Chen, Yangguang Tian, and Tsz Hon Yuen

Table 2: The comparison between different CHs.

Scheme |ℎ | |𝑟 | CHash CHAdapt Assumption Model

[21] 1G 1Z𝑞 2𝐸G 0𝐸G DL Standard

[2] 1G 12G+7Z𝑞 17𝐸G 14𝐸G DDH ROM

[7] 1Z𝑁 1Z𝑁 1𝐸Z𝑁
1𝐸Z𝑁

OM-RSA ROM

[12, 30] 3Z𝑁 + |𝑐𝑡 | 1Z𝑁 2𝐸Z𝑁
+𝐸𝑐𝑡 8𝐸Z𝑁

+𝐸𝑐𝑡 DLIN ROM

[11] 2G 4Z𝑞 6𝐸G 5𝐸G DDH ROM

[10] 1G 5Z𝑞 6𝐸G 4𝐸G DL ROM

Ours (1) 1G 3Z𝑞 4𝐸G 3𝐸G DL ROM

Ours (2) 1𝑅𝑘𝑞 2𝑅𝑚𝑞 + 1 | C | 1𝑀𝑘×𝑚 1𝑀𝑘×𝑚 M-SIS/LWE ROM

• CHash((pk(1)ch , . . . , pk
(𝑛)
ch),𝑚): It picks a random 𝜌 from the do-

main of 𝐹 and calculates ℎ = 𝐹 (𝜌) ⊕ 𝐻 (𝑚). It computes a zero-

knowledge proof 𝑟 ← Pf (crsΠ, (𝐹, ℎ⊕𝐻 (𝑚), pk(1)ch , . . . , pk
(𝑛)
ch), 𝜌).

It outputs (ℎ, 𝑟). Note that 𝑟 is a NIZK proof for 𝜌 such that

𝐹 (𝜌) = ℎ ⊕ 𝐻 (𝑚) ∨ 𝐹 (𝜌) = pk
(1)
ch ∨ . . . ∨ 𝐹 (𝜌) = pk

(𝑛)
ch .

• CHCheck((pk(1)ch , . . . , pk
(𝑛)
ch),𝑚,ℎ, 𝑟): It outputs 𝑏 ← Vfy(crsΠ,

(𝐹, ℎ ⊕ 𝐻 (𝑚), pk(1)ch , . . . , pk
(𝑛)
ch), 𝑟).

• CHAdapt(sk(𝑖)ch ,𝑚,𝑚′, ℎ, 𝑟): It returns⊥ if CHCheck((pk(1)ch , . . . ,

pk
(𝑛)
ch),𝑚,ℎ, 𝑟) = 0. Otherwise, it outputs another zero-knowledge

proof 𝑟 ′ ← Pf (crsΠ , (𝐹, ℎ ⊕ 𝐻 (𝑚), pk(1)ch , . . . , pk
(𝑛)
ch), sk

(𝑖)
ch).

Note that 𝑟 ′ is a NIZK proof for sk(𝑖)ch such that

𝐹 (sk(𝑖)ch) = ℎ ⊕ 𝐻 (𝑚′) ∨ 𝐹 (sk(𝑖)ch) = pk
(1)
ch ∨ . . . ∨ 𝐹 (sk(𝑖)ch) = pk

(𝑛)
ch .

The concrete construction can be constructed similarly using the

one-out-of-many commitment proof [19], Bulletproof[6]-based OR

proof [22, 35]. As compared to DSS20 [11] or DKSS20 [10], we

can easily compress the size of 𝑟 to 𝑂 (log𝑛). It could require addi-

tional assumptions from the new NIZK proof, such as the discrete

logarithm relation assumption in Bulletproof[6].

4 CLAIMABILITY AND DENIABILITY FOR CH
As discussed in section 1.3, we define the creator as the party who

generates the hash by runningCHash, and the owners as the parties
who can run the CHAdapt with their secret keys. These parties are

the insider of the chameleon hash function. The existing security

models of indistinguishability and collision-resistant only consider

the attack from the third party, with the corruption of the owners’

secret keys.

In this section, we study the ability of the insider, such as break-

ing the indistinguishability (IND) or collision-resistant (CollRes)
property of his own, or the counterparty. We use different defini-

tions of IND and CollRes to analyze the existing schemes, and our

classification below is not limited to full security as some properties

have conflicts.

4.1 Classification
We first classify the ability of the creator or the owners to claim

or deny the generation of the hash value ℎ or the randomness 𝑟 .

Examples are given based on the existing schemes and also our

generic construction. Interestingly, the classical CH scheme and the

RSA-based CH scheme fall into Level 0 for all cases. On the other

hand, DSS20 [11] (and also DKSS20 [10]) may fall into different

levels.

(1) Claimability of creation of ℎ.

(1) Level 0: The creator cannot claim the creation of the hash value

ℎ. It is because any owner is able to generate the same claim.

• e.g., the classical CH scheme ℎ = 𝑔𝑚pk𝑟ch or RSA-based CH.

(2) Level 1: The creator can claim the creation of the hash value ℎ,

without disclosing𝑚.

• e.g., in DSS20, the creator can create a NIZK proof of knowing

(𝑚, 𝜌) such that ℎ = Encpkch (𝑚; 𝜌), where 𝜌 represents an

internal randomness.

(3) Level 2: The creator can claim that the original message is𝑚

given the hash value ℎ. It also implies creation.

• e.g., in DSS20, the creator can output𝑚 and create a NIZK

proof of knowing 𝜌 such that ℎ = Encpkch (𝑚; 𝜌).

(2) Claimability of hash output 𝑟 .

(1) Level 0: The creator/the owners cannot claim the authorship of

𝑟 . It is because the creator/the owners can generate the same

claim.

• e.g., the classical CH scheme or RSA-based CH.

(2) Level 1: The creator/the owner can claim the authorship of 𝑟 .

• e.g., in DSS20, the creator/the owner can output the internal

randomness 𝜌 used for generating the NIZK proof in 𝑟 to

claim the authorship.

(3) Deniability of hash output 𝑟 .

(1) Level 0: The creator/the owner cannot deny the authorship of

𝑟 .

• e.g., the classical CH scheme or RSA-based CH.

(2) Level 1: The creator/the owner can deny the authorship of 𝑟 .

• No known construction achieves Level 1.

(4) Deniability of original message𝑚.

(1) Level 0: The creator cannot deny that the original message is

𝑚, in case the owner outputs a valid hash output (ℎ, 𝑟 ′) for a
message𝑚′ later.
• e.g., the classical CH scheme or RSA-based CH.

(2) Level 1: The creator can deny that the original message is𝑚, in

case the owner outputs a valid hash output (ℎ, 𝑟 ′) for a message

𝑚′ later.

1083

Reconstructing Chameleon Hash: Full Security and the Multi-Party Setting ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

• e.g., in DSS20, the creator can create a NIZK proof of knowing

(𝑚, 𝜌) such that ℎ = Encpkch (𝑚; 𝜌) and ℎ′ = Encpkch (𝑚
′
; 𝜌).

Everyone can check that ℎ ≠ ℎ′.

4.2 New Definitions: (un)claimability and
(un)deniability

Based on the classification described above, we present the formal

definitions of (un)claimability and (un)deniability in the multi-party

setting, which are inspired by [26].

4.2.1 Claimable chameleon hashes. Claimability requires that the

creator/owner can claim the creation of ℎ, the authorship of 𝑟 , and

even the original message𝑚.

Definition 4.1 (Claimable chameleon hash). A claimable chameleon

hash in the multi-party setting is a chameleon hash (as in Section

2.1) along with a pair of algorithms (Claim,VerClaim).

• Claim: It takes a set of public keys pk = {pk(1)ch , · · · pk(𝑛)ch }, a
secret key sk(𝑖)ch , a hash value ℎ, a message𝑚 and a randomness 𝑟

as input, outputs a claim 𝜁 . The claim 𝜁 indicates the claimability

of any values in (ℎ,𝑚, 𝑟).
• VerClaim: It takes a set of public keys pk, a hash value ℎ, a mes-

sage𝑚, a randomness 𝑟 , a claim 𝜁 and a public key pk
(𝑖)
ch as input,

outputs a bit 𝑏 = {0, 1}, indicating that whether or not 𝜁 is a valid

claim of (ℎ,𝑚, 𝑟) for public key pk
(𝑖)
ch .

Definition 4.2 (Claim Oracle OClaim). The oracle OClaim takes

an index 𝑖 ∈ [1, 𝑛], a public-key set pk, and a tuple (ℎ,𝑚, 𝑟) as
input, outputs Claim(pk⋃{pk(𝑖)ch }, sk(𝑖)ch , ℎ,𝑚, 𝑟). The oracle takes
(pk, ℎ,𝑚, 𝑟) as input when it is invoked with a single key pair.

