
1756 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Accountable Fine-Grained Blockchain Rewriting
in the Permissionless Setting

Yangguang Tian , Bowen Liu, Yingjiu Li , Pawel Szalachowski , and Jianying Zhou

Abstract— Blockchain rewriting with fine-grained access con-
trol allows a user to create a transaction associated with a set
of attributes, while a modifier who possesses sufficient rewriting
privileges from a trusted authority satisfying the attribute set
can anonymously rewrite the transaction. However, it lacks
accountability and is not designed for open blockchains that
require no centralized trust authority. In this work, we introduce
accountable fine-grained blockchain rewriting in a permissionless
setting. The property of accountability allows the modifier’s
identity and their rewriting privileges to be held accountable
for the modified transactions in case of malicious rewriting.
Our contributions are three-fold. First, we present a generic
framework for secure blockchain rewriting in the permissionless
setting. Second, we present an instantiation of our framework
and show its practicality through evaluation analysis. Last,
we demonstrate that our proof-of-concept implementation can
be effectively integrated into open blockchains.

Index Terms— Blockchain rewriting, accountability, open
blockchains.

I. INTRODUCTION

BLOCKCHAINS have received tremendous attention from
research communities and industries in recent years. The

concept was first introduced in the context of Bitcoin [39],
where all payment transactions are appended in a public
ledger, and each transaction is ordered and verified by network
nodes in a peer-to-peer manner. Blockchain ledgers grow
by one block at a time, where the new block in the chain
is decided by a consensus mechanism (e.g., Proof-of-Work
in Bitcoin [27]) executed by the network nodes. Usually,
blockchains deploy hash-chains as an append-only structure,
where the hash of a block is linked to the next block in the

Manuscript received 19 March 2022; revised 25 September 2022, 26 June
2023, and 8 November 2023; accepted 3 December 2023. Date of publication
7 December 2023; date of current version 21 December 2023. This work was
supported in part by the EU’s Research and Innovation Program under Grant
101019645 (SECANT) and Grant 101095634 (ENTRUST) and in part by
the U.K. Government Horizon Europe Guarantee and administered by UKRI.
The work of Yangguang Tian was supported in part by the National Natural
Science Foundation of China under Grant 61872264. The work of Yingjiu Li
was supported in part by the Ripple University Blockchain Research Initiative.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Debdeep Mukhopadhyay. (Corresponding author:
Yangguang Tian.)

Yangguang Tian is with the School of Computer Science and Electronic
Engineering, University of Surrey, GU2 7XH Guildford, U.K. (e-mail:
yangguang.tian@surrey.ac.uk).

Bowen Liu, Pawel Szalachowski, and Jianying Zhou are with the Infor-
mation Systems Technology and Design Pillar, Singapore University of
Technology and Design, Singapore 487372.

Yingjiu Li is with the Department of Computer and Information Science,
University of Oregon, Eugene, OR 97403 USA.

This article has supplementary downloadable material available at
https://doi.org/10.1109/TIFS.2023.3340917, provided by the authors.

Digital Object Identifier 10.1109/TIFS.2023.3340917

chain. Each block includes a set of valid transactions which
are accumulated into a single hash value using the Merkle
tree [38], and each transaction contains certain content which
needs to be registered in the blockchain.

Blockchain was originally designed to be immutable, such
that the registered content cannot be modified once they
are appended. However, blockchain rewriting is required in
practice, or even legally necessary in data regulation laws
such as GDPR in Europe [1]. Since a blockchain platform in
the permissionless setting is open, it is possible some users
append transactions into a chain containing illicit content such
as sensitive information, stolen private keys, and inappropriate
videos [36], [37]. The existence of illicit content in the chain
poses a significant challenge to law enforcement agencies
like Interpol [49].

Blockchain rewriting can be realized by replacing a standard
hash function, used for generating transaction hash in the
blockchain, by a trapdoor-based chameleon hash [30]. The
users who are given the trapdoor, which we call modifiers, can
modify a mutable transaction. In other words, the same muta-
ble transaction can be modified by multiple modifiers with
the same privilege. Nonetheless, for most real-life blockchain
applications, blockchain rewriting with fine-grained access
control is more desired. In fine-grained access control, each
mutable transaction is associated with a set of attributes, and
each modifier is associated with a policy representing their
rewriting privilege. A mutable transaction can be potentially
modified by multiple modifiers if their rewriting privileges
satisfy the set of attributes associated with the transaction.

A. Motivation
Blockchain rewriting with fine-grained access control has

been studied in the permissioned setting [16], [48]; however,
the proposed solution is not suitable for open blockchains in
the permissionless setting for two reasons: 1) It requires a
trusted authority to distribute rewriting privileges; however,
such authority does not exist in the permissionless setting.
2) It lacks the accountability of identifying who are responsi-
ble for malicious modification of blockchain. For example,
modifiers may add illicit or malicious content to mutable
transactions, or delete legitimate or benign mutable transac-
tions from blockchain. The main motivation of this work is
to make fine-grained blockchain rewriting accountable in the
permissionless setting.

In the permissionless setting, it is desired to achieve public
accountability for fine-grained blockchain rewriting without
relying on any trusted authority. Public accountability should

1556-6021 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on August 20,2024 at 11:17:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0701-6844
https://orcid.org/0000-0001-8256-6988
https://orcid.org/0000-0003-0871-3729

TIAN et al.: ACCOUNTABLE FINE-GRAINED BLOCKCHAIN REWRITING IN THE PERMISSIONLESS SETTING 1757

enable any user in the public to identify responsible mod-
ifiers who have made malicious modifications directly to
mutable transactions. In the case of indirect modifications,
authorized modifiers may generate an access device like a
blackbox by packaging their rewriting privileges and distribute
it to other users, who use the access device in making
malicious modifications to mutable transactions. In this case,
public accountability should enable the pubic to identify both
responsible users who make malicious modifications, and the
responsible rewriting privileges included in the access device.

B. Our Contributions

We introduce a new framework of accountable fine-grained
blockchain rewriting in the permissionless setting. First, our
framework relies on dynamic proactive secret sharing (DPSS)
[35] to achieve strong security without relying on any trusted
authority. We replace the trusted authority by a committee
of multiple users for granting rewriting privileges, where
each user holds a share of trust. We allow any user to
join in and leave from a committee in any time epoch.
We adapt the key-policy attribute-based encryption (KP-ABE)
[44] to ensure fine-grained access control without a central
authority. In particular, our adaption includes the following:
1) The master secret key in the framework is split into
multiple key shares so that each user in a committee holds
a single key share. 2) A certain number of shareholders in a
committee can collaboratively recover the master secret key
and distribute rewriting privileges to modifiers. 3) Any user
can freely join/leave a committee, and the master secret key
remains fixed across different committees. Our framework
achieves strong security because its master secret key remains
secure even if no more than a threshold number of shareholders
are compromised in any committee.

Second, our framework achieves public accountability based
on a novel combination of digital signature scheme, commit-
ment scheme, and KP-ABE with public traceability (ABET
for short). First, the digital signature helps the public to link a
modified transaction to a modifier (or modifier’s public key),
as they sign the modified transaction using their signing keys,
and the signed transaction is publicly verifiable. Second, the
commitment scheme helps the public to link modifiers’ public
keys to responsible committees. Third, the ABET scheme
helps the public to obtain a set of rewriting privileges from
interacting with an access device in the case that an unau-
thorized user applies the access device in rewriting mutable
transactions. Since there is no existing ABET to achieve this
goal, we propose a new ABET scheme and apply it in open
blockchains.

The major contributions of this work are summarized as
follows.
• Generic Framework. We introduce a new generic framework

of accountable fine-grained blockchain rewriting, which
is based on an accountable policy and committee-based
chameleon hash function (APC2H for short). A unique
feature of this framework is that it allows the fine-grained
blockchain rewriting to be performed in the permissionless
setting.

• Public Accountability. We introduce a new notion called
public accountability. The modifiers’ public keys and their
rewriting privileges are publicly held accountable for the
modified transactions.

• New Primitive. We present a new ABET scheme, which is
of independent interest. The proposed ABET scheme is the
first KP-ABE scheme with public traceability designed for
decentralized systems.

• Integration to Open Blockchains. The proof-of-concept
implementation shows that blockchain rewriting based on
our approach incurs almost no overhead to chain validation
when compared to the immutable blockchain.

