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ABSTRACT
The privacy of personal data is paramount in the realm of assisted
living and digital healthcare. Federated Learning (FL), with its de-
centralised model training approach, has emerged as a compelling
solution to reconcile the need for personalised models with the
requirement to protect sensitive personal information. By allowing
model training to occur locally on user devices without centralising
raw data, FL is intended to strike a balance between personalisation
and privacy. While the potential benefits of FL in assisted living
and digital healthcare are substantial, practical implementation
poses significant challenges. One of them is the non-Independently
and Identically Distributed (non-IID) nature of personal data. Un-
like centralised datasets, non-IID data exhibits inherent variability
across different individuals, as well as their surrounding contexts.
Unfortunately, many research approaches in this domain often over-
look the nuances of non-IID data, potentially leading to models that
lack robust generalisation across diverse healthcare scenarios. To
highlight the importance of this challenge, in this paper, we report
on our hands-on experience of building a FL system for drowsiness
detection using non-IID data. We compare this federated setup with
a traditional, centralised approach to model training by identifying
and discussing the associated challenges from multiple perspec-
tives, as well as possible solutions and recommendations for further
research.

CCS CONCEPTS
• Security and privacy → Privacy protections; • Computing
methodologies→ Neural networks; Distributed artificial in-
telligence.
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1 INTRODUCTION
Assisted living and digital healthcare increasingly rely on Machine
Learning (ML) models to deliver personalised and effective services.
Federated Learning (FL) has emerged as a privacy-aligned approach,
allowing model training across decentralised and privacy-sensitive
data sources. Rather than centralising data, FL enables training on
individual nodes (devices or servers), maintaining data locally while
aggregating updates to enhance the global model’s performance.
This approach is particularly beneficial in applications prioritising
data security and confidentiality, such as healthcare and finances.

However, the non-Independently and Identically Distributed
(non-IID) nature of personal data commonly present in healthcare-
related scenarios poses a significant challenge to implementing FL,
potentially impacting model performance and generalisation across
diverse individual data. Real-world implementation of FL faces
substantial hurdles due to the non-IID nature of distributed datasets,
stemming from variations in health conditions, personal habits,
demographics, and medical histories. Existing research often falls
short in addressing this challenge, with many studies neglecting
the non-IID data challenge when reporting results. Despite the
highlighted benefits, a critical examination of digital healthcare
studies reveals a gap in acknowledging and mitigating the non-IID
challenge, risking overestimation of model performance.

This paper advocates for a responsible approach in digital health-
care research involving FL, urging deeper consideration of the non-
IID nature of personal data. Future studies should employ advanced
aggregation strategies explicitly addressing the non-IID challenge.
Additionally, establishing transparent reporting standards is crucial
to accurately reflect the impact of dataset heterogeneity in evalua-
tion metrics. Our conclusions are drawn from hands-on experience
of building a FL system for training a drowsiness detection ML
model with non-IID data, compared against the traditional, cen-
tralised setup. Throughout this paper, we will draw on examples
from healthcare and assisted living, which are, on the one hand,
rapidly developing thanks to the recent advances in AI and ML,
but, on the other, hindered by the high sensitivity of personal data.
However, the presented work’s relevance extends to other appli-
cation scenarios and business domains dealing with non-IID data,
which can potentially benefit from adopting the FL technology.

The remainder of the paper is organised as follows. Section 2
describes the background and context of this research, emphasising
the primary existing challenge. Section 3 presents an overview
of existing related works. Section 4 details the two experimental
evaluations we conducted, followed by a critical discussion of the
results. Section 5 concludes the paper with a summary and some
concluding remarks.
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2 RESEARCH CONTEXT AND MOTIVATION
In this section, we brief the reader on the broader research context
of this work, explaining the concepts of edge computing and AI
at the edge, followed by an overview of FL and the challenges
associated with non-IID data. The latter will be re-visited further
down in the paper when discussing the experimental findings.

2.1 Edge AI and Federated Learning
Recent technological advances have paved the way for ubiquitous
connectivity [34] and pervasive computing [14]. With the availabil-
ity of network connections, devices and systems are enabled to
be seamlessly connected to the Internet or other communication
networks. At the same time, pervasive computing extends the con-
cept of ubiquitous connectivity by focusing on the integration of
computing capabilities into everyday objects and environments
forming the so-called computing continuum [32]. It involves em-
bedding intelligence into a wide range of personal devices and
human-centred spaces, such as smartphones, ‘wearables’, house-
hold appliances, vehicles, buildings, etc. The goal is to create an
environment where computing and information processing become
seamlessly integrated into people’s daily lives, without requiring
explicit user intervention (e.g., assisted living).