We define the oracle OClaim(· · ·) to output ⊥ if adversary

queries the challenge tuple (ℎ∗,𝑚∗, 𝑟∗). Otherwise, the oracle out-
puts the same response as OClaim(· · ·). Claimability requires that:

(1) honest parties can claim the creation of ℎ or the authorship of 𝑟

on a message𝑚; (2) adversarial parties cannot claim the creation of

ℎ or the authorship of 𝑟 that they did not produce on a message𝑚;

and (3) adversarial parties cannot produce the creation of ℎ or the

authorship of 𝑟 on a message𝑚 along with a claim 𝜁 that appears

to be produced by an honest party.

Definition 4.3 (Claimability). A chameleon hash is claimable if

equipped with Claim and VerClaim such that the following equa-

tions hold

• Equation (1). There exists a negligible function 𝜀 such that for any

(sk(1)ch , pk
(1)
ch), · · · , (sk

(𝑛)
ch , pk

(𝑛)
ch) ← CHKG(ppch, 𝑛), (ppch, 𝑛) ←

CHPG(𝜆) and any 𝑖 ∈ [1, 𝑛], it holds for any message𝑚 that

Pr[(ℎ, 𝑟) ← CHash(pk,𝑚) :
VerClaim(pk, pk(𝑖)ch , ℎ,𝑚, 𝑟,Claim(pk, sk(𝑖)ch , ℎ,𝑚, 𝑟)) = 1]
> 1 − 𝜀 (𝜆) .

where sk = {sk(1)ch , · · · sk(𝑛)ch } and pk = {pk(1)ch · · · , pk
(𝑛)
ch }.

• Equation (2) & (3). The advantage of A illustrated in Figure 5

and 6 is negligible in 𝜆, respectively. Q is the set of queries made

to oracle OClaim(· · ·), and pk(𝑖)ch is an honest party in Figure 6.

4.2.2 Unclaimable chameleon hashes. Unclaimability requires that

the creator/owners cannot convince anyone of its identity. That

is, for any function that a party can produce an internal random-

ness and a chameleon secret key, another party can compute an

indistinguishable function.

Definition 4.4 (Unclaimable chameleon hashes). An unclaimable

chameleon hash in the multi-party setting is a chameleon hash (as

in Section 2.1) along with an algorithm ExtRand. The algorithm
ExtRand takes a set of public keys pk, a secret key sk(𝑖)ch , a hash

value ℎ, a message 𝑚 and a randomness 𝑟 as input, outputs an

internal randomness 𝜌 if sk(𝑖)ch is one of secret keys for pk and

CHCheck(pk, ℎ,𝑚, 𝑟) = 1.

ExtRand satisfies computational unclaimability. Let R be the dis-

tribution of NIZK internal randomness. For any 𝑛, there exists

a negligible function 𝜀 such that the following condition holds.

Let (pk(𝑖)ch , sk
(𝑖)
ch), (pk

(𝑗)
ch , sk(𝑗)ch) ← CHKG(ppch, 𝑛), (ppch, 𝑛) ←

CHPG(𝜆), where 𝑖 ≠ 𝑗 . For any message𝑚 and any (sk(1)ch , pk
(1)
ch)

· · · , (sk(𝑛)ch , pk
(𝑛)
ch), let pk = {pk(1)ch) · · · , pk

(𝑛)
ch } and S = {(𝑖, sk(𝑖)ch ,

pk
(𝑖)
ch)}𝑖∈𝑛 . Let 𝜌𝑖 ← R, (ℎ𝑖 , 𝑟𝑖) ← CHash(pk,𝑚; sk(𝑖)ch , 𝜌𝑖), and

𝜌𝑖 ← ExtRand(pk, sk(𝑗)ch , ℎ𝑖 , 𝑟𝑖 ,𝑚). Let 𝜌 𝑗 ← R and (ℎ 𝑗 , 𝑟 𝑗) ←
CHash(pk,𝑚; sk(𝑗)ch , 𝜌 𝑗). Then

(S, 𝜌𝑖 , ℎ𝑖 , 𝑟𝑖) ≈𝑐 (S, 𝜌 𝑗 , ℎ 𝑗 , 𝑟 𝑗).

4.2.3 Deniable chameleon hashes. Deniability requires that the

creator/owner can deny the authorship of 𝑟 , and even the original

message𝑚.

Definition 4.5 (Deniable chameleon hash). A deniable chameleon

hash in the multi-party setting is a chameleon hash (as in Section

2.1) along with a pair of algorithms (Deny,VerDeny).
• Deny: It takes a set of public keys pk = {pk(1)ch , · · · pk(𝑛)ch }, a secret
key sk(𝑖)ch , a hash value ℎ, a message𝑚 and a randomness 𝑟 as

input, outputs a denial 𝜗 . The denial 𝜗 indicates the deniability

of𝑚 or 𝑟 , even both of them.

• VerDeny: It takes a set of public keys pk, a hash valueℎ, a message

𝑚, a randomness 𝑟 , a denial 𝜗 and a public key pk
(𝑖)
ch as input,

outputs a bit 𝑏 = {0, 1}, indicating that whether or not 𝜗 is a

valid denial of (𝑚, 𝑟) for public key pk
(𝑖)
ch .

Definition 4.6 (Deny Oracle ODeny). The oracle ODeny takes

an index 𝑖 ∈ [1, 𝑛], a public-key set pk, and a tuple (ℎ,𝑚, 𝑟) as
input, outputs Deny(pk⋃{pk(𝑖)ch }, sk(𝑖)ch , ℎ,𝑚, 𝑟). The oracle takes
(pk, ℎ,𝑚, 𝑟) as input when it is invoked with a single key pair.

We define the oracleODeny(· · ·) to output⊥ if adversary queries

the challenge values (pk∗, ℎ∗). Otherwise, the oracle outputs the
same response as ODeny(· · ·). Deniability requires that: (1) hon-

est parties who did not produce message𝑚 and/or randomness 𝑟

can deny; and (2) adversarial parties possessing a subset of secret
keys cannot deny (𝑚, 𝑟) under all public keys in a set. Equation (2)

captured the following cases: 1) If a party generates all keys in a

set, s/he may produce denials on {(𝑚, 𝑟)} under every public key

in the set. Given denials under every public key in a set, anyone

can infer that all keys in the set were generated dishonestly and

1084

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Kwan Yin Chan, Liqun Chen, Yangguang Tian, and Tsz Hon Yuen

Experiment ExpA (𝜆)
(ppch, 𝑛) ← CHPG(𝜆)
(sk(𝑖)ch , pk

(𝑖)
ch) ← CHKG(ppch, 𝑛)

(pk′, 𝜁) ← AOClaim(·· ·) (pk(𝑖)ch)
where OClaim(· · ·) on input pk

(𝑖)
ch , ℎ,𝑚, 𝑟 :

𝜁 ← Claim(pk′⋃{pk(𝑖)ch }, sk
(𝑖)
ch , ℎ,𝑚, 𝑟)

return 𝜁

return 1, if CHCheck(pk′⋃{pk(𝑖)ch }, ℎ,𝑚, 𝑟) = 1

∧VerClaim(pk′⋃{pk(𝑖)ch }, pk
(𝑗)
ch , ℎ,𝑚, 𝑟, 𝜁) = 1 ∧ pk(𝑗)ch ≠ pk

(𝑖)
ch

else, return 0.

Figure 5: Equation (2) for Claimability.

Experiment ExpA (𝜆)
(ppch, 𝑛) ← CHPG(𝜆), Q ← 0

(sk(𝑖)ch , pk
(𝑖)
ch) ← CHKG(ppch, 𝑛)

(pk′, ℎ,𝑚, 𝑟, 𝜁) ← AOClaim(·· ·) (pk(𝑖)ch)
return 1, if CHCheck(pk′⋃{pk(𝑖)ch }, ℎ,𝑚, 𝑟) = 1

∧VerClaim(pk′⋃{pk(𝑖)ch }, pk
(𝑖)
ch , ℎ,𝑚, 𝑟, 𝜁) = 1 ∧ Q ∩ { (pk′, ℎ,𝑚, 𝑟, ·) } = ∅

else, return 0.

Figure 6: Equation (3) for Claimability.

Experiment ExpA (𝜆)
(ppch, 𝑛) ← CHPG(𝜆), Q ← 0

(sk(𝑖)ch , pk
(𝑖)
ch) ← CHKG(ppch, 𝑛)

(pk′, ℎ,𝑚, 𝑟) ← AODeny(·· ·) (pk(𝑖)ch)
𝜗 ← Deny(pk′, sk(𝑖)ch , ℎ,𝑚, 𝑟)
return 1, if CHCheck(pk′, ℎ,𝑚, 𝑟) = 0

∨VerDeny(pk′, pk(𝑖)ch , ℎ,𝑚, 𝑟, 𝜗) = 1 ∨ Q ∩ { (pk′, ℎ, · · ·) } ≠ ∅
else, return 0.

Figure 7: Equation (1) for Deniability.