II. RELATED WORK

A. Blockchain Rewriting

Ateniese et al. [7] introduced the notion of blockchain
rewriting. Their proposal is to replace the regular SHA256
hash function by a chameleon hash (CH) in blockchain gener-
ation [30]. The hashing of CH is parametrized by a public key
pk, and CH behaves like a collision-resistant hash function
if the chameleon secret key sk (or trapdoor) is unknown.
A trapdoor holder (or modifier) can find collisions and output
a new message-randomness pair without changing the hash
value.

Camenisch et al. [14] introduced a new cryptographic
primitive: chameleon hash with ephemeral trapdoor (CHET).
CHET states that a modifier should have two trapdoors to find
collisions: one trapdoor sk is associated with the public key
pk; the other one is an ephemeral trapdoor etd chosen by the
party who initially computed the hash value. CHET provides
more control in rewriting in the sense that the party, who
computed the hash value, can decide whether the holder of sk
shall be able to rewrite the hash by providing or withholding
the ephemeral trapdoor etd .

Derler et al. [16] proposed policy-based chameleon hash
(PCH) to achieve fine-grained blockchain rewriting. The pro-
posed PCH replaces the public key encryption scheme in
CHET by a ciphertext-policy ABE scheme, such that a modi-
fier must satisfy a policy to find collisions given a hash value.
Later, Tian et al. proposed an accountable PCH (PCHBA) for
for blockchain rewritings [48]. The proposed PCHBA enables
the modifiers of transactions to be held accountable for the
modified transactions. In particular, PCHBA allows a third
party (e.g., key generation center) to resolve any dispute over
modified transactions.

In another work, Puddu et al. [42] proposed µchain: a
mutable blockchain. A transaction owner introduces a set
of transactions, including an active transaction and multi-
ple inactive transactions, where the inactive transactions are
possible versions of the transaction data (namely, mutations)
encrypted by the transaction owner, and the decryption keys
are distributed among miners using Shamir’s SSS [46]. The
transaction owner enforces access control policies to define
who is allowed to trigger mutations in which context. Upon
receiving a mutation-trigger request, a set of miners runs
a Multi Party Computation (MPC) protocol to recover the
decryption key, decrypt the appropriate version of the trans-
action and publish it as an active transaction. µchain incurs

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on August 20,2024 at 11:17:20 UTC from IEEE Xplore. Restrictions apply.

1758 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE I
THE COMPARISON BETWEEN VARIOUS BLOCKCHAIN REWRITING

SOLUTIONS. CH-BASED MEANS BLOCKCHAIN REWRITING IS
REALIZED VIA THE CHAMELEON HASH FUNCTION. FINE-

GRAINED (ACCESS CONTROL) MEANS THAT A TRANSACTION
IS ASSOCIATED WITH AN ATTRIBUTE SET (OR AN ACCESS

POLICY), AND THE TRANSACTION CAN BE MODIFIED BY
ANYONE WHOSE REWRITING PRIVILEGE SATISFIES

THE ATTRIBUTE SET (OR THE ACCESS POLICY)

considerable overhead due to the use of MPC protocols
across multiple miners. It works at both permissioned and
permissionless blockchains.

Deuber et al. [19] introduced an efficient redactable
blockchain in the permissionless setting. The proposed pro-
tocol relies on a consensus-based e-voting system [29], such
that the modification is executed in the chain if a modification
request from any public user gathers enough votes from miners
(we call it V-CH for convenience). In a follow-up work,
Thyagarajan et al. [47] introduced a protocol called Reparo
to repair blockchains, which acts as a publicly verifiable
layer on top of any permissionless blockchain. The unique
feature of Reparo is that it is immediately integrable into
open blockchains in a backward compatible fashion (i.e., any
existing blockchains already containing illicit contents can be
redacted).

There are mainly two types of blockchain rewritings in
the literature: CH-based [7], [14], [15], [16], [48], and non
CH-based [19], [42], [47]. CH-based blockchain rewritings
allow one or more trusted modifiers to rewrite blockchain.
The non-CH-based solution requires a threshold number of
parties (or miners) to rewrite the blockchain. We stress that
both aim to secure blockchain rewritings and one can apply
both of them to redactable blockchains.

Table I shows a comparison between blockchain rewrit-
ing related solutions. In this work, we use chameleon hash
cryptographic primitive to secure the blockchain rewriting.
Our proposed solution supports fine-grained and accountable
rewriting for open blockchains in the permissionless setting.
It holds both the modifiers’ public keys and their rewriting
privileges accountable for the modified transactions. We stress
that it is necessary to hold rewriting privileges accountable
to the modified transactions; for example, a modifier may
obtain various rewriting privileges from different committees.
Overall, this work takes a significant step forward by allowing
fine-grained blockchain rewriting to be performed in the
permissionless setting compared to [16] and [48].

III. PRELIMINARY

In this section, we present the key building blocks, which are
used in our proposed generic construction and instantiation.

A. Attribute-Based Encryption With Public Traceability

An attribute-based encryption with public traceability is
shown as follows.

• Setup(1λ): It takes a security parameter λ as input, outputs
a master key pair (msk,mpk).

• KeyGen(msk, 3): It takes the master secret key msk,
an access policy 3 as input, outputs a decryption key sk3i ,
which is associated with a unique index i . We assume
an index space {1, · · · , k}, where k denotes the maximal
number of the index.

• Enc(mpk, m, δ, j): It takes the master public key mpk,
a message m, a set of attributes δ ⊆ U , and an index
j ∈ {1, · · · , k+1} as input, outputs a ciphertext C . Note that
C contains δ, not index j , and U is an attribute universe.

• Dec(mpk, C,sk3i): It takes the master public key mpk,
a ciphertext C , and the decryption key sk3i as input, outputs
the message m if 1 = 3i (δ) ∧ j ≤ i .

• Trace(mpk,O, ϵ): It takes master public key mpk, a policy-
specific decryption device O, and a parameter ϵ > 0 as
input, outputs a set of indexes {1, · · · , k}, where {1, · · · , k}
denotes the index set of the accused decryption keys, and
ϵ denotes the lower-bound of O’s decryption ability.
Correctness and Security. An ABET scheme requires

message-hiding, index-hiding and traceability. The message-
hiding security is similar to the semantic security of
conventional ABE scheme, except that every key query should
include a unique index. We call it semantic security, and we
require a CCA security (i.e., secure against chosen ciphertext
attacks) due to the simulation of adapt queries in the adap-
tive collision-resistance security proof. Index-hiding is called
ciphertext anonymity in this work. Specifically, the encryptor
must generate a ciphertext on a message associated with a set
of attributes and a hidden index j ∈ {1, · · · , k + 1}. In other
words, the generated ciphertext reveals no information about
index j to any third parties. Later, the Trace algorithm will
use j ∈ {1, · · · , k + 1} in generating ciphertext for tracing.

Traceability means that, given a policy-specific decryption
device that includes a set of decryption keys, the tracing
algorithm, which treats the decryption device as an oracle,
can identify the accused decryption keys that have been used
in constructing the decryption device. This decryption device
represents a pirate decryption process: it may not be a physical
box and may simply be some code on a computer. We denote
policy-specific decryption device as access device because it
accumulates various rewriting privileges for blockchain rewrit-
ing. We stress that the tracing algorithm works if an ABET
scheme achieves semantic security and ciphertext anonymity.

The formal definitions of semantic security and cipher-
text anonymity are referred to the supplemental material
(Section II) [2], and the formal definition of traceability refers
to [12], [13], and [32]. We provide a brief description of
the traceability against policy-specific decryption device here:
1) the algorithm generates a ciphertext on a message under
a set of attributes δ that satisfies 3 (i.e., 1 = 3(δ)), and
a hidden index from {1, · · · , k + 1}. 2) the algorithm sends
the ciphertext to the decryption device and checks whether
the decryption is successful. If decryption succeeds, the user
outputs the accused index; otherwise, the user generates a new
ciphertext under the same attribute set δ and a new index.
3) the algorithm continues this process until finding a set of
accused indexes in {1, · · · , k}.

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on August 20,2024 at 11:17:20 UTC from IEEE Xplore. Restrictions apply.