The advances in networking and computing capabilities of field-
deployed devices underpin another relevant concept – edge com-
puting, which is a decentralised computing paradigm that brings
data processing and computation closer to the data source, instead
of relying solely on centralised cloud servers [6]. Data processing
at the edge can range from simple data pre-processing operations
to rather advanced ML-driven AI analytics. The latter, commonly
known as Edge AI, refers to the deployment of AI algorithms and
models directly on edge devices, such as smartphones, IoT devices,
edge servers, and other similar computing nodes [38]. It brings AI
capabilities and decision-making closer to the data source, min-
imising the need for data transmission to centralised cloud servers.
This enables near-real-time inference, reduces latency, saves band-
width, enhances privacy, and enables offline functionality even in
the absence of the Internet connection. All these features are espe-
cially important to the healthcare domain where physiological data
collected by wearable or portable medical devices are processed
either directly on those devices or on a smartphone acting as a
wireless gateway [11, 15]. Similarly, the data privacy and network
bandwidth constraints are usually critical aspects in various im-
age and video recognition scenarios involving indoor or in-vehicle
cameras [7, 9].

A natural next step in the Edge AI development was not only
to deploy pre-trained AI models and run local inference, but also
to train models at the edge. While individual edge devices are
still constrained in their computing capabilities to perform heavy-
weight model training, the promising solution was to combine
multiple devices into an aggregated pool of computing resources
and then orchestrate the iterative model training process, while
keeping data locally. This ML approach, known as FL, enables
training models on decentralised data without the need to transfer
raw data to a central server [16]. The central idea behind FL is
to enable collaborative model training while keeping the data on

the local devices or servers, thereby addressing privacy and data
security concerns. Here is how FL typically works:

(1) Model Initialisation: A global ML model is initialised on a
central server.

(2) Local Training: The local nodes perform model training on
their respective datasets without sharing the data itself. The
training process may involve multiple iterations of training
and updating the model’s parameters.

(3) Model Update Aggregation: After local training, each node
sends only the model updates (i.e., changes in model param-
eters) to the central server.

(4) Model Aggregation: The central server merges these model
updates into the global model. This aggregation process can
be done in various ways, e.g., averaging the updates.

(5) Iteration: Steps 2 to 4 are repeated for multiple rounds, im-
proving the global model with each iteration.

In comparison to the traditional centralised way of training ML
models, FL offers several advantages:

• Privacy Preservation: Since raw data remains on local devices,
users’ privacy is better protected. The central server only
sees aggregated model updates, not the actual data.

• Data Efficiency: FL reduces the need to transfer large datasets
to a central location, which can be beneficial in scenarios
with limited bandwidth or high data acquisition costs.

• Security: It reduces the risk of data breaches since raw data is
not sent to a central location, making it harder for attackers
to access sensitive information.

• Increase Performance: It allows for ML to be performed on
edge devices, which in certain scenarios can lead to faster
inference and reduced latency.

FL has applications in various privacy-critical fields, including
healthcare (for medical data analysis while protecting patient pri-
vacy), IoT (for smart devices with limited processing power and
connectivity), and personalised recommendations (to improve user
experiences without compromising user data) [12]. Some promi-
nent FL frameworks actively developed and used by the community
include Flower,1 Tensorflow Federated,2 and OpenFL.3

2.2 Challenge: Non-Independently and
Identically Distributed Data

In FL, the training data is distributed across multiple decentralised
devices or nodes, and each node updates its model locally. The
challenge arises when the data distribution among these nodes is
non-IID, meaning that the data on different nodes is not similar
in terms of statistical properties. Below are some key challenges
associated with non-IID data in FL:

(1) Heterogeneous Data Distribution: Nodes in a FL system may
have different types of data or data from distinct sources,
leading to variations in data distributions. This heterogene-
ity can result from diverse user behaviours, device types,
or environmental factors. For example, nodes representing
hospitals in urban areas might have a higher prevalence of

1https://flower.dev/
2https://www.tensorflow.org/federated/
3https://github.com/securefederatedai/openfl/
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chronic diseases, while nodes from rural clinics may pri-
marily handle cases related to agricultural injuries. This het-
erogeneity makes it challenging to build a global predictive
model that accommodates both urban and rural healthcare
needs effectively.