Experiment ExpA (𝜆)
(ppch, 𝑛) ← CHPG(𝜆), Q ← 0

(sk(1)ch , pk
(1)
ch) · · · , (sk

(𝑛)
ch , pk

(𝑛)
ch) ← CHKG(ppch, 𝑛)

(pk′, ℎ,𝑚, 𝑟, {𝜗
pk
(𝑖)
ch
}
pk
(𝑖)
ch ∈pk

′\pk
) ← AODeny(·· ·) (pk)

return 1, if CHCheck(pk′, ℎ,𝑚, 𝑟) = 0

∨∨
pk
(𝑖)
ch ∈pk

′\pk
VerDeny(pk′, pk(𝑖)ch , ℎ,𝑚, 𝑟, 𝜗

pk
(𝑖)
ch ∈pk

′\pk
) = 0

∨pk′ ∩ pk = ∅ ∨ Q ∩ { (pk′, ℎ, · · ·) } ≠ ∅
else, return 0.

Figure 8: Equation (2) for Deniability.

all parties in the set colluded to produce each tuple (ℎ,𝑚, 𝑟) under
that set. 2) If there exist denials for a subset of public keys in a set,

then anyone can infer that either one of the remaining public keys

in the set (i.e., pk
(𝑖)
ch ∈ pk

′\pk in Fig 8) produced the values (𝑚, 𝑟)
or all of the remaining public keys colluded to produce it.

Definition 4.7 (Deniability). A chameleon hash is deniable if the

advantage of A described in Figure 7 and 8 is non-negligible in

𝜆, i.e., 1 − 𝜀 (𝜆). Q is the set of chameleon hash tuples involved in

the experiment. pk
(𝑖)
ch ∈ pk

′\pk indicates the parties cannot deny
(𝑚, 𝑟) in Fig 8.

4.2.4 Undeniable chameleon hashes.

Claim 1. A chameleon hash in the multi-party setting is undeni-
able if it satisfies full indistinguishability.

Weprovide two justifications. First, we show that deniable chameleon

hashes cannot satisfy full indistinguishability. If an attacker obtains

all secret keys in the generation of 𝑟 , the attacker can produce

denial using each secret key. As a result, the attacker can identify

the creator of 𝑟 , as there exists one secret key for which the Deny
algorithm could not produce a valid denial 𝜗 (i.e., adversarial parties

cannot deny under all public keys in a set, as in Figure 8).

Second, we show that fully indistinguishable chameleon hashes

can imply undeniability. We consider a scenario where an owner

Bob should behave indistinguishably from a creator Alice, but the

attackers cannot identify the creation of 𝑟 given their secret keys.

That is, for any protocol that Bob could execute with respect to

a randomness 𝑟 and his public key pk′ch, Alice should engage in

the same protocol with respect to her own public key pkch and

behave indistinguishably from Bob. In this scenario, we require

that if Bob’s secret key sk′ch is compromised, the attacker cannot

decide whether 𝑟 was produced by Bob or by someone else. Besides,

if Bob lends his key to someone else who used it to produce 𝑟 , Bob

could not decide as well. The definition of full indistinguishability

represents this scenario: attackers cannot produce a valid denial 𝜗

of 𝑟 even if they access all secret keys corresponding 𝑟 .

Remark.Wehave so far shown full indistinguishability, full collision-

resistance, (un)claimability and (un)deniablity for chameleon hashes.

They are not entirely separate properties: one might imply the other

(e.g., full indistinguishability implies undeniability). On the other

hand, some properties may have conflicts. For example, one can-

not create a deniable CH with full indistinguishability. The natural

question is whether one can create a secure chameleon hash with

a (sub)set of these properties. First, the combination of these prop-

erties could be various depending on the application scenarios.

Second, it would be a nice conclusion if we could find the relation-

ships among these properties. We leave it for future research, as

our main focus in this work is full indistinguishability, full collision-

resistance and multi-party setting.

4.3 Our Constructions
4.3.1 Claimability of creation of ℎ. Our scheme is level 2, since the

function 𝐹 is one-way. Also, we do not have an efficient NIZK for

the hash function, so no efficient level 1 (theoretically we can use

zk-SNARK).

4.3.2 Claimability of hash output 𝑟 . Our generic construction is

flexible for using different NIZK proofs. We can have a Level 0 or

Level 1 construction.

Level 0 Construction. Wegive themulti-owner construction using

(uncompressed) Dual Ring [34] to construct CH with unclaimable

hash output.

• CHash((pk(1)ch , . . . , pk
(𝑛)
ch),𝑚): It picks random 𝜌 ∈ Z𝑞 and sets

ℎ = 𝑔𝜌 · 𝐻 (𝑚). Then we compute a NIZK proof 𝑟 by:

(1) It picks random 𝑡, 𝑐1, . . . , 𝑐𝑛 ∈ Z𝑞 and computes

𝑇 = 𝑔𝑡
∏𝑛

𝑖=1 (pk
(𝑖)
ch)
−𝑐𝑖

.

(2) It computes 𝑐0 = 𝐻 ′ (𝑇,𝑔𝜌 , pk(1)ch , . . . , pk
(𝑛)
ch ,𝑚) −∑𝑛

𝑖=1 𝑐𝑖 .

(3) It computes 𝑧 = 𝑡 + 𝑐0𝜌 , and sets 𝑟 = (𝑧, 𝑐0, 𝑐1, . . . , 𝑐𝑛).
It outputs (ℎ, 𝑟).

1085

Reconstructing Chameleon Hash: Full Security and the Multi-Party Setting ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

• CHCheck((pk(1)ch , . . . , pk
(𝑛)
ch),𝑚,ℎ, 𝑟): It parses 𝑟 = (𝑧, 𝑐0, 𝑐1, . . . , 𝑐𝑛).

It computes 𝑦′ = ℎ/𝐻 (𝑚). It outputs 1 if

𝑐0 + . . . + 𝑐𝑛 = 𝐻 ′ (𝑔𝑧𝑦′−𝑐0
𝑛∏
𝑖=1

(pk(𝑖)ch)
−𝑐𝑖 , 𝑦′, pk(1)ch , . . . , pk

(𝑛)
ch ,𝑚) .

Otherwise, it returns 0.

Proof of unclaimability of hash output. For any hash output ℎ∗

and 𝑟∗ = (𝑧∗, 𝑐∗
1
, . . . , 𝑐∗𝑛), any owner sk

(𝑖)
ch can claims that he gener-

ated this pair (ℎ∗, 𝑟∗) by reconstructing the value 𝑡𝑖 = 𝑧∗ − 𝑐∗
𝑖
sk
(𝑖)
ch .

The creator can also compute 𝑡0 = 𝑧∗ − 𝑐∗
0
𝜌 . The values 𝑡0, 𝑡1, . . . , 𝑡𝑛

can be used to claim the authorship of (ℎ∗, 𝑟∗). Hence this scheme

is unclaimable.

Level 1 Construction. We use the one-out-of-many commitment

proof to give a level 1 construction.

Assume that the public parameters include another generator

𝑔 ∈ G. Define a commitment scheme for a message𝑚 ∈ Z𝑞 and

randomness 𝜌 ∈ Z𝑞 as

Com(𝑚; 𝜌) = 𝑔𝑚𝑔𝜌 .

In our ECC-based construction, all public keys can be viewed as a

commitment of zero:Com(0; skch). We utilize the one-out-of-many

commitment proof to generate 𝑟 in the chameleon hash. Without

loss of generality (WLOG), assume that we want to compute 𝑟 by

using sk(𝑗)ch . Then we compute a zero-knowledge proof for sk(𝑗)ch
such that

Com(0; sk(𝑗)ch) = pk
(𝑗)
ch ∧ 𝑗 ∈ [0, 𝑛] .

In the one-out-of-many proof [19], they express 𝑗 as a binary

number (ℓ1, . . . , ℓlog𝑛) and compute commitment Com(ℓ𝑖 ; 𝜌𝑖) us-
ing randomness 𝜌𝑖 for 𝑖 ∈ [1, log𝑛]. A similar idea applies to the

Bulletproof-based OR proof [22, 35].

Proof of claimability of hash output. Since Com is binding, only

the author can output a valid pair (ℓ𝑖 ; 𝜌𝑖). Anyone can validate

(ℓ𝑖 ; 𝜌𝑖), reconstruct 𝑗 from (ℓ1, . . . , ℓlog𝑛) and find the index of the

author.

4.3.3 Deniability of hash output 𝑟 . All of the existing constructions
are Level 0 in deniability, including our ECC-based construction.

Level 1 Construction. We now give a Level 1, multi-owner con-

struction, inspired from linkable ring signature [24]. Assume that

there is another collision-resistant hash function 𝐻̂ : {0, 1}∗ → G
in the public parameters.

We also utilize the one-out-of-many commitment proof to gen-

erate a zero-knowledge proof 𝜋 in the chameleon hash. In addition,

the creator/owner has to compute an extra value 𝑍 = 𝐻̂ (𝑚)sk
(𝑗)
ch .

WLOG, we compute a zero-knowledge proof 𝜋 for sk(𝑗)ch such that

Com(0; sk(𝑗)ch) = pk
(𝑗)
ch ∧ 𝑍 = 𝐻̂ (𝑚)sk

(𝑗)
ch ∧ 𝑗 ∈ [0, 𝑛] .