TIAN et al.: ACCOUNTABLE FINE-GRAINED BLOCKCHAIN REWRITING IN THE PERMISSIONLESS SETTING 1759

B. Dynamic Proactive Secret Sharing
A dynamic proactive secret sharing DPSS consists of

Share, Redistribute, and Open [8] protocols. It allows a
dealer to share a secret s among a group of n0 users such
that the secret is secure against a mobile adversary, and allow
any group of n0-t users to recover the secret, where t denotes
a threshold. The proactive security means that the execution of
the protocol is divided into epochs, and a mobile adversary is
allowed to corrupt users across all epochs, under the condition
that no more than a threshold number of users are corrupted
in any given epoch [41]. The Share and Open protocols
can be realized via a secret sharing scheme (SSS) (e.g.,
Shamir’s [46]). The Redistribute protocol prevents the mobile
adversary from disclosing or destroying the secret and allows
the set of the users and the threshold to change. The related
works are referred to the supplemental material (Section III)
[2]. Assuming that for each epoch i , no more than t users are
corrupted, the following three properties hold:
• Termination: All honest users engaged in the protocol com-

plete each execution of Share, Redistribute, and Open.
• Correctness: All honest users output a secret s′ upon com-

pleting of Open, such that s′ = s if the dealer was honest
during the execution of Share.

• Secrecy: If the dealer is honest, then s leaks no information
to the adversary.
The definition described in [8] is for information-

theoretically (or perfectly) secure protocols. We merely require
DPSS scheme to be computationally secure in this work.
Dynamic allows the set of users in a group (or committee) to
be dynamically changed, which is useful in the permissionless
blockchains. The Redistribute protocol has two processes:
resharing the key shares to change the committee membership
and threshold, updating the key shares across epochs to tackle
mobile adversary.
• Resharing the Key Shares [18]. We rely on a bivariate

polynomial to share a secret s: f (x, y) = s+a0,1x+a1,0 y+
a1,1xy + · · · + atx ,ty x tx yty , where tx , ty denote different
thresholds. So there are two ways to share the secret s:
1) If we fix y = 0, then the key shares include
{ f (i0, 0), f (i1, 0), · · · , f (itx , 0)};

2) If we fix x = 0, then the key shares include
{ f (0, j0), f (0, j1), · · · , f (0, jty)}.

We show how to transfer the ownership of the shareholders
from committee A to committee B. First, we distribute key
shares { f (i, y)} to all users in committee A. Second, each
user in committee A generates a set of temporary shares by
running Shamir’s SSS [46] on his own key share. In other
words, his key share is the secret for SSS. Third, users
in committee A send those temporary shares to users in
committee B. Now, users in the committee B accumulate the
received temporary shares and obtain another form of key
shares { f (x, j)} via interpolation of ty temporary shares.
To this end, the transfer between the two committees is
successful. Note that either key shares { f (i, y)} or { f (x, j)}
can be used to recover the secret s.

• Updating the Key Shares [26]. Suppose that a bivariate poly-
nomial is used to share the secret s: f (x, y) = s + a0,1x +
a1,0 y+a1,1xy+a0,2x2

+a2,0 y2
+a2,2x2 y2

+· · ·+atx ,ty x tx yty .

To update f (x, y), we need another bivariate polynomial:
f ′(x, y) = 0 + a′0,1x + a′1,0 y + a′1,1xy + · · · + a′tx ,ty

x tx yty ,
which takes 0 as the secret. The reason is that the secret s
in f (x, y) will not be changed after updating by f ′(x, y).
A crucial point is, we allow users in a new committee
to collaboratively generate a polynomial f ′(x, y), thus the
shareholders between old and new committees become
independent. Note that tx may not equal to ty because the
threshold between committees can be different, and we call
it asymmetric bivariate polynomial.

C. Polynomial Commitments

We adapt a polynomial commitment scheme [28] to ensure
it works in the asymmetric pairings.
• Setup(1λ, t): It takes a security parameter λ and t as input,

outputs a key pair (msk,mpk), where msk = α, mpk =

(g, gα, · · · , gαt
, h, hα, ê).

• Commit(mpk, f (x)): It takes the public key mpk, and a
polynomial f (x) = a0 + a1x + a2x2

+ · · · + at x t as input,
outputs C =

∏t
j=0(g

α j
)a j as the commitment to f (x).

• CreateWitness(mpk, C, f (x)): It takes the public key
mpk, and the polynomial f (x) as input, outputs a
tuple (i, f (i), wi). Specifically, it computes a polynomial
f (x)− f (i)

x−i (note that the coefficients of the resulting quo-
tient polynomial are (â0, â1, · · · , ât)), and a witness wi =∏t

j=0(g
α j

)̂a j .
• VerifyEval(mpk, C, i, f (i), wi): It takes the public key
mpk, a commitment C , and the tuple (i, f (i), wi) as input,
outputs 1 if ê(C/g f (i), h) = ê(wi , hα/hi).

The witness wi proves that f (i) is a correct evaluation
at i ∈ Zq , without revealing the polynomial f (x). If the
KZG commitment scheme is used in DPSS, the committee
members can be held accountable in a committee. In particular,
the KZG commitment scheme is publicly verifiable if we
append commitments and witnesses to the blockchain. The
appended commitments and witnesses can be confirmed in
the blockchain using Proof-of-Work (PoW) consensus (it is
not difficult to extend this assumption to other consensus like
Proof of Stake [3], Proof of Space [22]).

IV. THE PROPOSED CONSTRUCTION

In this section, we present the system model for accountable
fine-grained blockchain rewriting in the permissionless setting.
Next, we present the definition and the generic construction
of APC2H, respectively.

A. System Model

The system model involves three types of entities: user,
modifier, and miner, in which the entities can intersect, such as
a user can be a modifier and/or a miner. The communication
model considers both on-chain and off-chain settings. The
on-chain setting is the permissionless blockchain, where read
is public, but write is granted to anyone who can show PoW.
The off-chain setting assumes that every user has a point-to-
point (P2P) channel with every other users. One may use Tor
or transaction ghosting to establish a P2P channel [35]. Such

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on August 20,2024 at 11:17:20 UTC from IEEE Xplore. Restrictions apply.

1760 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 1. Blockchain rewriting with dynamic committees. Users may join in
or leave from a committee, and a designated modifier in a committee may
rewrite the blockchain. The secret s remains fixed across different committees.

P2P channel works in a synchronous model, i.e., any message
sent via this channel is received within a known bounded
time-period. To setup the P2P channel, decentralized identifier
(so called DID [34]) can be used to address centralization
or identity information. DID provides an approach to achieve
decentralized identity or self-sovereign identity. Specifically,
the users can gather and manage their own credentials using
self-created DIDs.

The system proceeds in fixed time periods called epochs.
In the first epoch, a committee election protocol (e.g., Algo-
rand’s B A∗ protocol [25], or other methods [33], [52]) is
executed, so that a set of users can agree on an initial
committee with Byzantine fault tolerance (e.g., up to 1/3
malicious members). The secret s in the initial committee can
be generated by an honest user or in a distributed fashion [24].
Similarly, the setup of the commitment scheme can be per-
formed by an honest user in the initial committee.

In Figure 1, a blockchain is generated by users who append
their hashed contents to the blockchain. Later, modifiers
with sufficient rewriting privileges are required to rewrite the
hashed contents. We stress that the link of hash-chain remains
intact after rewriting, and the secret remains fixed across
different committees. We assume at most n users (i.e., protocol
participants) exist in each epoch. We consider k dynamic
committees, each of which has a varying number of committee
members, and we denote n0 ≤ n as a committee’s size.
The parameters n and k are independent. We also consider
dynamic churn (i.e., join/leave) of the protocol participants.
In particular, we do not assume that k committees exist in
each different epoch (or we allow several committees to exist
in the same epoch).

Remark: To prevent a malicious user from controlling
a committee by launching Sybil attacks [20], we rely on
the PoW-based identity generation mechanism [6], [33]. The
mechanism allows all users to establish their identities in
a committee, yet limiting the number of Sybil identities
created by a malicious user. In Elastico [33], each user locally
generates/establishes an identity consisting of a public key,
an IP address, and a PoW solution. The user must solve a PoW
puzzle which has publicly verifiable solutions to generate the
final component of the identity. A PoW solution also allows

other committee members to verify and accept the identity of a
user. Because solving PoW requires computation, the number
of identities that the malicious user can create is limited by
a fraction of malicious computational power. One can refer
to [33], [51], and [52] for the detailed discussion on Byzantine
fault resiliency.

B. Definition

We assume that every user has a key pair (sk,pk) and that
users’ public keys are known to all system users. Each modifier
possesses a set of attributes, and more than a threshold number
of users in a committee can collectively grant a rewriting
privilege to a modifier based on their attribute set. We assume
a user with pk creates a transaction T , including a chameleon
hash, a ciphertext that is labeled with a set of attributes, and
a signature (i.e., signs T using his secret key sk). A modifier
with pk′ who is granted the rewriting privilege from a com-
mittee, can rewrite the transaction T . During rewriting, the
modifier signs the modified transaction using her secret key
sk′. We stress that our hash algorithm is a public process,
anyone with a key pair can create a chameleon hash value. The
adapt algorithm is a private process, such that a modifier with
another key pair and sufficient rewriting privilege may adapt
the chameleon hash value. We present the formal definition of
APC2H, which includes the following algorithms.
• Setup(1λ): It takes a security parameter λ as input, outputs

a master key pair (msk,mpk). Note that msk is shared
among an initial committee C0.