(2) Ineffective Global Model: The goal of FL is to learn a global
model that generalises well across all nodes. However, non-
IID data may lead to the development of a global model that
performs poorly on certain nodes, affecting overall model
performance. For example, if one node specialises in cardiol-
ogy and another in oncology, the global healthcare model
may struggle to provide accurate predictions for cardiac con-
ditions or cancer, compromising the overall effectiveness of
the healthcare model.

(3) Biased Model Updates: Nodes with more data or data that is
more representative of the overall distribution may dominate
the training process, leading to biased model updates that
favour certain local characteristics over others, thus making
the model being more tailored to the data on specific nodes
and performing poorly on others. For example, if one node
predominantly deals with pediatric data and another node
focuses on geriatric patients, the global healthcare model
might be biased toward the medical conditions prevalent
in the pediatric population, potentially neglecting crucial
aspects of geriatric care.

(4) Algorithmic Challenges: Standard FL algorithms may not per-
form optimally with non-IID data. Customised algorithms
or modifications may be required to address the challenges
posed by the heterogeneity of data distributions. For ex-
ample, in medical imaging tasks, if nodes have data from
different types of imaging devices with varying resolutions
and specialties (e.g., X-rays, MRIs), traditional FL algorithms
may need adjustments to handle these variations effectively
in the healthcare domain.

(5) Communication Overhead: With non-IID data, the models
may need frequent updates to adapt to the diverse local data
distributions. This can result in increased communication
overhead among nodes, leading to longer training times
and higher resource consumption. For example, hospitals in
densely populated urban areasmay generatemore healthcare
data than those in rural regions. Frequent exchange of large
model updates from urban hospitals could strain network
resources, leading to increased communication costs.

Taken together, these issues represent a significant challenge
slowing down the adoption of FL in real-life applications dealing
with non-IID personal data. This list of outlined challenges will
be further used as a reference to summarise our own hands-on
experience in Section 4.3.

3 RELATEDWORK
Researchers are actively working on developing techniques to miti-
gate the impact of non-IID data in FL. These existing works can be
grouped into two categories – namely, the approaches dealing with
non-IID data in centralised ML (which can potentially be applied to
FL as well), and the approaches focusing on developing advanced
aggregation strategies which would efficiently incorporate specifics

of each individual contributor. In addition to this, in this section we
also provide a brief summary of related studies focusing on other
metrics (apart form the model performance) used for comparing
centralised and federated approaches.

3.1 Addressing Non-IID Data in Centralised ML
Addressing non-IID data in ML requires thoughtful strategies to
ensure model generalisation across diverse datasets. Non-IID data
arises when the distribution of the training data is not consistent
across different samples or subsets. One effective approach involves
careful data pre-processing, where techniques like stratified sam-
pling are employed during the split into training and testing sets
[19]. This helps maintain a consistent class distribution in each
subset, preventing one from having a significantly different dis-
tribution than the others. Data augmentation is another relevant
technique, which relies on introducing variations to create new
samples, preserving the underlying data distribution [22]. Transfer
learning leverages pre-trained models on large, diverse datasets
[39]. Fine-tuning these models on the target non-IID data allows
them to adapt to specific characteristics while benefiting from the
knowledge gained from broader datasets. Ensemble methods in-
volve trainingmultiplemodels using different subsets of the non-IID
data or employing different algorithms [44]. Combining their pre-
dictions through techniques like bagging or boosting can enhance
overall model performance. Domain adaptation becomes crucial
when the source and target domains have different distributions
[17]. Methods in this category aim to align feature distributions
between domains to improve model generalisation. Meta-learning
involves training models on various tasks, enabling them to adapt
quickly to new tasks [37]. This also proves beneficial when deal-
ing with non-IID data distributions, allowing models to generalise
across different distributions. Relevant approaches also include re-
weighting and dynamic learning rate adjustment during training
based on the model’s performance on specific subsets or classes.

Collectively, these strategies provide a comprehensive toolkit
for addressing the challenges posed by non-IID data, allowing ML
models to adapt and generalise effectively across diverse datasets.
The choice of specific methods often depends on factors such as
the nature of the data, available computational resources, and the
objectives of the ML application. In FL, however, the challenge of
non-IID data is taken to a whole new level due to the distributed and
isolated nature of the datasets, making these existing techniques
less effective or completely inapplicable.