The hash output is (ℎ, 𝑟 = (𝜋, 𝑍)).
Observe that the value 𝑍 will not compromise the indistinguisha-

bility if the DDH assumption holds inG. This level of indistinguisha-
bility assumes attackers cannot access creator/owner’s secret keys.

Proof of deniability of hash output. Suppose that (ℎ, 𝑟 = (𝜋, 𝑍))
is generated by sk(𝑗)ch for some 𝑗 ∈ [0, 𝑛]. For party 𝑖 who wants to

deny generating it (where 𝑖 ≠ 𝑗), he can compute a zero-knowledge

proof 𝜋 for sk(𝑖)ch such that:

𝐻̂ (𝑚)sk
(𝑖)
ch ≠ 𝑍 ∧ pk(𝑖)ch = 𝑔sk

(𝑖)
ch .

The zero-knowledge proof of inequality of discrete logarithm can

be efficiently instantiated.

5 APPLICATION: REDACTABLE
BLOCKCHAINS

We consider redactable blockchain as an application scenario. Such

a blockchain allows some after-the-fact modifications of its content.

This is motivated by the illicit content that might be included in

the Bitcoin blockchain, which poses a significant challenge for

law enforcement agencies like INTERPOL and legislations like

GDPR (General Data Protection Regulation). The existing solutions

may either work for the permissioned [12] or the permissionless

setting [14], use cryptographic [2] or non-cryptographic tool [14],

allow block-level [2] or transaction-level rewriting [12]. This work

relies on a cryptographic tool (i.e., a chameleon hash function) to

redact mutable transactions in the permissionless setting. We do

not consider block insertions and removals as described in [15].

Full indistinguishability and full collision-resistance provide en-

hanced privacy and security guarantees to the redactable blockchains,

as discussed in [11, 30]. Here, we justify the multi-party setting,

(un)claimability and (un)deniability. Multiple party setting is more

desirable for redactable blockchains, especially considering single-

point of failure towards a trapdoor holder. Chameleon hashes in the

multi-party setting have been studied in the literature. For example,

a threshold number of parties (or miners) are allowed to execute

a multi-party computation protocol to redact blocks (or transac-

tions) [2, 28]. Also, the redactable blockchains based on policies

[12, 32] allow multiple authorized parties to rewrite the mutable

transactions.

Claimability allows an owner to prove the authorship of a modi-

fied transaction at a later date, especially in the case of rewriting a

mutable transaction containing illicit content to a benign one. De-

niability implies that the creator who created a mutable transaction

containing illicit content may deny it. The owner also wants to deny

the malicious rewriting by one of his members. For example, the

owner may suffer serious consequences through no fault of his own,

or due to the creator adversarially trying to damage his reputation.

Malicious rewriting means either adding illicit or malicious content

to mutable transactions, or deleting legitimate or benign mutable

transactions from the blockchain. Unclaimability and undeniability

are also useful properties. For example, an authority (e.g., an au-

thoritarian government) may coerce the creator/owners to provide

proof of authorship or denial for a maliciously written transaction,

the provable inability to do so is desired. Undeniability may also be

desirable in accountable redactable blockchains [32].

Structures.We consider two types of changes are required in redactable

blockchains: block-level and transaction-level. First, we follow

the notation used in [2, 11], and describe a block in Bitcoin as

𝐵 = ⟨𝑠, 𝑥, 𝑐𝑡𝑟 ⟩, where 𝑠 ∈ {0, 1}𝜆 contains the block header (minus

the nonce), 𝑥 ∈ {0, 1}∗ contains all the transactions inside a block,

1086

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Kwan Yin Chan, Liqun Chen, Yangguang Tian, and Tsz Hon Yuen

Figure 9: Changes to transactions.

and 𝑐𝑡𝑟 ∈ N denotes a nonce value, and a block is valid if

validblock𝐷
𝑞 (𝐵) := 𝐻 (𝑐𝑡𝑟,𝐺 (𝑠, 𝑥)) < 𝐷 ∧ 𝑐𝑡𝑟 < 𝑞.

Here (𝐻,𝐺) are two collision-resistant hash functions. To make

a block mutable, we change the description of the block to 𝐵 =

⟨𝑠, 𝑥, 𝑐𝑡𝑟, (ℎ, 𝑟, 𝐻 ′ (pkch))⟩, where the new component is a chameleon

hash (ℎ, 𝑟, 𝐻 ′ (pkch)) with a public key pkch, and 𝐻 ′ denotes an-
other collision-resistant hash function. The validation predicate

changes to

validblock𝐷
𝑞 (𝐵) := 𝐻 (𝑐𝑡𝑟, ℎ, 𝐻 ′ (pkch)) < 𝐷 ∧ 𝑐𝑡𝑟 < 𝑞

∧CHCheck(pkch, (𝑠, 𝑥), ℎ, 𝑟) = 1.

Note that the underlined part is used to prevent the key replacement

attack. For rewriting a block, a key holder may change (𝑠, 𝑥) to
(𝑠′, 𝑥 ′), and update 𝑟 to 𝑟 ′.

Second, we show the modifications to a Bitcoin transaction, and

we list immutable, mutable and redacted transactions in Figure 9.

The key difference between an immutable transaction and amutable

one is an auxiliary field. This auxiliary field is used to verify the

chameleon hash only. Its size is constant due to the hashing of

multiple chameleon public keys (i.e., 𝐻 ′ (pkch)). For rewriting a

chameleon-hashed message𝑚, a key holder changes𝑚 to𝑚′, and
updates 𝑟 to 𝑟 ′.

Modification Process. First, we need to clarify the redacted content

inside a mutable block or transaction. For rewriting a block, the key

holder can rewrite 𝑠 or 𝑥 , or both [2, 11]. But, we argue that it is more

reasonable to rewrite 𝑥 . This is because rewriting some content in

a block header 𝑠 may break some rules such as fork. Thus, we focus

on redacting some (illicit) content inside a mutable transaction like

[14]. We consider two cases in rewriting a mutable transaction. For

a Bitcoin transaction, we slightly modify its structure to make it mu-

table. The Bitcoin transaction’s structure mainly includes two fields:

1) the input contains a hash of the previous transaction (Pre-Tx),

and a signature (Sig); 2) the output contains an amount, and a public

key (Pub-Key) which is used to verify a (redeemer’s) signature on a

transaction. We add a message𝑚 (i.e., arbitrary data) to the output

field to create a mutable Bitcoin transaction. For transactions in

Ethereum, a submitted (regular) transaction contains similar fields

as in Bitcoin, except an optional field including arbitrary data [18].

Like most redactable blockchain solutions, we do not allow anyone

to change transaction amount, public key (or address), otherwise it

may cause transaction inconsistency [14, 28].

Third, we assume the message𝑚 as illicit content, and we take

the mutable transaction recording message𝑚 in Figure 9 to explain

the modification process. Since the message𝑚 is hashed under a

set of public keys {pkch}, it can be modified by one of the secret

key holders. Thus, a key holder can redact the mutable transaction

by replacing (𝑚, 𝑟) with (𝑚′, 𝑟 ′). After modification, the key holder

broadcasts (𝑚′, 𝑟 ′), and 𝑖𝑑 (helps other parties to identify which

transaction needs to be updated) in the blockchain network, each

party will perform the following checks.

• whether the message𝑚 needs to be modified as𝑚′ according to

some rules like GDPR.

• whether the message-randomness pairs (𝑚, 𝑟) and (𝑚′, 𝑟 ′) are
mapping to the same chameleon hash value ℎ and they are valid

under a set of public keys {pkch}.
If the above requirements are met, all parties are required to

update their local copy of the blockchain by replacing (𝑚, 𝑟) with
(𝑚′, 𝑟 ′). Based on Figure 9, each mutable transaction additionally

contains one element in the output field, and three elements in the

auxiliary field. Considering our concrete ECC-based CH instantia-

tion, the elements in the auxiliary field are 162 bytes. The running

time for hashing and verifying are both around 0.6s, which is quite

practical.

6 CONCLUSION
In this paper, we proposed a new generic construction of the chameleon

hash function supporting enhanced security and usability guaran-

tees. The proposed scheme achieved full indistinguishability, full

collision-resistance, and multi-party setting simultaneously with

minimal extra overhead. We also discussed (un)claimability and

(un)deniability properties for chameleon hashes to satisfy broader

chameleon hash-based applications. Lastly, we presented practical

ECC and quantum-secure instantiations, and our implementation of

these two instantiations showed that they are suitable for real-life

applications such as redactable blockchains.

ACKNOWLEDGEMENT
This work is supported by the EU’s research and innovation pro-

gram: 101019645 (SECANT) and 101095634 (ENTRUST). These

projects are funded by the UK government Horizon Europe guar-

antee and administered by UKRI. Yangguang Tian is partially sup-

ported by the National Natural Science Foundation of China under

Grant No. 62072371 and 61872264.