• KeyGen(Ci , 3): It takes a committee Ci , and a policy 3 as
input, outputs a secret key sk3i . The committee index i ∈
{1, · · · , k}, where k denotes the total number of committees.

• Hash(mpk,sk, m, δ, j): It takes the master public key mpk,
a secret key sk, a message m ∈ M, a set of attributes
δ ⊆ U , and an index j ∈ {1, · · · , k + 1} as input, outputs a
chameleon hash h, a randomness r , and a signature σ . Note
that M = {0, 1}∗ denotes a general message space.

• Verify(mpk,pk, h, m, r, σ): It takes the master public key
mpk, a public key pk, chameleon hash h, message m,
randomness r , signature σ as input, output a bit b ∈ {0, 1}.

• Adapt(sk3i ,sk
′, h, m, m′, r, σ): It takes the secret key

sk3i , a secret key sk′, chameleon hash h, messages m and
m′, randomness r , and signature σ as input, outputs r ′ and
σ ′ if 1 = 3(δ) and j ≤ i .

• Judge(mpk, T, T ′,O): It takes the master public key
mpk, two transactions (T, T ′), and an access device O
that involved users’ secret keys as input, outputs a
transaction-committee pair (T ′, Ci), where T ′ = (h, m′,
r ′, σ ′). It means a user with a secret key from committee
Ci has modified transaction T = (h, m, r, σ).
Correctness. The correctness is held if: 1) For all λ, for

all δ ∈ U , all keys (msk,mpk) ← Setup(1λ), for
all δ ∈ 3, for all j ≤ i , for all sk3i ←

KeyGen(Ci , 3), for all m ∈ M, for all (h, r, σ) ←

Hash(mpk,sk, m, δ, j), for all m′ ∈ M, for all
(r ′, σ ′) ← Adapt(sk3i ,sk

′, m, m′, h, r, σ), we have 1 =
Verify(mpk,pk, h, m, r, σ) = Verify(mpk,pk′, h, m′, r ′, σ ′).
2) The modified transaction is linked to a user and a com-

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on August 20,2024 at 11:17:20 UTC from IEEE Xplore. Restrictions apply.

TIAN et al.: ACCOUNTABLE FINE-GRAINED BLOCKCHAIN REWRITING IN THE PERMISSIONLESS SETTING 1761

mittee (T ′, Ci)← Judge(mpk, T, T ′,O). An APC2H should
satisfy indistinguishability, adaptive collision-resistance, and
accountability. We defer the formal security definitions to the
full version of our paper (Section IV) [2].

C. Generic Construction

The proposed APC2H consists of the following building
blocks.
• A chameleon hash scheme CH = (Setup, KeyGen, Hash,

Verify, Adapt).
• An attribute-based encryption scheme with public traceabil-

ity ABET = (Setup, KeyGen, Enc, Dec, Trace).
• A dynamic proactive secret sharing scheme DPSS =

(Share, Redistribute, Open).
• A digital signature scheme 6 = (Setup, KeyGen, Sign,

Verify).
We assume the t-out-of-n0 DPSS scheme to be executed

over off-chain P2P channels and let all k committees have
the same parameters (t, n0). We define a function F(a, b) =

F(a)
⊙

F(b), where
⊙

denotes a modular multiplication. For
example, F(sk,sk′) = gsk+sk

′

= gsk · gsk
′

.
We sketch the overall idea of APC2H here. First, a user runs

the setup of CH, ABET and 6. In particular, the user runs
the sharing protocol of DPSS so that each user in an initial
committee holds a key share. Second, a threshold number of
committee members run the open protocol of DPSS and the
key generation of ABET to issue a secret key for a modifier
based on an access policy. The modifier can be either one
of the committee members or an external party. Also, any
committee member may run the redistribute protocol of DPSS
to redistribute key shares across committees. Third, any user
may run the key generation and the hash processes of CH, the
encryption process of ABET, and the signing process of 6 to
obtain a hash value. Fourth, the modifier runs the verification
processes of CH and 6, the decryption process of ABET,
the adapt process of CH, and the signing process of 6 to
find a collision. Finally, any user may run the verification
processes of CH and 6, and the tracing process of ABET to
identify a responsible modifier given a modified transaction.
The proposed APC2H is shown below.
• Setup(1λ): A user takes a security parameter λ as input,

outputs a public parameter PP = (mpkABET, PP6, PPCH),
and a secret key mskABET, where (mskABET,mpkABET)←

SetupABET(1λ), PP6 ← Setup6(1λ), PPCH ←

SetupCH(1λ). The key shares { f (x, y)0} ← ShareDPSS
(mskABET) are distributed to users within committee C0,
where each user holds a key share. Besides, each user holds
a key pair (sk,pk)← KeyGen6(PP6).

• KeyGen(Ci , 3): A group of t+1 users in committee Ci
take their key shares { f (x, y)i }

t+1 and a policy 3

as input, output a secret key sk3i for a modifier,
where sk3i ← KeyGenABET(mskABET, 3), mskABET ←

OpenDPSS({ f (x, y)i }
t+1), and key shares { f (x, y)i } ←

RedistributeDPSS({ f (x, y)i−1}).
• Hash(PP,sk, m, δ, j): A user appends a message m, a set

of attributes δ, and an index j to the blockchain, performs
the following operations

1) generate a chameleon hash (hCH, r) ← HashCH
(pkCH, m), where (skCH,pkCH) ← KeyGenCH
(PPCH).

2) generate a ciphertext C ← EncABET(mpkABET,skCH,

δ, j), where skCH denotes the encrypted message.
3) generate a message-signature pair (c, σ6), where σ6 ←

Sign6(sk, c), and c← F(sk,skCH).
4) output (h, m, r, σ), where h ← (hCH,pkCH, C), and

σ ← (c, σ6).
• Verify(PP,pk, h, m, r, σ): It outputs 1 if 1 ←

VerifyCH(pkCH, m, hCH, r) and 1 ← Verify6(pk, c, σ6),
and 0 otherwise.

• Adapt(sk3i ,sk
′, h, m, m′, r, σ): A modifier with a secret

key sk3i and a new message m′, performs the following
operations

1) check 1 ?
=Verify(PP,pk, h, m, r, σ).

2) compute skCH ← DecABET(mpkABET, C,sk3i).
3) compute a new randomness r′ ←

AdaptCH(skCH, m, m′, h, r).
4) generate a ciphertext C ′ ← EncABET(mpkABET,skCH,

δ, j).
5) generate a message-signature pair (c′, σ ′6), where σ ′6 ←

Sign6(sk′, c′), and c′← F(sk′,skCH).
6) output (h, m′, r′, σ ′), where h ← (hCH,pkCH, C ′), and

σ ′← (c′, σ ′6).
• Judge(PP, T, T ′,O): It takes the public parameter PP,

two transactions (T, T ′), and an access device O as input,
outputs a transaction-committee pair (T ′, Ci) if the modi-
fied transaction T ′ links to a committee Ci , where T ′ =
(h, m′, r′, σ ′).

Correctness of the Judge protocol. The Judge algorithm
allows any public user to identify the responsible modifiers
and their rewriting privileges given a modified transaction. The
modified transaction can be easily linked to the modifier (or
modifier’s public key) because a digital signature scheme is
used in the construction. Below, we explain the connection
between the modified transaction and the responsible rewriting
privileges (or committee indexes).

First, any public user verifies a connection between a
transaction T and its modified version T ′. The connection
can be established, since both message-signature pair (c, σ6)

in T and message-signature pair (c′, σ ′6) in T ′, are derived
from the same chameleon trapdoor skCH. We require the
underlying 6 scheme (e.g., Schnorr signature [45] and Waters
signature [50]) to have homomorphic property regarding keys
and signatures [17]. We rely on this homomorphic property
to find connections between a transaction and its modified
versions. The chameleon trapdoor skCH is used in many
modified versions of a mutable transaction because different
modifiers may modify the same transaction. Here, we consider
a single modified transaction T ′ for simplicity.