3.2 Addressing Non-IID Data in FL using
Aggregation Algorithms

FL addresses the challenge of non-IID data through various aggrega-
tion algorithms [26, 27], each designed to facilitate the combination
of model updates from decentralised nodes while managing the
impact of heterogeneous local data distributions. These aggregation
methods ensure that the global model can learn effectively from
the diverse datasets distributed across multiple nodes.

One fundamental aggregation algorithm in FL is Federated Av-
eraging (FedAvg) [33]. It calculates the average of model updates
received from participating nodes, treating each node’s contribu-
tion equally. However, in the presence of non-IID data, FedAvg
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may encounter challenges when nodes have significantly differ-
ent amounts or types of data, potentially leading to biased models.
To this end, extensions and variations of FedAvg have been in-
troduced. Weighted Federated Averaging (Weighted Average) [3],
for instance, assigns weights to each node’s contribution during
aggregation, offering a more nuanced approach by giving higher
influence to nodes with more representative or diverse data. This
weighting mechanism aims to address the non-IID challenge by
better aligning the contributions with the overall learning objective.
Another approach, FL with Momentum (FedProx), introduces a prox-
imal term to the optimisation objective [18]. This term penalises
large changes in model parameters between consecutive rounds,
stabilising the learning process and preventing large unexpected
deviations. By doing so, FedProx helps mitigate the impact of nodes
with non-IID data that might introduce noisy updates, contribut-
ing to more stable convergence. FL with Adaptive Learning Rates
(FedAdapt) adjusts learning rates for each node based on its histor-
ical performance [40]. Nodes with more consistent and accurate
updates receive higher learning rates, adapting to the varying data
characteristics of different nodes. This adaptability allows nodes
with non-IID data to contribute effectively without disrupting the
learning process. FL with Personalisation (FedPer), introduces per-
sonalisation factors to the aggregation process, enabling nodes to
have personalised contributions to the global model [2]. These per-
sonalisation factors are learned based on the local data distribution,
allowing nodes with non-IID data to contribute unique information
without being overshadowed by the majority. Additionally, a clus-
tering approach involves grouping nodes based on the similarity
of their data distributions. Clustered FL aggregates updates within
each cluster separately before combining cluster-level updates to
obtain the global model update [29]. This clustering strategy helps
address non-IID challenges by creating subgroups of nodes with
similar data characteristics, facilitating more effective aggregation
within clusters.

All these aggregation algorithms exemplify the diverse strate-
gies employed in FL to handle non-IID data, offering adaptability
and customisation based on the specific characteristics of the de-
centralised learning scenario. The specifics of non-IID datasets
and application scenarios, however, often pose unique challenges,
which cannot be easily addressed by none of these algorithms. In
particular, in this work we will report on our attempt of using the
widely adopted Weighted Average algorithm.

3.3 Other Comparative Studies
While in this paper we will primarily focus on the FL challenges
stemming from the the non-IID nature of the training data and
evaluate the performance of the trained models, the comparison of
FL against the traditional centralised approaches may span across
multiple other dimensions. FL and centralised training setups have
been extensively compared across various metrics beyond just the
performance of the trained model. Privacy preservation, network
overheads, latency, computational intensity, scalability, fault toler-
ance and other related metrics play crucial roles in evaluating the
efficiency and feasibility of both approaches. Overall, while FL intro-
duces challenges such as increased network overhead and latency, it
offers compelling benefits in privacy preservation, scalability, fault

tolerance, and other key dimensions of distributed model training.
Evaluating these metrics comprehensively helps researchers and
practitioners understand the trade-offs and potential benefits of
adopting FL in various application domains.

FL excels in preserving data privacy by keeping user data de-
centralised and local to individual devices. This distributed model
reduces the risk of data breaches and unauthorised access, enhanc-
ing user trust and compliance with privacy regulations, such as
GDPR and CCPA. By aggregating model updates instead of raw
data, FL enables collaborative learning across distributed devices
without compromising sensitive information. Being one of the core
benefits of FL, has been extensively explored and reviewed by the
research community resulting in multiple survey papers [23, 36, 42].