REFERENCES
[1] G. Ateniese, D. H. Chou, B. de Medeiros, and G. Tsudik. Sanitizable signatures.

In S. d. C. di Vimercati, P. Syverson, and D. Gollmann, editors, Computer Secu-
rity – ESORICS 2005, pages 159–177, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[2] G. Ateniese, B. Magri, D. Venturi, and E. Andrade. Redactable blockchain – or –

rewriting history in bitcoin and friends. In 2017 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 111–126, 2017.

[3] M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a

general forking lemma. In Proceedings of the 13th ACM Conference on Computer
and Communications Security, CCS ’06, page 390–399, New York, NY, USA, 2006.

Association for Computing Machinery.

[4] C. Brzuska, M. Fischlin, T. Freudenreich, A. Lehmann, M. Page, J. Schelbert,

D. Schröder, and F. Volk. Security of sanitizable signatures revisited. In S. Jarecki

and G. Tsudik, editors, Public Key Cryptography – PKC 2009, pages 317–336,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[5] C. Brzuska, M. Fischlin, A. Lehmann, and D. Schröder. Unlinkability of sanitizable

signatures. In P. Q. Nguyen and D. Pointcheval, editors, Public Key Cryptography
– PKC 2010, pages 444–461, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[6] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:

Short proofs for confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 315–334, 2018.

[7] J. Camenisch, D. Derler, S. Krenn, H. C. Pöhls, K. Samelin, and D. Slamanig.

Chameleon-hashes with ephemeral trapdoors. In S. Fehr, editor, Public-Key

1087

Reconstructing Chameleon Hash: Full Security and the Multi-Party Setting ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Cryptography – PKC 2017, pages 152–182, Berlin, Heidelberg, 2017. Springer
Berlin Heidelberg.

[8] S. Canard, A. Jambert, and R. Lescuyer. Sanitizable signatures with several signers

and sanitizers. In A. Mitrokotsa and S. Vaudenay, editors, Progress in Cryptology
- AFRICACRYPT 2012, pages 35–52, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[9] S. Canard, F. Laguillaumie, and M. Milhau. Trapdoor sanitizable signatures

and their application to content protection. In S. M. Bellovin, R. Gennaro,

A. Keromytis, and M. Yung, editors, Applied Cryptography and Network Security,
pages 258–276, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[10] D. Derler, S. Krenn, K. Samelin, and D. Slamanig. Fully collision-resistant

chameleon-hashes from simpler and post-quantum assumptions. In C. Galdi and

V. Kolesnikov, editors, Security and Cryptography for Networks, pages 427–447,
Cham, 2020. Springer International Publishing.

[11] D. Derler, K. Samelin, and D. Slamanig. Bringing order to chaos: The case of

collision-resistant chameleon-hashes. In A. Kiayias, M. Kohlweiss, P. Wallden,

and V. Zikas, editors, Public-Key Cryptography – PKC 2020, pages 462–492, Cham,

2020. Springer International Publishing.

[12] D. Derler, K. Samelin, D. Slamanig, and C. Striecks. Fine-grained and controlled

rewriting in blockchains: Chameleon-hashing gone attribute-based. In NDSS,
2019.

[13] D. Derler and D. Slamanig. Key-homomorphic signatures: definitions and appli-

cations to multiparty signatures and non-interactive zero-knowledge. Designs,
Codes and Cryptography, 87(6):1373–1413, 2019.

[14] D. Deuber, B. Magri, and S. A. K. Thyagarajan. Redactable blockchain in the

permissionless setting. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 124–138, 2019.

[15] M. S. Dousti and A. Küpçü. Tri-op redactable blockchains with block modification,

removal, and insertion. Turkish Journal of Electrical Engineering and Computer
Sciences, 30(2):376–391, 2022.

[16] M. F. Esgin. Practice-Oriented Techniques in Lattice-Based Cryptography. PhD
thesis, Monash University, 5 2020.

[17] M. F. Esgin, R. Steinfeld, J. K. Liu, and D. Liu. Lattice-based zero-knowledge

proofs: New techniques for shorter and faster constructions and applications. In

A. Boldyreva and D. Micciancio, editors, Advances in Cryptology – CRYPTO 2019,
pages 115–146, Cham, 2019. Springer International Publishing.

[18] ethereum.org. Transactions, 2023. https://ethereum.org/en/developers/docs/transactions/.

[19] J. Groth and M. Kohlweiss. One-out-of-many proofs: Or how to leak a secret

and spend a coin. In E. Oswald and M. Fischlin, editors, Advances in Cryptology
- EUROCRYPT 2015, pages 253–280, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

[20] A. Jain, S. Krenn, K. Pietrzak, and A. Tentes. Commitments and efficient zero-

knowledge proofs from learning parity with noise. In X. Wang and K. Sako,

editors, Advances in Cryptology – ASIACRYPT 2012, pages 663–680, Berlin, Hei-
delberg, 2012. Springer Berlin Heidelberg.

[21] H. Krawczyk and T. Rabin. Chameleon signatures. In NDSS, 2000.
[22] R. W. F. Lai, V. Ronge, T. Ruffing, D. Schröder, S. A. K. Thyagarajan, and J. Wang.

Omniring: Scaling private payments without trusted setup. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, CCS
’19, page 31–48, New York, NY, USA, 2019. Association for Computing Machinery.

[23] Y. Li and S. Liu. Tagged chameleon hash from lattice and application to redactable

blockchain. Cryptology ePrint Archive, 2023.
[24] X. Lu, M. H. Au, and Z. Zhang. Raptor: A practical lattice-based (linkable) ring

signature. In R. H. Deng, V. Gauthier-Umaña, M. Ochoa, and M. Yung, editors,

Applied Cryptography and Network Security, pages 110–130, Cham, 2019. Springer

International Publishing.

[25] V. Lyubashevsky. Lattice signatures without trapdoors. In D. Pointcheval and

T. Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, pages 738–755,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[26] S. Park and A. Sealfon. It wasn’t me! repudiability and claimability of ring

signatures. In A. Boldyreva and D. Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, pages 159–190, Cham, 2019. Springer International Publishing.

[27] B. Poettering and D. Stebila. Double-authentication-preventing signatures. In

M. Kutyłowski and J. Vaidya, editors, Computer Security - ESORICS 2014, pages
436–453, Cham, 2014. Springer International Publishing.

[28] I. Puddu, A. Dmitrienko, and S. Capkun. 𝜇 chain: How to forget without hard

forks. Cryptology ePrint Archive, Paper 2017/106, 2017.

[29] T. Ruffing, A. Kate, and D. Schröder. Liar, liar, coins on fire! penalizing equivoca-

tion by loss of bitcoins. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’15, page 219–230, New York, NY,

USA, 2015. Association for Computing Machinery.

[30] K. Samelin and D. Slamanig. Policy-based sanitizable signatures. In S. Jarecki,

editor, Topics in Cryptology – CT-RSA 2020, pages 538–563, Cham, 2020. Springer

International Publishing.

[31] A. Shamir and Y. Tauman. Improved online/offline signature schemes. In J. Kilian,

editor,Advances in Cryptology — CRYPTO 2001, pages 355–367, Berlin, Heidelberg,
2001. Springer Berlin Heidelberg.

[32] Y. Tian, N. Li, Y. Li, P. Szalachowski, and J. Zhou. Policy-based chameleon hash

for blockchain rewriting with black-box accountability. In Annual Computer
Security Applications Conference, ACSAC ’20, page 813–828, New York, NY, USA,

2020. Association for Computing Machinery.

[33] B. Yu, S. K. Kermanshahi, A. Sakzad, and S. Nepal. Chameleon hash time-lock

contract for privacy preserving payment channel networks. In R. Steinfeld

and T. H. Yuen, editors, Provable Security, pages 303–318, Cham, 2019. Springer

International Publishing.

[34] T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au, and Z. Ding. Dualring: Generic

construction of ring signatures with efficient instantiations. In T. Malkin and

C. Peikert, editors, Advances in Cryptology – CRYPTO 2021, pages 251–281, Cham,

2021. Springer International Publishing.

[35] T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, and D. Gu. Ringct

3.0 for blockchain confidential transaction: Shorter size and stronger security. In

J. Bonneau and N. Heninger, editors, Financial Cryptography and Data Security,
pages 464–483, Cham, 2020. Springer International Publishing.

A SECURITY IN THE MULTI-KEY SETTING
In this section, we show our key replacement attacks for concrete

schemes SS20 [30] and DSS20 [11], and provide a fix.

A.1 Key Replacement Attack on SS20
Suppose that the RSA public key is (𝑁, 𝑒). The RSA-based chameleon

hash in SS20 [30] is

ℎ = 𝐻 (𝑚) · 𝑟𝑒 mod 𝑁,

for some randomness 𝑟 . Suppose (𝑁 ′, 𝑒′) and 𝑑′ is the RSA key pair

of the attacker. For any message𝑚′, he finds 𝑟 ′ such that:

𝑟 ′ = (ℎ/𝐻 (𝑚′))𝑑
′

mod 𝑁 ′ .