Second, any public user obtains a set of accused com-
mittees from interacting with an access device O, such that
{1, · · · , k} ← TraceABET(mpkABET,O, ϵ). Specifically, the
public sends an indexed ciphertext encrypting a message under
a set of attributes (which satisfies the access policy involved
in O) to O. The public outputs the committee index (we call it

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on August 20,2024 at 11:17:20 UTC from IEEE Xplore. Restrictions apply.

1762 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

accused committee) if decryption succeeds. The public repeats
this tracing process until output a set of accused committees.

Third, if a user with pk′ acts as a modifier in an accused
committee, the public outputs (T ′, Ci). It means that a trans-
action T ′ is indeed modified by the user pk′ whose rewriting
privilege is granted from committee Ci . Because we allow the
commitment scheme to be used in DPSS, the user pk′ is held
accountable in a committee. More specifically, user pk′ joins
in committee Ci by showing a commitment on her key share
to other committee members, and further detail is given in the
instantiation. If user pk′ acts as modifiers for many accused
committees, the public outputs (T ′, {Ci }). However, if user
pk′ did not join in any accused committees, the public still
outputs the indexes of the accused committees. This is the
second case of blockchain rewriting: an unauthorized user has
no granted rewriting privileges from any committee but uses
an access device to rewrite mutable transactions.

To conclude, we achieve public accountability via three
steps: 1) Verify a modified transaction; 2) Find an accused
committee; 3) Link the modified transaction to the accused
committee. We also consider that a committee may have
multiple modifiers equipped with different rewriting privileges,
but they should have the same committee index. In this case,
the public still identifies the responsible modifiers in the same
committee as the modifiers are required to sign the modified
transactions.

Security analysis of APC2H. The indistinguishability of
APC2H can be straightforwardly reduced to the indistinguisha-
bility of the underlying CH. Similarly, the accountability of
APC2H can be easily reduced to the correctness of the DPSS
and the unforgeability of 6. Adaptive collision-resistance can
be proven by reductions to the CCA security of ABET, the
secrecy of DPSS, and the collision-resistance of CH. One
reduction involves CCA security, such that a simulator replaces
the encrypted chameleon secret key with an empty value.
During the simulation, the simulator answers key generation
queries honestly using the key generation oracle provided by
the corresponding challenger. For adapt queries, the simula-
tor can decrypt the ciphertext from the adversary using the
decryption oracle provided by the challenger and simulate
collisions. To simulate the challenge hash query, the simulator
submits two values (skCH,⊥) to the challenger and obtains
a challenge ciphertext C∗. For the challenge adapt query, the
simulator simulates a collision using skCH without decrypting
C∗. A detailed security analysis of APC2H is referred to the
supplemental material (Section IV) [2].

V. INSTANTIATION AND IMPLEMENTATION

In this section, we explain the proposed ABET scheme
first. Then, we show the proposed instantiation, give the
implementation and evaluation analysis.

A. The Proposed ABET Scheme

For constructing a practical ABET, we require that the
underlying KP-ABE scheme should have a minimal number of
elements in master secret key, while the size of the ciphertext
is constant (i.e., independent of the number of committees).

Therefore, we rely on a KP-ABE scheme [44] and a hier-
archical identity-based encryption (HIBE) scheme [11] to
construct our ABET scheme, respectively. First, the KP-ABE
[44] can be viewed as the stepping stone to construct ABET.
Its master secret key has a single element, which requires a
single execution of the DPSS. Its security is based on q-type
assumption in the standard model, and it works in prime-
order group. One may use more efficient ABE schemes such
as [4] and [43]. However, the master secret key in the ABE
scheme [4] includes several elements, which requires several
executions of the DPSS. The master secret key in a recent
ABE scheme [43] contains one element only, but it is proven
secure in the generic group model. Constructing the practical
ABET scheme based on the recent ABE scheme [43] would
be a promising future work [43]. Second, the HIBE scheme
[11] has constant-size ciphertext. Specifically, the ciphertext
has just three group elements, and the decryption requires
only two pairing operations. In particular, the HIBE’s master
secret key has one element, which can be shared with KP-
ABE. We note that several ABET schemes have been proposed
in [31], [32], [40] and [48], but they are ciphertext-policy
ABE based. They cannot be applied to open blockchains with
decentralized access control, such that a committee of multiple
users share a common secret and manage access control. Our
proposed ABET scheme makes it possible based on the KP-
ABE scheme.

The ABET scheme described above lacks anonymity
because its ciphertext reveals committee’s index information to
the public. As a result, the index-hiding required in the ABET
scheme cannot be held (see Section III-A). We realize the
ABET scheme with ciphertext anonymity using asymmetric
pairings, i.e., ê : G × H→ GT (which is used in [21]). The
basic idea is, the index-based elements in a modifier’s decryp-
tion key belong to group G. The index-based elements in a
ciphertext belong to group H so that the ciphertext can hide
the committee’s index if the master secret key is unknown.
The proposed ABET scheme can be found in the instantiation.
The security analysis is referred to the supplemental material
(Section II) [2].

B. Instantiation

First, we modify the discrete logarithm (DL)-based
chameleon hash [30] and apply it to our instantiation. Specif-
ically, we modify the hash process as h = gr

· pkm , and
the adapt process becomes r ′ = r + (m − m′) · sk, where
pk = gsk. The adapt process will have a better performance
compared to [30] because the cost of multiplication is lower
than the division. Second, we use the proposed ABET scheme
to construct our instantiation. Specifically, the Setup and
KeyGen of ABET are directly used in the instantiation. The
Enc, Dec and Trace of ABET are presented in the step (2)
of Hash, Adapt and Judge, respectively. Third, we rely on a
recent work [35] to initiate the DPSS scheme. We particularly
show an instantiation of DPSS with a KZG commitment
scheme [28], which allows users to be held accountable in a
committee. Last, we use Schnorr signature [45] to instantiate
digital signature scheme due to its inherent homomorphic
properties.

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on August 20,2024 at 11:17:20 UTC from IEEE Xplore. Restrictions apply.

TIAN et al.: ACCOUNTABLE FINE-GRAINED BLOCKCHAIN REWRITING IN THE PERMISSIONLESS SETTING 1763

We denote an index space as {I1, · · · , Ik} ∈ (Zq)k , which
is associated with k committees. We define a hierarchy as
follows: index i is close to the root node k, and index j is
close to the leaf node. We assume each committee has n0 users,
and the threshold is t , where t < n0/2 according to [35]. Let
H : {0, 1}∗ → Zq be a hash function, and the size of hash
output H is l. The concrete instantiation is shown below.
• Setup(1λ): It takes a security parameter λ as input, outputs

a master public key mpk = (g, u, v, w, h, ê(g, h)α,

{gα
1 , · · · gα

k }, {h
α
1 , · · · hα

k }, gβ , h1/α, hβ/α, ê(g, h)θ/α), and a
master secret key msk = (α, β, θ), where (α, β, θ) ∈

Z∗q {z1, · · · , zk} ∈ Zq , (u, v, w) ∈ G, {g1, · · · , gk} =

{gz1 , · · · , gzk }, {h1, · · · , hk} = {hz1 , · · · , hzk }. The master
key generation is essentially the same as Setup of ABET.
Regarding DPSS, the key shares of α and θ are distributed
to users in committee C0 by running the Share protocol of
the DPSS scheme.

• KeyGen(Ci , (M, π)): It inputs a committee Ci with index
(I1, · · · , Ii), and an access policy (M, π) (M has n1 rows
and n2 columns, π : {1, · · · , n1} → U denotes a map-
ping function), outputs a secret key sk3i for a modifier.
Specifically, a group of t+1 members in committee Ci first
recover secrets α and θ . Then, they pick {t1, · · · , tn1} ∈ Zq ,
for all τ ∈ [n1], compute sk(τ,1) = gsτ wtτ ,sk(τ,2) =

(uπ(τ)v)−tτ ,sk(τ,3) = htτ , where sτ is a key share
from α. Eventually, they pick {r1, · · · , rn1} ∈ Zq , com-
pute sk0 = (gt∗/α, gr∗),sk1 = gθ

· î t∗
· gβ·r∗ ,sk2 =

{gα·t∗
i−1 , · · · gα·t∗

1 , g1/α
} (note that g1/α is used only for del-

egation1), where t∗ =
∑

τ∈|n1|
(tτ), r∗ =

∑
τ∈|n1|

(rτ), and
î = gα I1

k · · · g
α Ii
i · g ∈ G is associated with the commit-

tee Ci indexed (I1, · · · , Ii). The secret key is sk3i =

({skτ }τ∈[n1],sk0,sk1,sk2). The secret key generation is
essentially the same as KeyGen of ABET.
Regarding DPSS, a group of t + 1 members should recover
the secrets α and θ by running the Open protocol of the
DPSS scheme, prior to issuing a secret key to a modifier.
Besides, the key shares of α and θ can be redistributed
between committees by running the Redistribute protocol
of the DPSS scheme (see the correctness of Redistribute
protocol below).