FL also demonstrates scalability advantages by leveraging the
computational resources of participating devices, enabling dis-
tributed model training at scale [4]. Unlike centralised approaches,
FL can accommodate a large number of devices without overwhelm-
ing central servers or imposing significant communication over-
head. This scalability makes FL well-suited for applications with
diverse and dynamic user populations, such as mobile devices, IoT
devices, and edge computing environments. This distributed nature
of FL, however, leads to the increased computational intensity. FL
distributes computation across local devices, potentially alleviating
the burden on central servers. However, this decentralisation intro-
duces challenges in coordinating model updates and aggregating
gradients efficiently. As a result, the computational intensity of FL
may vary depending on factors such as the number of participat-
ing devices, the complexity of the model, and the communication
protocol used for synchronisation. Almanifi et al. [1] review the
existing approaches dealing with this challenge.

FL’s distributed nature also incurs higher network overheads and
latency compared to centralised training due to the frequent ex-
change of model updates between devices and the central server.
These communication costs can impact network bandwidth and
overall system performance, especially in scenarios with limited
network capacity or high latency connections. The increased net-
work communication in FL can also lead to higher latency compared
to centralised training approaches, primarily due to the reliance on
communication between devices and the central server for model
synchronisation. This latency can affect the responsiveness of FL
systems, particularly in real-time applications or scenarios where
timely model updates are critical. As reviewed in [20, 35], mitigating
latency in FL often involves optimising communication protocols,
minimising data transfer, and leveraging edge computing resources
to perform local computations.

In addition to these core metrics, studies have also examined
FL’s performance in terms of fault tolerance and resilience [10, 31],
energy efficiency [30, 41], model convergence speed [5, 13, 25], and
algorithmic fairness [21, 43]. albeit beyond the scope of this paper,
considering all these metrics provide additional insights into the
practical feasibility and advantages of adopting FL for distributed
ML tasks in real-world application scenarios.

4 EMPIRICAL EVALUATION
We now proceed with an empirical evaluation of a FL scenario deal-
ing with non-IID data in the context of drowsiness detection. We
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first explain the scenario highlighting its relevance to the problem
at hand, and then proceed with an explanation and comparison of
the two types of experiments that we conducted. One of our main
intentions in this described research work was to demonstrate how
the introduction of non-IID training data commonly present in
real-world application scenarios affects the performance of the
trained ML model. To this end, our conscious design decision was
to keep the two evaluated setups as similar as possible to ensure
fair comparison.

4.1 Drowsiness Detection Using Convolutional
Neural Networks

Drowsiness poses a significant challenge in various professions,
where its impact can have severe consequences. Defined by feelings
of sleepiness, fatigue, and reduced alertness, drowsiness compro-
mises the ability to maintain focus, make quick decisions, and
respond rapidly – all critical aspects of safe driving [28]. In driving,
drowsiness is a crucial concern due to its direct correlation with an
increased risk of accidents. Insufficient or poor-quality sleep, long
working hours, night shifts, and monotonous driving conditions
contribute to drowsiness among drivers. Certain professions are
at a higher risk of drowsiness-related incidents, particularly those
involving extended hours on the road. Long-haul truck drivers,
delivery professionals, and emergency service providers working
irregular hours are in the risk zone. The implications of drowsy
driving extend beyond individual performance, emphasising the
need for effective strategies and technology-driven solutions to
protect drivers and the broader public on the road.

Mitigation strategies in professions involving driving include im-
plementing clear policies on rest breaks, promoting sufficient sleep,
and providing education on the risks of drowsy driving. Technology-
based solutions, such as driver monitoring systems in vehicles, anal-
yse facial expressions and movements to detect signs of drowsiness,
issuing alerts to encourage breaks and prevent accidents. Facial
expression recognition using ML plays a crucial role in addressing
drowsiness detection, particularly in the context of driver mon-
itoring systems. By leveraging computer vision algorithms and
deep learning models, facial features and expressions indicative of
drowsiness can be analysed in real-time. ML models are trained to
recognise specific visual cues such as drooping eyelids, changes
in facial expressions, and other signs associated with drowsiness.
These algorithms can process live video feeds from in-vehicle cam-
eras, continuously monitoring the driver’s face for subtle changes.
Upon detection of potential drowsiness, these systems can trigger
timely alerts or interventions, such as audio warnings or sugges-
tions for the driver to take a break. The non-intrusive nature of
facial expression recognition makes it an effective and scalable solu-
tion for drowsiness detection, enhancing road safety by addressing
this critical challenge in a proactive manner [8].