It is easy to see that (𝑚′, 𝑟 ′) is a collision of ℎ with respect to

(𝑁 ′, 𝑒′).

A.2 Key Replacement Attack on DSS20
Suppose that the ElGamal public key is 𝑦. The chameleon hash in

DSS20 [11] is:

ℎ = (𝐶1 =𝑚 · 𝑦𝜌 , 𝐶2 = 𝑔𝜌) .

Let (𝑥 ′, 𝑦′) as another key pair of the attacker. The attacker can

calculate

𝑚′ = 𝐶1𝐶
−𝑥 ′
2

.

Then we can write𝑚′ · (𝑦′)𝜌 = 𝐶1𝐶
−𝑥 ′
2
· 𝑔𝑥 ′𝜌 = 𝐶1. Hence ℎ is the

ElGamal encryption of𝑚′ with respect to 𝑦′. With the knowledge

of 𝑥 ′, the attacker can generate a valid NIZK proof of 𝑟 ′. Hence
(𝑚′, 𝑟 ′) is a collision for ℎ with respect to 𝑦′.

A.3 Solution to the Key Replacement Attack
Our solution is to change the hash value as (ℎ, 𝐻 ′ (pkch)), for some

collision-resistant hash function 𝐻 ′. In the multi-owner setting, we

change the hash value as (ℎ, 𝐻 ′ (pk)), where pk contains a creator

and multiple owners. We also show how to apply such modification

to redactable blockchains in Section 5. We stress that the owners’

public keys must be authenticated by a certificate authority. The

creator must use the authenticated public keys to create H′ (pk),
and anyone is supposed to check H′ (pk) during CHCheck. This
additional check is needed for a secure chameleon hash function.

1088

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Kwan Yin Chan, Liqun Chen, Yangguang Tian, and Tsz Hon Yuen

B SECURITY PROOF OF THE ECC-BASED
CONSTRUCTION

To prove Theorem 3.4 and 3.5, we first show that the ECC-based

NIZK proof has the desired properties.

Lemma B.1. The ECC-based NIZK proof has zero-knowledge and
simulation-sound extractability in the random oracle model.

Proof. Simulation-sound extractability. Recall that the rela-
tion 𝑅 of the NIZK proof is to know 𝑥 such that 𝑦1 = 𝑔𝑥 ∨ 𝑦2 = 𝑔𝑥 .

Denote A as the adversary of breaking the simulation-sound ex-

tractability. A is given the public parameters. For the SIM oracle

with input (𝑦1, 𝑦2) and a message𝑚, the simulator S picks random

𝑐1, 𝑧1, 𝑧2 ∈ Z𝑞 and computes

𝑇1 = 𝑔𝑧1𝑦
𝑐1
1
, 𝑐2 = 𝐻 ′ (𝑇1, 𝑦1, 𝑦2,𝑚), 𝑇2 = 𝑔𝑧2𝑦

𝑐2
2
.

S sets 𝑐1 = 𝐻 ′ (𝑇2, 𝑦1, 𝑦2,𝑚). With probability 𝜖 ≤ 𝑞𝐻 /𝑞 (𝑞𝐻 is the

number of queries to 𝐻 ′), the input (𝑇2, 𝑦1, 𝑦2,𝑚) is already set in

the random oracle 𝐻 ′, and S declares failure and exits in this case.

Otherwise, S returns (𝑧1, 𝑧2, 𝑐1).
WhenA returns (𝑦∗

1
, 𝑦∗

2
,𝑚∗) and a proof (𝑧∗

1
, 𝑧∗

2
, 𝑐∗
1
),S calculates

𝑇 ∗
1
= 𝑔𝑧

∗
1𝑦∗

1

𝑐∗
1 , 𝑐∗

2
= 𝐻 ′ (𝑇 ∗

1
, 𝑦∗

1
, 𝑦∗

2
,𝑚∗) and 𝑇 ∗

2
= 𝑔𝑧

∗
2𝑦∗

2

𝑐∗
2 . Since it is a

valid proof, we have 𝑐∗
1
= 𝐻 ′ (𝑇 ∗

2
, 𝑦∗

1
, 𝑦∗

2
,𝑚∗).S checks if 𝑐∗

1
or 𝑐∗

2
was

queried later to the 𝐻 ′ oracle. WLOG, assume that 𝑐∗
1
was queried

later and 𝑐∗
2
= 𝐻 ′ (𝑇 ∗

1
, 𝑦∗

1
, 𝑦∗

2
,𝑚∗) was queried before. S rewinds

to the point that 𝑐∗
1
was queried with input (𝑇 ∗

2
, 𝑦∗

1
, 𝑦∗

2
,𝑚∗) and

returns a different 𝑐′
1
≠ 𝑐∗

1
. If A still wins the game by outputting

(𝑧′
1
, 𝑧′

2
, 𝑐′
1
) (it happens with a non-negligible probability according

to the forking lemma [3]), it means that 𝑇 ∗
1
= 𝑔𝑧

∗
1𝑦∗

1

𝑐∗
1 = 𝑔𝑧

′
1𝑦∗

1

𝑐′
1 .

Then S obtains the witness 𝑤∗ = (𝑧∗
1
− 𝑧′

1
)/(𝑐′

1
− 𝑐∗

1
) = log𝑔 𝑦

∗
1
.

Hence, it contradicts the winning condition of A.

Zero-knowledge. Similar to the simulation of the SIM oracle

above, no PPT adversary can break the zero-knowledge property

with non-negligible probability in the random oracle model. □

Similar to the generic construction, our ECC-based construction

has full indistinguishability in the random oracle model since the

output of 𝐹 (𝑥) = 𝑔𝑥 is uniformly distributed in G. We can also

prove that our ECC-based construction has full collision-resistance

in the random oracle model if the DL assumption holds in G, or
reduces to the case that the adversary outputs 𝑥0, 𝑥1,𝑚0,𝑚1 such

that

𝐻 (𝑚1)/𝐻 (𝑚0) = 𝑔𝑥0/𝑔𝑥1 = 𝑔𝑥0−𝑥1 .

It can be further reduced to the following Assumption DL-1.

Definition B.2 (Assumption DL-1). Given a generator 𝑔 and a

collision resistant hash function 𝐻 , no PPT adversary can output

𝑥,𝑚0,𝑚1 with non-negligible probability such that𝑚0 ≠𝑚1 and

𝑔𝑥 = 𝐻 (𝑚1)/𝐻 (𝑚0).
Lemma B.3. The Assumption DL-1 can be reduced to the DL as-

sumption in the random oracle model.

Proof. Suppose that an algorithm B is given the DL problem

(𝑔,𝑦). If there is a PPT attackerA that breaks the Assumption DL-1,

B first gives𝑔 toA. WhenA ask for the hash query𝐻 (𝑚𝑖),B picks

a random, distinct 𝜇𝑖 and returns 𝑦
𝜇𝑖
. Finally,A returns (𝑥,𝑚0,𝑚1)

such that 𝑔𝑥 = 𝐻 (𝑚1)/𝐻 (𝑚0). Then we have 𝑔𝑥 = 𝑦𝜇1−𝜇0 . Hence
B can return 𝑥/(𝜇1 − 𝜇0) as the DL solution of log𝑔 𝑦. □

C SECURITY PROOF OF THE LATTICE-BASED
CONSTRUCTION

Because of the “knowledge-gap" in lattice-based NIZK proof, we

cannot use the simulation-sound extractability of our lattice-based

NIZK proof. We refer the reader to earlier works [17, 25] for expla-

nations on this knowledge gap issue. Hence, we give a direct proof

for our lattice-based chameleon hash.

C.1 Proof of Theorem 3.8
Proof. The proof is given by a sequence of games as defined

in the proof of Theorem 3.1. In the game hopping to Game1, the
simulator S can pick random 𝑐1 ∈ C, ®𝜌 ← 𝔘𝑚

1
, ®𝑧1, ®𝑧2 ← 𝔘𝑚

𝑚𝑑2−𝑑 .

It calculates ®𝑦′ = ®𝐺 · ®𝜌 , ®𝑇1 = ®𝐺 · ®𝑧1−pkch ·𝑐1, 𝑐2 = 𝐻 ′ (®𝑇1, pkch, ®𝑦′,𝑚),
®𝑇2 = ®𝐺 · ®𝑧2 − ®𝑦′ · 𝑐2. It sets 𝑐1 = 𝐻 ′ (®𝑇2, pkch, ®𝑦′,𝑚) in the random

oracle. With probability 𝜖 ≤ 𝑞𝐻 /|C| (𝑞𝐻 is the number of queries

to𝐻 ′), the input (®𝑇2, pkch, ®𝑦′,𝑚) is already set in the random oracle

𝐻 ′, and S declares failure and exits in this case. The game hopping

to Game2 is handled similarly.