• Hash(mpk,sk, m, δ, j): To hash a message m ∈ Zq under
a set of attributes δ, and an index (I1, · · · I j), a user performs
the following operations
1) choose a randomness r ∈ Z∗q , and a trapdoor R, compute

a chameleon hash b = gr
· p′m where p′ = ge, e = H(R).

Note that R denotes a short bit-string.
2) generate a ciphertext on message M = R under a set

of attributes δ = {A1, · · · , A|δ|} and index (I1, · · · I j).
It first picks s, r1, r2, · · · , r|δ| ∈ Zq , for τ ∈ |δ|

computes ct(τ,1) = hrτ and ct(τ,2) = (u Aτ v)rτ w−s .
Then, it computes ct = (R||0l−|R|) ⊕ H(ê(g, h)αs) ⊕

H(ê(g, h)θs/α), ct0 = (hs, hs/α, hβ·s/α), and ct1 = ĵ s ,
where ĵ = hα I1

k · · · h
α I j
j · h ∈ H. Eventually, it sets

C = (ct, {ct(τ,1), ct(τ,2)}τ∈[δ], ct0, ct1).

1We discover that the underlying ABE scheme [44] cannot support key
delegation. We add g1/α to users’ decryption keys, so the key holders can
privately delegate their decryption keys (similar to the technique used in [10]).

3) generate a signature epk = gesk, σ = esk + sk ·
H(epk||c), where (esk, epk) denotes an ephemeral key
pair, and c = gsk+(R||0l−|R|) denotes a signed message.

4) output (m, p′, b, r, C, c, epk, σ).
• Verify(mpk,pk, m, p′, b, r, c, epk, σ): Anyone can verify

whether a given hash (b, p′) is valid, it outputs 1 if b =
gr
· p′m , and gσ

= epk · pkH(epk||c).
• Adapt(sk3i ,sk

′, m, m′, p′, b, r, C, c, epk, σ): A modifier
with a secret key sk3i , and a new message m′ ∈ Zq ,
performs the following operations

1) check 1 ?
=Verify(mpk,pk, m, p′, b, r, c, epk, σ).

2) run the following steps to obtain trapdoor R:
a) generate a delegated key w.r.t an index (I1, · · ·

Ii+1). It picks t ′ ∈ Zq , computes sk0 =

(g(t∗+t ′)/α, gr∗), sk1 = gθ
· î t∗
· gβ·r∗

· (gα·t∗
i−1)Ii+1 ·

(gα·I1
k · · · gα·Ii+1

i−1 · g)t ′ ,sk2 = {gα·t∗
i−2 · g

α·t ′
i−2, · · · g

α·t∗
1 ·

gα·t ′
1 , g1/α

}. The delegated secret key is sk3i+1 =

({skτ }τ∈[n1],sk0,sk1,sk2).
b) if the attribute set δ involved in the ciphertext sat-

isfies the policy (M, π), then there exists constants
{γµ}µ∈I according to [9]. It computes B as follows.

B =
∏
µ∈I

(ê(sk(µ,1), ct(0,1))ê(sk(µ,2), ct(µ,1))

ê(ct(µ,2),sk(µ,3)))
γµ

= ê(g, h)
s
∑

µ∈I γµsµ = ê(g, h)αs,

where
∑
µ∈I

γµsµ = α.

Since the key delegation process will not affect the
attribute-based components {skτ }τ∈[n1], B is com-
puted once. Note that ct(0,1), ct(0,2) denote the first
and second element of ct0, and the same rule applies
to sk0.

c) check (R||0l−|R|)
?
=ct ⊕ H(B) ⊕ H(A), where A =

ê(sk1,ct(0,2))

ê(sk(0,1),ct1)ê(sk(0,2),ct(0,3))
. The format “||0l−|R|” is

used to ensure that the encrypted value R can be
decrypted successfully with certainty 1 − 2l−|R|.
Since this technique can decide when the delegation
process terminates, the hidden index j of C is known
to the modifier.

3) compute a new randomness r′ = r+ (m −m′) · e, where
e = H(R).

4) generate a new ciphertext C ′ on the same message M =
R using the attribute set δ and index (I1, · · · , I j).

5) generate a signature epk′ = gesk′ , σ ′ = esk′ + sk′ ·
H(epk′||c′), where c′ = gsk

′
+(R||0l−|R|).

6) output (m′, p′, b, r′, C ′, c′, epk′, σ ′).
• Judge(mpk, T, T ′,O): Given two transactions

(T, T ′) and an access device O, where T =

(m, b, p′, C, c, epk, σ,), T ′ = (m′, b, p′, C ′, c′, epk′, σ ′),
any public user performs the following operations.
1) verify the connection between T ′ and T ′ as follows

– verify chameleon hash b = gr
· p′m = gr′

· p′m
′

.

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on August 20,2024 at 11:17:20 UTC from IEEE Xplore. Restrictions apply.

1764 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

– verify message-signature pair (c, σ) under (epk,pk),
and message-signature pair (c′, σ ′) under (epk′,pk′).

– verify pk′ = pk · 1(sk), where 1(sk) = c′/c =
gsk

′
−sk. Note that 1(sk) means the difference or shift

between two keys, and (c, c′) are derived from the
same chameleon trapdoor R.

2) obtain a set of accused committees from interacting with
an access device O. This interaction process is referred
to ABET’s public traceability at Section III-A.

3) output a transaction-committee pair (T ′, Ci). We rely
on the KZG commitment and PoW consensus to hold
a modifier pk′ accountable in an accused committee Ci
(see the correctness of KZG commitment below).

Correctness of the Redistribute protocol. Two secrets
need to be distributed: (α, θ). We assume the readers are
familiar with Shamir’s SSS; thus, we omit the correctness of
Share and Open protocols in our instantiation. Now, we show
users in committee Ci−1 securely handoff their key shares of
secret α to users in committee Ci . According to the DPSS
scheme in [35], an asymmetric bivariate polynomial is used:
f (x, y) = α+a0,1x+a1,0 y+a1,1xy+a1,2xy2

+· · ·+at,2t x t y2t .
Each user in committee Ci−1 holds a full key share after
running Share protocol. For example, a user with pk holds a
key share f (i, y), which is a polynomial with dimension t .
Overall, the handoff (i.e., Redistribute protocol) includes
three phases: share reduction, proactivization, and full-share
distribution.
• Share Reduction. It requires each user in committee Ci−1

reshares its full key share. For example, user pk derives
a set of reduced shares { f (i, j)} j∈[1,n0] from its key share
f (i, y) using SSS. Then, each user distributes the reduced
shares to users in committee Ci , which includes a user with
pk′. As a result, each user in Ci obtains a reduced share
f (x, j) by interpolating the received shares { f (i, j)}i∈[1,t].
Note that the dimension of f (x, j) is 2t , and 2t+1 of these
reduced key shares { f (x, j)} j∈[1,2t+1] can recover α (see
Section III-B). The goal of this dimension-switching (from
t to 2t) is to achieve optimal communication overhead, such
that only 2t+1 users in committee Ci are required to update
f (x, j).

• Proactivization. It requires F(x, j) = f (x, j) + f ′(x, j),
where f ′(x, y) is a new asymmetric bivariate polynomial
with dimension (t, 2t) and f ′(0, 0) = 0. We provide more
details of f ′(x, y) later.

• Full-share Distribution. It requires each user in committee
Ci to recover its full key share with dimension t . For exam-
ple, a full key share F(i, y) is recovered by interpolating
the reduced shares {F(i, j)} j∈[1,2t+1] in committee Ci . This
full key share F(i, y) belongs to user pk′, and t+1 of these
full key shares can recover α.
Now we show the generation of an asymmetric bivari-

ate polynomial f ′(x, y) with dimension (t, 2t) such that
f ′(0, 0) = 0, which is used to update the reduced key shares
f (x, j) during proactivization. We denote a subset of Ci as U ′,
which includes 2t+1 users. The generation of f ′(x, y) requires
two steps: univariate zero share, and bivariate zero share.
• Univariate Zero Share. It requires each user in U ′ to generate

a key share f ′j (y) from a common univariate polynomial

with dimension 2t . First, each user i generates a univariate
polynomial f ′i (y) = 0+a′1 y+a′2 y2

+· · ·+a′2t y2t , and broad-
casts it to all users in U ′. Second, each user in U ′ generates
a common univariate polynomial f ′(y) =

∑
i∈[1,2t+1] f ′i (y)

by combining all received polynomials, and obtains a key
share f ′j (y) from f ′(y).