To this end, using Convolutional Neural Networks (CNNs) for dri-
ver drowsiness detection is a powerful application of deep learning.
CNNs excel in image recognition tasks by automatically learning
hierarchical features from visual data. Among other tools, Tensor-
Flow4 in combination with Keras5 provide a robust framework for

4https://www.tensorflow.org/
5https://keras.io/

implementing such systems. In this context, facial images captured
by in-vehicle cameras serve as input. TensorFlow, an open-source
ML library, seamlessly integrates with Keras, a high-level neural net-
works API, simplifying the implementation of CNN architectures.
By structuring layers with convolutional and pooling operations, a
CNN can effectively extract intricate patterns and features from fa-
cial expressions, eyemovements, and other indicators of drowsiness.
Training the model on labelled datasets allows it to learn and gen-
eralise patterns associated with drowsiness. Once trained, the CNN
can be deployed in real-time driver monitoring systems, providing
accurate and rapid detection of drowsiness, thereby contributing
to enhanced road safety.

4.2 Experiments: Centralised vs Federated
In our empirical evaluation, we will use the driver drowsiness
dataset6 of 41,790 RGB images containing extracted and cropped
faces of drivers. The dataset contains 28 distinct subjects repre-
sented by non-IID chunks of varying size (smallest dataset: 415
images, largest dataset: 2892 images). All images are split between
two labelled classes, namely Drowsy and Non Drowsy. The dataset
was originally prepared and used in the context of the research
work reported in [24]. In addition to the sensitive nature of the
images, one specific reason for choosing this drowsiness detection
dataset for the experiments is the ability to split it into 28 smaller
chunks each belonging to a distinct individual. Each chunk essen-
tially represents a non-IID subset, which is different in terms of
its size, as well as the unique facial features of the represented
subject. This way, it provides a solid foundation for model training
in a federated setup using truly non-IID data, which can then be
compared to the original centralised setup.

To make the comparison of the two approaches fair, we aimed to
keep the federated setup as similar to the centralised on as possible.
More specifically, both setups use exactly the same CNN, optimiser,
data loading, pre-processing and augmentation parameters. The
main difference comes from the Weighted Average aggregation
strategy that we applied, as well as the number of training itera-
tions. The main comparison metrics for the two approaches were
accuracy, precision, and recall – well-established metrics for eval-
uating model performance in ML. Please note that the focus of
these experiments was not to train a highly accurate classification
model for drowsiness detection (in fact, as we describe below, the
performance of the centralised model has further room for improve-
ment). Rather, the main goal was to compare the two approaches
and highlight the challenges associated with non-IID data in the
federated setup. The source code for the experiments is available
in a public repository.7

4.2.1 Centralised Training. In the centralised setup, the entire
dataset of 41,790 images is accessible in one location, and the model
is trained on this comprehensive dataset. The CNN iteratively learns
to recognise patterns associated with drowsiness by adjusting its
parameters based on the entire dataset. This centralised approach
is straightforward, as it involves a single training process on the

6https://www.kaggle.com/datasets/ismailnasri20/driver-drowsiness-dataset-
ddd/data
7https://github.com/SINTEF-9012/fl-ddd
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to recognise patterns associated with drowsiness by adjusting its
parameters based on the entire dataset. This centralised approach
is straightforward, as it involves a single training process on the
complete dataset. Fig. 1 depicts how the performance of the re-
sulting model changed over 100 epochs. For clarity, the diagram
only includes the performance of the base model before the train-
ing started (epoch 0), followed by 10 more training checkpoints
corresponding to 10, 20, 30 epochs, and so on.
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Figure 1: Performance of the centralisedmodel over a dataset
of 41,793 images (after 100 epochs).