In the game hopping to Game3, note that we can write ®𝐺 · ®𝜌 =

®𝜌0 + ®𝐺 ′ · ®𝜌1 for ®𝜌0 ∈ 𝔘𝑘
1
and ®𝜌1 ∈ 𝔘𝑚−𝑘

1
. Therefore, by M-

LWE𝑚−𝑘,𝑘,𝑞,𝔘1
assumption, ®𝐺 · ®𝜌 is computationally indistinguish-

able from a random element in 𝑅𝑘𝑞 and so is
®ℎ = ®𝐺 · ®𝜌 +𝐻 (𝑚′). The

game hopping to Game4 is handled similarly. □

C.2 Proof of Theorem 3.9
Proof. Suppose thatA is an adversary breaking the full collision-

resistance. Suppose that the simulatorS is given
®̂
𝐺 =

[
®𝐼𝑘 ∥ ®𝐺 ′ ∥ ®𝑔

]
∈

𝑅
𝑘×(𝑚+1)
𝑞 as the M-SIS matrix where ®𝐺 ′ and ®𝑔 are sampled uni-

formly at random. Denote ®𝐺 =

[
®𝐼𝑘 ∥ ®𝐺 ′

]
, which is used as the

public parameter given to A. S sets

pkch = ®𝐺 · ®𝑥 + ®𝑔 (2)

for ®𝑥 ← 𝔘𝑚
1
. Observe that ∥ ®𝑥 ′∥ ≤

√
𝑚𝑑 + 1 for ®𝑥 ′ =

(
®𝑥
1

)
.

Also, note that we can write ®𝐺 · ®𝑥 = ®𝑥0 + ®𝐺 ′ · ®𝑥1 for ®𝑥0 ∈ 𝔘𝑘
1
and

®𝑥1 ∈ 𝔘𝑚−𝑘
1

. Therefore, by M-LWE𝑚−𝑘,𝑘,𝑞,𝔘1
assumption, ®𝐺 · ®𝑥 is

computationally indistinguishable from a random element in 𝑅𝑘𝑞

and so is pkch = ®𝐺 · ®𝑥 + ®𝑔. S gives ppch = (𝑘,𝑚,𝑑, 𝑞, ®𝐺,𝐻,𝐻 ′) and
pkch to A. S also picks a random number 𝑗 ∈ [1, 𝑞𝐴], where 𝑞𝐴 is

the number of CHAdapt oracle query.
For the CHAdapt oracle query with input (𝑚,𝑚′, ®ℎ, 𝑟), S firstly

checks if CHCheck(𝑚, ®ℎ, 𝑟) = 1. For the 𝑗-th query, if 𝑟 is not

the previous CHAdapt oracle with input (·,𝑚, ®ℎ, ·), S additionally

rewinds and extracts as follows:

• Denote 𝑟 = (®𝑧1, ®𝑧2, 𝑐1). S calculates ®𝑦2 = ®ℎ −𝐻 (𝑚), ®𝑇1 = ®𝐺 · ®𝑧1 −
pkch · 𝑐1, 𝑐2 = 𝐻 ′ (®𝑇1, pkch, ®𝑦2,𝑚), ®𝑇2 = ®𝐺 · ®𝑧2 − ®𝑦2 · 𝑐2. Since 𝑟 is
a valid proof, we have 𝑐1 = 𝐻 ′ (®𝑇2, pkch, ®𝑦2,𝑚). S checks if 𝑐1 or

𝑐2 was queried later in the 𝐻 ′ oracle.
• If 𝑐1 was queried later, S rewinds A to the point that 𝑐1 was

queried with input (®𝑇2, pkch, ®𝑦2,𝑚). S returns a different 𝑐′
1
≠

𝑐1 for the 𝐻 ′ oracle. If A still query the oracle by returning

another proof 𝑟 ′ = (®𝑧′
1
, ®𝑧′

2
, 𝑐′
1
) (it happens with a non-negligible

1089

Reconstructing Chameleon Hash: Full Security and the Multi-Party Setting ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

probability according to the forking lemma [3]), it means that

®𝑇1 = ®𝐺 · ®𝑧1 − pkch · 𝑐1 = ®𝐺 · ®𝑧′1 − pkch · 𝑐
′
1
.

Hence we get

pkch · (𝑐1 − 𝑐′1) = ®𝐺 · (®𝑧1 − ®𝑧′1) =
®̂
𝐺 ·

(
®𝑧1 − ®𝑧′

1

0

)
.

By multiplying equation (2) by (𝑐1 − 𝑐′
1
), we have

pkch · (𝑐1 − 𝑐′1) = ®𝐺 · ®𝑥 · (𝑐1 − 𝑐
′
1
) + ®𝑔 · (𝑐1 − 𝑐′1)

=
®̂
𝐺 · (𝑐1 − 𝑐′1) ·

(
®𝑥
1

)
.

Therefore, we get

®̂
𝐺 ·

(
®𝑧1 − ®𝑧′

1

0

)
=
®̂
𝐺 · (𝑐1 − 𝑐′1) ·

(
®𝑥
1

)
.

That is,
®̂
𝐺 · ®𝑠 = 0 over 𝑅𝑞 for ®𝑠 = (𝑐1 − 𝑐′

1
) ·

(
®𝑥
1

)
−

(
®𝑧1 − ®𝑧′

1

0

)
.

Observe that ®𝑠 cannot be the zero vector as 𝑐1 ≠ 𝑐′
1
and the last

coordinate of ®𝑠 is (𝑐1 − 𝑐′
1
). Since ∥®𝑧1∥∞ , ∥®𝑧′1∥∞ ≤ 𝑚𝑑2 − 𝑑 , we

also have ∥®𝑠 ∥ ≤ 2𝑑
√
𝑚𝑑 + 1 + 2𝑚𝑑2. Hence, ®𝑠 is a solution to the

M-SIS𝑘,𝑚+1,𝑞,𝛽SIS for 𝛽SIS = 4𝑑 · (2𝑚𝑑2 +
√
𝑚𝑑). S quits the game

in this case.

• If 𝑐2 was queried later, S rewinds A to the point that 𝑐2 was

queried with input (®𝑇1, pkch, ®𝑦2,𝑚). S returns a different 𝑐′
2
≠ 𝑐2

for the 𝐻 ′ oracle. If A still queries the oracle by another proof

𝑟 = (®̃𝑧1, ®̃𝑧2, 𝑐2), it means that

®𝑇2 = ®𝐺 · ®𝑧2 − ®𝑦2 · 𝑐2 = ®𝐺 · ®̃𝑧2 − ®𝑦2 · 𝑐2 .
Hence we get

®𝑦2 · (𝑐2 − 𝑐2) = ®𝐺 · (®𝑧2 − ®̃𝑧2) = ®̂𝐺 ·
(
®𝑧2 − ®̃𝑧2
0

)
. (3)

Afterward, S simulates the CHAdapt oracle using the random

oracle 𝐻 ′ as in the Game1 of the proof of Theorem 3.8.

For input𝑚𝑖 , the 𝐻 oracle returns ®𝐺 · ®𝜇𝑖 + ®𝑔, where ®𝜇𝑖 ← 𝔘𝑘
1
. Ob-

serve that

 ®𝜇𝑖 ′

 ≤ √𝑚𝑑 + 1 for ®𝜇𝑖 ′ =
(
®𝜇𝑖
1

)
. Also, note that we

can write ®𝐺 · ®𝜇𝑖 = ®𝜇𝑖0+ ®𝐺 ′ · ®𝜇𝑖1 for ®𝜇𝑖0 ∈ 𝔘𝑘
1
and ®𝜇𝑖1 ∈ 𝔘𝑚−𝑘

1
. There-

fore, by M-LWE𝑚−𝑘,𝑘,𝑞,𝔘1
assumption, ®𝐺 · ®𝜇𝑖 is computationally

indistinguishable from a random element in 𝑅𝑘𝑞 and so is ®𝐺 · ®𝜇𝑖 + ®𝑔.
In the output phase, the adversary returns (𝑚∗, 𝑟∗,𝑚′∗, 𝑟 ′∗, ®ℎ∗)

with 𝑚∗ ≠ 𝑚′∗ and (®ℎ∗,𝑚∗) ∉ Q. We consider two cases: (1)

(®ℎ∗,𝑚′∗) ∉ Q; (2)(®ℎ∗,𝑚′∗) ∈ Q.
We first consider case 1.A outputs 𝑟∗ = (®𝑧∗

1
, ®𝑧∗

2
, 𝑐∗
1
). S calculates

®𝑦∗
2
= ®ℎ∗ −𝐻 (𝑚∗), ®𝑇 ∗

1
= ®𝐺 · ®𝑧∗

1
− pkch · 𝑐∗1 , 𝑐

∗
2
= 𝐻 ′ (®𝑇 ∗

1
, pkch, ®𝑦∗2,𝑚

∗),
®𝑇 ∗
2

= ®𝐺 · ®𝑧∗
2
− ®𝑦∗

2
· 𝑐∗

2
. Since 𝑟∗ is a valid proof, we have 𝑐∗

1
=

𝐻 ′ (®𝑇 ∗
2
, pkch, ®𝑦∗2,𝑚

∗).S checks if 𝑐∗
1
or 𝑐∗

2
was queried later in the𝐻 ′

oracle. S also performs a similar checking for (𝑟 ′∗ = (®𝑧′∗
1
, ®𝑧′∗

2
, 𝑐′∗

1
),

𝑚′∗) and we do not repeat the writing here.