• Bivariate Zero Share. It requires each user in commit-
tee Ci to generate a key share f ′(x, j) from a common
bivariate polynomial with dimension (t, 2t). First, each user
in U ′ generates a set of reduced shares { f ′(i, y)}i∈[1,n0]

with dimension t from its key share f ′j (y) (i.e., resharing
process), where f ′(i, y) = 0 + a′1,0 y + a′2,0 y2

+ · · · +

a′2t,0 y2t . Since the reduced shares are distributed to all
users in committee Ci , a common bivariate polynomial with
dimension (t, 2t) is established: f ′(x, y) = 0 + a′0,1x +
a′1,0 y + a′1,1xy + a′1,2xy2

+ · · · + a′t,2t x
t y2t . Second, each

user in committee Ci obtains a reduced key share f ′(x, j)
by interpolating the received shares { f ′(i, j)} j∈[1,2t+1]. The
key share f ′(x, j) = 0 + a′0,1x + a′0,2x2

+ · · · + a′0,t x
t is

used to update f (x, j) in the proactivization.
The asymmetric bivariate polynomial f ′(x, y) can be reused

in another proactivization when sharing secret θ . In other
words, multiple handoff protocols with respect to different
secrets can be updated using the same bivariate polynomial,
with the condition that these handoff protocols are executed
within the same committee.

Correctness of KZG commitment. We show that the
committee members can be held accountable in a committee.
• Share Reduction. We require user pk′ in committee Ci to

generate a commitment C f (x, j), which is a KZG commit-
ment to the reduced key shares { f (i, j)} j∈[1,2t+1], and a set
of witnesses {w f (i, j)} j∈[1,2t+1]. A witness w f (i, j) means the
witness to evaluation of f (x, j) at i . Note that i ∈ [1, 2t+1]
indicates the order of user pk′’s public key in committee Ci
(we order nodes lexicographically by users’ public keys and
choose the first 2t + 1).

• Full-share Distribution. We require user pk′ in committee
Ci to generate a commitment CF(x, j), which is a KZG
commitment to the reduced key shares {F(i, j)} j∈[1,2t+1],
and a set of witnesses wF(i, j). A witness wF(i, j) means the
witness to evaluation of F(x, j) at i .

• PoW Consensus. We require user pk′ to hash the KZG
commitment and the set of witnesses, store them to an
immutable transaction, and put them on-chain for PoW
consensus.
The commitment and witness can also ensure the cor-

rectness of handoff described in the DPSS scheme above.
Specifically, new committee members can verify the correct-
ness of reduced shares from old committee members, thus the
correctness of dimension-switching. The proof of correctness
is publicly verifiable, such that any public user can verify that
f (i, j) (or F(i, j)) is the correct evaluation at i (i.e., user
pk′) of the polynomial committed by C f (x, j) (or CF(x, j)) in
committee Ci .

C. Implementation and Evaluation

We evaluate the performance of the proposed solution based
on a proof-of-concept implementation in Python and Flask

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on August 20,2024 at 11:17:20 UTC from IEEE Xplore. Restrictions apply.

TIAN et al.: ACCOUNTABLE FINE-GRAINED BLOCKCHAIN REWRITING IN THE PERMISSIONLESS SETTING 1765

Fig. 2. Execution time of KeyGen, Hash, Adapt algorithms, and DPSS scheme [35]. Red line (with solid square) is for this work, while blue line (with
solid dot) is for [48].

framework. We create a mutable open blockchain system with
basic functionalities and a PoW consensus mechanism. The
simulated open blockchain system is “healthy”, satisfying the
properties of persistence and liveness [23]. The system is
specifically designed to include ten blocks, each block consists
of 100 transactions. Please note, that our implementation can
easily extend it to real-world applications such as a block
containing 3500 transactions. We simulate ten nodes in a peer-
to-peer network, each of them is implemented as a lightweight
blockchain node. They can also be regarded as the users
in a committee. A chain of blocks is established with PoW
mechanism by consolidating transactions broadcast by the ten
nodes. We show how to apply our proposed solution to open
blockchains in the full version of our paper (Section V) [2].

First, if users append mutable transactions to blockchain,
they use the proposed solution to hash the registered mes-
sage m. Later, a miner uses the conventional hash function
SHA-256 H to hash the chameleon hash output h and validates
H(h) using a Merkle tree. Note that the non-hashed compo-
nents such as randomness r, are parts of a mutable transaction
T = (pkCH, m, h, r, C, c, σ). As a consequence, a modifier
can replace T by T ′ = (pkCH, m′, h, r′, C ′, c′, σ ′) without
changing the hash output H(h).

Second, we mimic a dynamic committee that includes five
users, we split the master secret key into five key shares so that
each user in a committee holds a key share. We simulate the
basic functionality of DPSS, including resharing and updating
key shares. Any user can join in or leave from a committee
by transmitting those key shares between committee members.
In particular, we simulate three users in a committee can col-
laboratively recover the master secret key and grant rewriting
privileges to the modifiers.

We implement our proposed solution using the Charm
framework [5] and evaluate its performance on a PC with
Intel Core i5 (2.7GHz×2) and 8GB RAM. We use Multi-
ple Precision Arithmetic Library, Pairing-Based Cryptography
(PBC) Library, and we choose MNT224 curve for pairing,
which is the best Type-III paring in PBC. We instantiate
the hash function and the pseudo-random generator with the
corresponding standard interfaces provided by the Charm
framework.

First, we made an overhead comparison against [16], [48],
showing that our storage cost is slightly higher than [16]
because our scheme includes digital signature and ABET, and
it is lower than [48] if a mutable transaction involves less
than 100 attributes. We also implemented the scheme in [48],

showing that the execution times of our keygen, hash, and
adapt algorithms are slightly higher than [48]. The execution
time of KeyGen, Hash, and Adapt algorithms are measured
and shown in Figure 2 (a-c).

Second, we evaluate the execution time of a t-out-of-n0
DPSS protocol, where n0 indicates the number of users in
a committee and t is the threshold. Let t < n0/2 be a safe
threshold. The overhead includes the distribution cost between
committee members, and the polynomial calculation cost. The
evaluation in [35] provides storage overhead only, but we
provide the execution time of DPSS in Figure 2 (d). Our
evaluation shows that the maximal threshold is t = 13 if we
run SSS on a standard computer. If t = 14, a secret share such
as f (23) = secret + (23)1

+ · · · + (23)14 will overflow.
To conclude, the implementation performs the resharing

twice and updating once regarding two shared secrets. Besides,
the number of updating process is constant in a commit-
tee, independent of the number of shared secrets used in
ABET. Since only two secrets are needed to be shared and
recovered, we argue that the proposed ABET scheme is the
most practical one if ABET includes DPSS. On the security-
front, because every committee has at most n0

3 malicious
members [33] and n0

2 +1 committee members recover the
shared secrets [35], the malicious committee members cannot
dictate the committee and control the rewriting privileges.
For the storage cost, each mutable transaction needs to store
T = (pkCH, m, h, r, C, c, σ). So, the storage cost of a mutable
transaction includes: 1) 2LZq + 3LG regarding DL-based
chameleon hash; 2) LZq + |δ| × LG + (|δ| + 4) × LH
regarding ABET; 3) LZq + 2LG regarding digital signature.
The committee’s on-chain storage cost regarding DPSS [35]
is 2(t + 1)× [LG + (2t + 1)(LZq + LH)].

VI. CONCLUSION

In this paper, we proposed a new framework of accountable
fine-grained blockchain rewriting. The proposed framework
is designed for open blockchains that require no trust
assumptions. Besides, the proposed framework achieves public
accountability, meaning that the modifiers’ public keys and
their rewriting privileges can be publicly held accountable for
the modified transactions. We presented a practical instantia-
tion, and showed that the proposed solution is suitable for open
blockchain applications. In particular, the proof-of-concept
implementation demonstrated that our proposed solution can
be easily integrated into the existing open blockchains.

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on August 20,2024 at 11:17:20 UTC from IEEE Xplore. Restrictions apply.