4.2.2 Federated Learning. The centralised setup raises concerns re-
lated to data privacy, since the images contain identifiable personal
information. Additionally, the centralised model may not gener-
alise well to diverse driving conditions or individual differences in
facial expressions, as it is trained on a uniform dataset. In the FL
setup where the entire dataset is split into 28 separate parts, each
representing a specific subject, the focus extends beyond individual
model training to the aggregation of these decentralised model up-
dates. After each local model is trained on its respective subset, the
model updates are shared and aggregated to create a global model
that captures the collective knowledge learned from all subjects. As
the underlying FL framework, we used Flower, which we coupled
with the centralised Tensorflow/Keras implementation. To align
with the centralised setup, we aimed for 10 training rounds of 10
epochs each, thus resulting in 100 epochs in total.8

The non-IID nature of the distributed datasets suggested the
Weighted Average algorithm as an effective aggregation strategy.
After local training, the model updates are weighted based on the
size of their corresponding training datasets and averaged to pro-
duce a global update. These global updates are then applied to the
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adapt to the diverse facial features specific to each subject and
the Weighted Average mechanism would ensure that contributions
from subjects with larger or more representative datasets received
appropriate emphasis during the aggregation process. The per-
formance of the resulting aggregated model after each round is
depicted in Fig. 2 (round 0 corresponds to the very initial model,
which has not been trained on the target data yet).
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to recognise patterns associated with drowsiness by adjusting its
parameters based on the entire dataset. This centralised approach
is straightforward, as it involves a single training process on the
complete dataset. Fig. 1 depicts how the performance of the re-
sulting model changed over 100 epochs. For clarity, the diagram
only includes the performance of the base model before the train-
ing started (epoch 0), followed by 10 more training checkpoints
corresponding to 10, 20, 30 epochs, and so on.
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to recognise patterns associated with drowsiness by adjusting its
parameters based on the entire dataset. This centralised approach
is straightforward, as it involves a single training process on the
complete dataset. Fig. 1 depicts how the performance of the re-
sulting model changed over 100 epochs. For clarity, the diagram
only includes the performance of the base model before the train-
ing started (epoch 0), followed by 10 more training checkpoints
corresponding to 10, 20, 30 epochs, and so on.

0 1 10 20 30 40 50 60 70 80 90 100
0.4

0.6

0.8

1
0.
47

0.
51

0.
8

0.
68 0.
69

0.
73

0.
77

0.
69

0.
81

0.
74

0.
82 0.
83

0.
49 0.
51

0.
79

0.
68 0.
69

0.
73

0.
77

0.
69

0.
81

0.
74

0.
82 0.
83

0.
47 0.
49

0.
8

0.
68 0.
69

0.
73

0.
77

0.
69

0.
81

0.
74

0.
82 0.
84

Accuracy

Precision

Recall

Figure 1: Performance of the centralisedmodel over a dataset
of 41,793 images (after 100 epochs).

4.2.2 Federated Learning. The centralised setup raises concerns re-
lated to data privacy, since the images contain identifiable personal
information. Additionally, the centralised model may not gener-
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facial expressions, as it is trained on a uniform dataset. In the FL
setup where the entire dataset is split into 28 separate parts, each
representing a specific subject, the focus extends beyond individual
model training to the aggregation of these decentralised model up-
dates. After each local model is trained on its respective subset, the
model updates are shared and aggregated to create a global model
that captures the collective knowledge learned from all subjects. As
the underlying FL framework, we used Flower, which we coupled
with the centralised Tensorflow/Keras implementation. To align
with the centralised setup, we aimed for 10 training rounds of 10
epochs each, thus resulting in 100 epochs in total.8

The non-IID nature of the distributed datasets suggested the
Weighted Average algorithm as an effective aggregation strategy.
After local training, the model updates are weighted based on the
size of their corresponding training datasets and averaged to pro-
duce a global update. These global updates are then applied to the
initial global model. In theory, the global model was expected to
8In FL, training rounds do not align precisely with epochs in centralised training
but share a similar iterative concept. A training round encompasses the collaborative
learning process across local nodes, where each node contributes to the global model.
This iterative collaboration over multiple rounds serves a role similar to epochs in
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the Weighted Average mechanism would ensure that contributions
from subjects with larger or more representative datasets received
appropriate emphasis during the aggregation process. The per-
formance of the resulting aggregated model after each round is
depicted in Fig. 2 (round 0 corresponds to the very initial model,
which has not been trained on the target data yet).
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appropriate emphasis during the aggregation process. The per-
formance of the resulting aggregated model after each round is
depicted in Fig. 2 (round 0 corresponds to the very initial model,
which has not been trained on the target data yet).