Case (1a): if 𝑐∗
1
was queried later than 𝑐∗

2
, or 𝑐′∗

1
was queried later

than 𝑐′∗
2
,S rewindsA to the point that 𝑐∗

1
or 𝑐′∗

1
was queried. Similar

to the simulation of the CHAdapt oracle, S can find a solution to

the M-SIS𝑘,𝑚+1,𝑞,𝛽SIS problem.

Case (1b): if 𝑐∗
2
was queried later than 𝑐∗

1
, and 𝑐′∗

2
was queried

later than 𝑐′∗
1
, S rewindsA to the point that 𝑐∗

2
and 𝑐′∗

2
was queried.

Similar to the simulation of the CHAdapt oracle, S gets

®𝑦∗
2
· (𝑐∗

2
− 𝑐2) = ®𝐺 · (®𝑧∗

2
− ®̃𝑧2) = ®̂𝐺 ·

(®𝑧∗
2
− ®̃𝑧2
0

)
, (4)

®𝑦′∗
2
· (𝑐′∗

2
− ˜𝑐′2) = ®𝐺 · (®𝑧′∗

2
− ®̃𝑧′

2
) = ®̂𝐺 ·

(
®𝑧′∗
2
− ®̃𝑧′

2

0

)
. (5)

S calculates (𝑐′∗
2
− ˜𝑐′2)× Eq. (4) - (𝑐∗

2
− 𝑐2)× Eq. (5):

𝐻 (𝑚∗) (𝑐′∗
2
− ˜𝑐′2) − 𝐻 (𝑚′∗) (𝑐∗2 − 𝑐2) =

®̂
𝐺 ·

(
®𝜏
0

)
,

where ®𝜏 = (®𝑧∗
2
− ®̃𝑧2) (𝑐′∗2 − ˜𝑐′2) − (®𝑧′∗

2
− ®̃𝑧′

2
) (𝑐∗

2
− 𝑐2).

Recall that by the simulation of the 𝐻 oracle, we have 𝐻 (𝑚∗) =
®𝐺 · ®𝜇∗ + ®𝑔 and 𝐻 (𝑚′∗) = ®𝐺 · ®𝜇′∗ + ®𝑔 for some ®𝜇∗, ®𝜇′∗ ∈ 𝔘𝑘

1
. Hence,

we have

𝐻 (𝑚∗) (𝑐′∗
2
− ˜𝑐′2) − 𝐻 (𝑚′∗) (𝑐∗2 − 𝑐2)

= ®𝐺 · [®𝜇∗ (𝑐′∗
2
− ˜𝑐′2) − ®𝜇′∗ (𝑐∗2 − 𝑐2)] + ®𝑔 · [(𝑐

′∗
2
− ˜𝑐′2) − (𝑐∗2 − 𝑐2)]

=
®̂
𝐺 ·

(®𝜇∗ (𝑐′∗
2
− ˜𝑐′2) − ®𝜇′∗ (𝑐∗

2
− 𝑐2)

(𝑐′∗
2
− ˜𝑐′2) − (𝑐∗

2
− 𝑐2)

)
That is,

®̂
𝐺 ·®𝑠 = 0 over𝑅𝑞 for ®𝑠 =

(®𝜇∗ (𝑐′∗
2
− ˜𝑐′2) − ®𝜇′∗ (𝑐∗

2
− 𝑐2) − ®𝜏

(𝑐′∗
2
− ˜𝑐′2) − (𝑐∗

2
− 𝑐2)

)
.

Observe that the last coordinate of ®𝑠 is (𝑐′∗
2
− ˜𝑐′2) − (𝑐∗

2
− 𝑐2), and

it is equal to zero only with probability 1/𝑞. Hence, ®𝑠 cannot be the
zero vector with overwhelming probability.

Since ∥ ®𝑧∗
2
∥∞ , ∥®̃𝑧2∥∞ , ∥ ®𝑧

′∗
2
∥∞ , ∥®̃𝑧′2∥∞ ≤ 𝑚𝑑2 − 𝑑 , we also have

∥®𝑠 ∥ ≤ 4𝑑
√
𝑚𝑑 + 1 + 8𝑑 · (𝑚𝑑2 − 𝑑) + 4𝑑

≤ 4𝑑 ·
(
2𝑚𝑑2 +

√
𝑚𝑑

)
.

Therefore, ®𝑠 gives a solution to M-SIS𝑘,𝑚+1,𝑞,𝛽SIS for 𝛽sis ≈ 4𝑑 ·(
2𝑚𝑑2 +

√
𝑚𝑑

)
.

Next, we consider case 2. If (®ℎ∗,𝑚′∗) ∈ Q, there are two sub-

cases:

Case (2a): The 𝑖-thCHAdapt oracle query has input (𝑚′∗, ·, ®ℎ∗, 𝑟𝑖)
for some 𝑟𝑖 . If 𝑖 ≠ 𝑗 , S declares failure and exits. If 𝑖 = 𝑗 , then the

extraction of (𝑟𝑖 ,𝑚′∗) has already been done during the CHAdapt
oracle query. The solution to the M-SIS problem is calculated as in

case (1a) and case (1b).

Case (2b): There was a CHAdapt query with input (𝑚𝑖 ,𝑚
′∗
,

®ℎ∗, 𝑟𝑖) for some𝑚𝑖 , 𝑟𝑖 . If further looks for previous query with input

(𝑚𝑖−1,𝑚𝑖 , ®ℎ∗, 𝑟𝑖−1) and output 𝑟𝑖 . It runs recursively until it finds a

query (denoted as the 𝑖∗-th query) with input (𝑚0,𝑚1, ®ℎ∗, 𝑟0) and
output 𝑟1, such that there is no query with input (·,𝑚0, ®ℎ∗, ·) and
output 𝑟0. If 𝑖

∗ ≠ 𝑗 , S declares failure and exits. If 𝑖∗ = 𝑗 , then the

extraction of (𝑟0,𝑚0) has already been done during the CHAdapt
oracle query. The solution to the M-SIS problem is calculated as in

case (1a) and case (1b).

Apart from the probability of rewinding successfully, the success

probability for case (2a) and (2b) are at least 1/𝑞𝐴 , and the success

probability for case (1b) is at least 1 − 1/𝑞. Also, S has to rewind

1090

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Kwan Yin Chan, Liqun Chen, Yangguang Tian, and Tsz Hon Yuen

once for the 𝑗-th CHAdapt oracle query, and twice for case (1b)

or case (2b). Hence, S can solve the M-SIS problem in polynomial

time with non-negligible probability. □

C.3 Parameter Selection
The practical security estimations of M-SIS and M-LWE against

known attacks can be found in [16, Section 3.2.4]. In particular,

we look for a “Root Hermite Factor” of around 1.0045, which is

a common metric used in lattice-based cryptography to measure

practical hardness. Following Algorithm 3.1 in [16], we have log𝑞 =

28, 𝑑 = 128, 𝑘 = 9,𝑚 = 20.

Observe that the size of the hash value
®ℎ = 𝑑𝑘𝑞 bits, which is

about 4kB. The length of 𝑟 can be approximated by the following

formula:

|𝑟 | = 2|®𝑧 | + |𝑐1 | ≈ 2 ∗ 7541 + 26 = 15108 bytes. (6)

The above formula stems from the fact that |𝑐1 | = 𝑑 log 3/8 bytes
and |®𝑧 | = 𝑚𝑑 log(2𝑚𝑑2)/8 bytes since ®𝑧 ∈ 𝑅𝑚 with ∥®𝑧∥∞ ≤ 𝑚𝑑2.

Plugging in (𝑑,𝑚) = (128, 20) yields (6).

1091

	Abstract
	1 Introduction
	1.1 Full Security in Chameleon Hash
	1.2 High-Level Idea of Our Scheme
	1.3 Chameleon Hash in the Multi-Party Setting
	1.4 Our Contributions

	2 Background
	2.1 Chameleon Hash
	2.2 One-Way Function
	2.3 Non-Interactive Zero-Knowledge

	3 Our Constructions
	3.1 Generic Construction
	3.2 ECC-based Construction
	3.3 Lattice-based construction
	3.4 Comparison
	3.5 Multi-owner CH

	4 Claimability and Deniability for CH
	4.1 Classification
	4.2 New Definitions: (un)claimability and (un)deniability
	4.3 Our Constructions

	5 Application: Redactable Blockchains
	6 Conclusion
	References
	A Security in the Multi-Key Setting
	A.1 Key Replacement Attack on SS20
	A.2 Key Replacement Attack on DSS20
	A.3 Solution to the Key Replacement Attack

	B Security Proof of the ECC-based Construction
	C Security Proof of the Lattice-based Construction
	C.1 Proof of Theorem 3.8
	C.2 Proof of Theorem 3.9
	C.3 Parameter Selection