1766 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

REFERENCES

[1] General Data Protection Regulation. [Online]. Available: https://eug
dpr.org

[2] Our Full Paper and Source Code. [Online]. Available: https://github.
com/Yangguang-Tian-Surrey/Accountable-Fine-Grained-Blockchain-
Rewriting-in-the-Permissionless-Setting/tree/main

[3] Proof of Stake. [Online]. Available: https://en.wikipedia.org/wiki/
Proof_of_stake

[4] S. Agrawal and M. Chase, “FAME: Fast attribute-based message encryp-
tion,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 665–682.

[5] J. A. Akinyele et al., “Charm: A framework for rapidly prototyping
cryptosystems,” J. Cryptograph. Eng., vol. 3, no. 2, pp. 111–128,
Jun. 2013.

[6] M. Andrychowicz and S. Dziembowski, “Pow-based distributed cryp-
tography with no trusted setup,” in Proc. CRYPTO, 2015, pp. 379–399.

[7] G. Ateniese, B. Magri, D. Venturi, and E. Andrade, “Redactable
blockchain-or-rewriting history in Bitcoin and friends,” in Proc. IEEE
Eur. Symp. Secur. Privacy (EuroS&P), Apr. 2017, pp. 111–126.

[8] J. Baron, K. El Defrawy, J. Lampkins, and R. Ostrovsky,
“Communication-optimal proactive secret sharing for dynamic groups,”
in Proc. ACNS, 2015, pp. 23–41.

[9] A. Beimel, “Secure schemes for secret sharing and key distribution,”
M.S. thesis, Israel Inst. Technol., Technion, Haifa, Israel, 1996.

[10] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proc. IEEE Symp. Secur. Privacy, May 2007,
pp. 321–334.

[11] D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical identity based
encryption with constant size ciphertext,” in Proc. CRYPTO, 2005,
pp. 440–456.

[12] D. Boneh, A. Sahai, and B. Waters, “Fully collusion resistant traitor
tracing with short ciphertexts and private keys,” in Proc. EUROCRYPT,
2006, pp. 573–592.

[13] D. Boneh and B. Waters, “A fully collusion resistant broadcast, trace,
and revoke system,” in Proc. 13th ACM Conf. Comput. Commun. Secur.,
Oct. 2006, pp. 211–220.

[14] J. Camenisch, D. Derler, S. Krenn, H. C. Pöhls, K. Samelin, and
D. Slamanig, “Chameleon-hashes with ephemeral trapdoors,” in Proc.
PKC, 2017, pp. 152–182.

[15] D. Derler, K. Samelin, and D. Slamanig, “Bringing order to chaos:
The case of collision-resistant chameleon-hashes,” in Proc. PKC, 2020,
pp. 462–492.

[16] D. Derler, K. Samelin, D. Slamanig, and C. Striecks, “Fine-grained and
controlled rewriting in blockchains: Chameleon-hashing gone attribute-
based,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2019.

[17] D. Derler and D. Slamanig, “Key-homomorphic signatures: Definitions
and applications to multiparty signatures and non-interactive zero-
knowledge,” Designs, Codes Cryptogr., vol. 87, no. 6, pp. 1373–1413,
Jun. 2019.

[18] Y. Desmedt and S. Jajodia, “Redistributing secret shares to new access
structures and its applications,” Tech. Rep., 1997.

[19] D. Deuber, B. Magri, and S. A. K. Thyagarajan, “Redactable blockchain
in the permissionless setting,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2019, pp. 124–138.

[20] J. R. Douceur, “The Sybil attack,” in Proc. Int. Workshop Peer-to-Peer
Syst., 2002, pp. 251–260.

[21] L. Ducas, “Anonymity from asymmetry: New constructions for anony-
mous HIBE,” in Proc. CT-RSA, 2010, pp. 148–164.

[22] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs of
space,” in Proc. CRYPTO, 2015, pp. 585–605.

[23] J. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin backbone protocol:
Analysis and applications,” in Proc. EUROCRYPT, 2015, pp. 281–310.

[24] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” in Proc. EURO-
CRYPT, 1999, pp. 295–310.

[25] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine agreements for cryptocurrencies,” in Proc. 26th Symp.
Operating Syst. Princ., Oct. 2017, pp. 51–68.

[26] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret
sharing or: How to cope with perpetual leakage,” in Proc. CRYPTO,
1995, pp. 339–352.

[27] M. Jakobsson and A. Juels, “Proofs of work and bread pudding proto-
cols,” in Secure Information Networks, 1999, pp. 258–272.

[28] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commitments
to polynomials and their applications,” in Proc. ASIACRYPT, 2010,
pp. 177–194.

[29] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach, “Analysis
of an electronic voting system,” in Proc. IEEE Symp. Secur. Privacy,
May 2004, pp. 27–40.

[30] H. Krawczyk and T. Rabin, “Chameleon signatures,” in Proc. NDSS,
2000, pp. 1–12.

[31] J. Lai and Q. Tang, “Making any attribute-based encryption accountable,
efficiently,” in Proc. ESORICS, 2018, pp. 527–547.

[32] Z. Liu, Z. Cao, and D. S. Wong, “Blackbox traceable CP-ABE: How to
catch people leaking their keys by selling decryption devices on eBay,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 2013,
pp. 475–486.

[33] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 17–30.

[34] D. Maram et al., “CanDID: Can-do decentralized identity with legacy
compatibility, Sybil-resistance, and accountability,” in Proc. IEEE Symp.
Secur. Privacy (SP), May 2021, pp. 1348–1366.

[35] S. K. D. Maram et al., “CHURP: Dynamic-committee proactive secret
sharing,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2019, pp. 2369–2386.

[36] R. Matzutt et al., “A quantitative analysis of the impact of arbitrary
blockchain content on Bitcoin,” in Proc. Int. Conf. Financial Cryptogr.
Data Secur., 2018, pp. 420–438.

[37] R. Matzutt, O. Hohlfeld, M. Henze, R. Rawiel, J. H. Ziegeldorf,
and K. Wehrle, “POSTER: I don’t want that content! On the risks
of exploiting Bitcoin’s blockchain as a content store,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 1769–1771.

[38] R. C. Merkle, “A certified digital signature,” in Proc. CRYPTO, 1989,
pp. 218–238.

[39] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
[40] J. Ning, Z. Cao, X. Dong, J. Gong, and J. Chen, “Traceable CP-ABE

with short ciphertexts: How to catch people selling decryption devices
on eBay efficiently,” in Proc. ESORICS, 2016, pp. 551–569.

[41] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks,”
in Proc. ACM PODC, 1991, pp. 51–59.

[42] I. Puddu, A. Dmitrienko, and S. Capkun, “µchain: How to forget
without hard forks,” IACR Cryptol. ePrint Arch., vol. 2017, p. 106,
Feb. 2017.

[43] D. Riepel and H. Wee, “FABEO: Fast attribute-based encryption with
optimal security,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Nov. 2022, pp. 2491–2504.

[44] Y. Rouselakis and B. Waters, “Practical constructions and new proof
methods for large universe attribute-based encryption,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS), 2013, pp. 463–474.

[45] C. P. Schnorr, “Efficient signature generation by smart cards,” J. Cryp-
tol., vol. 4, no. 3, pp. 161–174, Jan. 1991.

[46] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[47] S. A. K. Thyagarajan, A. Bhat, B. Magri, D. Tschudi, and A. Kate,
“Reparo: Publicly verifiable layer to repair blockchains,” in Proc. Int.
Conf. Financial Cryptogr. Data Secur., 2021, pp. 37–56.

[48] Y. Tian, N. Li, Y. Li, P. Szalachowski, and J. Zhou, “Policy-based
chameleon hash for blockchain rewriting with black-box account-
ability,” in Proc. Annu. Comput. Secur. Appl. Conf., Dec. 2020,
pp. 813–828.

[49] G. Tziakouris, “Cryptocurrencies—A forensic challenge or opportunity
for law enforcement? An INTERPOL perspective,” IEEE Secur. Privacy,
vol. 16, no. 4, pp. 92–94, Jul. 2018.

[50] B. Waters, “Efficient identity-based encryption without random oracles,”
in Proc. EUROCRYPT, 2005, pp. 114–127.

[51] H. Yu, I. Nikolic, R. Hou, and P. Saxena, “OHIE: Blockchain scaling
made simple,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2020,
pp. 90–105.

[52] M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: Scaling
blockchain via full sharding,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2018, pp. 931–948.

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on August 20,2024 at 11:17:20 UTC from IEEE Xplore. Restrictions apply.