4.3 Comparing the Two Approaches: Lessons
Learnt

The main observation drawn from this experimental evaluation
was the fact that converting a centralised ML training setup into
a federated one by using default, off-the-shelf techniques is not a
trivial task given the non-IID nature of the training data. To be more
specific, we now revisit the five challenges associated with non-IID
data in FL outlined in Section 2.2, and summarise our experience
based on the conducted experimental evaluation.
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4.3.1 Heterogeneous Data Distribution. This is essentially the very
nature of non-IID data. The heterogeneity of the datasets used in
our experiments emerged as the main factor influencing the per-
formance disparities observed between centralised and federated
models. The datasets varied significantly in size, ranging from small
to large, reflecting the diverse nature of data available across decen-
tralised nodes. Notably, all datasets comprised facial features from
distinct individuals, introducing a level of complexity in capturing
diverse facial expressions and characteristics. This diversity, while
enriching the dataset, also underscored the challenges associated
with achieving uniform model performance across federated nodes.

4.3.2 Ineffective Global Model. In our comparative study of cen-
tralised and FL, we observed notable differences in model perfor-
mance. The centrally trained model consistently outperformed its
federated counterpart in terms of accuracy, precision and recall. De-
spite the promise of FL in preserving data privacy and enabling de-
centralised training, our results indicate that the federated model’s
performance was not on par with the centralised model. More
specifically, as indicated by Figg. 1 and 2, the accuracy, precision
and recall of the centralised model reached approximately 83%,
whereas the federated model’s best performance was about 66%
and remained around 50% on average.

4.3.3 Biased Model Updates. Furthermore, our experiments also
revealed that the FL model exhibited even worse performance not
only in comparison to the centralised model but also when assessed
on the datasets of individual local nodes. The federated approach,
while inherently advantageous for privacy preservation, faced chal-
lenges in effectively leveraging the diversity of the local non-IID
datasets. This is reflected in Fig. 3, which contains average val-
ues for accuracy, precision and recall for each of the 28 federated
node. Performance on some of the nodes dropped to critical 16%.
With the model performance being so low, it is hard to draw any
conclusions about potential bias in the resulting model towards
some of the nodes, albeit the significant performance variations
(up to 80%) among the nodes clearly indicates that the model is not
generalisable enough.

4.3.4 Algorithmic Challenges. The default logic of the Weighted
Average algorithm based on the dataset size arguably failed to
capture the specifics of individual nodes. The grey bars in Fig.
3 represent the sizes of individual non-IID datasets on each of
the 28 nodes. Contrary to the expectations associated with the
Weighted Average approach, our experiments demonstrated a lack
of clear correlation between the size of individual datasets and the
performance of the federated model on local nodes. This challenges
the effectiveness of simple size-based weighting as a reliable metric
for aggregation, suggesting the need for more nuanced and adaptive
strategies in FL to better accommodate the intricacies of diverse
imagery datasets across decentralised nodes.

4.3.5 Communication Overhead. The implementation of experi-
ments in the FL setup (even with just 10 rounds) resulted in a sub-
stantially extended training duration compared to the centralised
approach. This prolonged training period was attributed to the iter-
ative nature of FL, involving communication rounds between local
nodes and the central server. The increased computational demand
and extended training times translated to a higher consumption of

computing resources. Furthermore, the reliance on communication
between nodes placed an additional strain on network bandwidth,
emphasising the resource-intensive nature of FL implementations.

5 CONCLUSION
As healthcare increasingly integrates technological advancements,
striking a balance between personalisation and privacy becomes im-
perative. While the challenges of implementing FL in healthcare are
acknowledged, future research endeavours must prioritise address-
ing the non-IID nature of personal data to unlock FL’s full potential
in personalised and privacy-preserving healthcare applications.

Our experiments demonstrated that neglecting the heterogene-
ity in personal data can lead to sub-optimal models incapable of
capturing the nuanced features of individual profiles. As we argued,
default solutions for converting a centralised setup into a feder-
ated one are not immediately applicable and require thoughtful
adjustment to a specific use-case and training data. Consequently,
research efforts should focus on developing FL systems that explic-
itly account for and mitigate the impact of non-IID data from the
initial design phase, ensuring the generated models are accurate
and generalisable across diverse application scenarios.

In light of these findings, we advocate for increased attention
within the research community to the non-IID nature of personal
datasets when employing FL. Future studies should explore more
sophisticated aggregation strategies beyond the Weighted Aver-
age aggregation. Additionally, establishing transparent reporting
standards is crucial to accurately reflect the impact of dataset het-
erogeneity in evaluation metrics.
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