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Abstract—In this paper, we consider some integrable Heisenberg
Ferromagnet Equations with self-consistent potentials. We study
their Lax representations. In particular we derive their equivalent
counterparts in the form of nonlinear Schrödinger type equations.
We present the integrable reductions of the Heisenberg Ferromagnet
Equations with self-consistent potentials. These integrable Heisenberg
Ferromagnet Equations with self-consistent potentials describe
nonlinear waves in ferromagnets with some additional physical fields.
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I. INTRODUCTION

NONLINEAR effects play fundamental role in many
phenomena in different branches of sciences. Such

nonlinear effects are modelled by nonlinear differential
equations (NDE). Some of this equations are integrable, and
are known as soliton equations. Integrable spin systems (SS)
are one of main sectors of integrable NDE and are important
in mathematics, in particular in the geometry of curves and
surfaces. On the other hand, integrable SS play crucial role in
the description of nonlinear phenomena in magnets.

In this paper, we study some integrable Myrzakulov
equations with self-consistent potentials. We investigate their
Lax representations as well as their reductions. Finally,
we give their equivalent counterparts which have nonlinear
Schrödinger equation type form.

The paper is organized as follows. In Sec. II, we give the
basic formalism for the theory of the Heisenberg ferromagnet
equation. In Sec. III, we investigate the (1+1)-dimensional
M-XCIX equation. Sec. IV is denoted to the study of the
(1+1)-dimensional M-LXIV equation. In Sec. V we consider
the (1+1)-dimensional M-XCIV equation. Finally, conclusions
are given in Sec. VI.

II. PRELIMINARIES

First example of integrable SS is the so-called Heisenberg
ferromagnetic model (HFM) which reads as [1], [2]

St = S ∧ Sxx, (1)
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where ∧ denotes a vector product and

S = (S1, S2, S3), S2 = 1. (2)

The matrix form of the HFM looks like

iSt =
1

2
[S, Sxx], (3)

where

S = Siσi =

(
S3 S−

S+ −S3

)
. (4)

Here S2 = I, S± = S1± iS2, [A,B] = AB−BA and
σi are Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)
.

(5)
Note that the HFM (1) is Lakshmanan equivalent [1] to the
nonlinear Schrödinger equation (NSE)

iϕt + ϕxx + 2|ϕ|2ϕ = 0. (6)

Also we recall that between the HFM (1) and NSE (6) takes
place the gauge equivalence [2]. In literature different types
integrable and nonintegrable SS have been proposed (see e.g.
[3]-[14]).

III. THE (1+1)-DIMENSIONAL M-XCIX EQUATION

The (1+1)-dimensional Myrzakulov-XCIX equation
(or shortly M-XCIX equation) reads as [3]

St + 0.5ε1S ∧ Sxx +
2

ω
S ∧W = 0, (7)

Wx + 2ωS ∧W = 0, (8)

where ∧ denotes a vector product and

S = (S1, S2, S3), W = (W1,W2,W3), (9)

Here α is a real function, S2 = S2
1 +S2

2 +S2
3 = 1, Si and Wi

are some real functions, ω and εi are real constants. In terms
of components the M-XCIX equation (7)-(8) takes the form

S1t + 0.5ε1(S2S3xx − S3S2xx) +
2

ω
(S2W3 − S3W2) = 0, (10)

S2t + 0.5ε1(S3S1xx − S1S3xx) +
2

ω
(S3W1 − S1W3) = 0, (11)

S3t + 0.5ε1(S1S2xx − S2S1xx) +
2

ω
(S1W2 − S2W1) = 0, (12)

W1x + 2ω(S2W3 − S3W2) = 0, (13)
W2x + 2ω(S3W1 − S1W3) = 0, (14)
W3x + 2ω(S1W2 − S2W1) = 0. (15)
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On the other hand, the M-XCIX equation (7)-(8) can be rewritten as

iSt + 0.25ε1[S, Sxx] +
1

ω
[S,W ] = 0, (16)

iWx + ω[S,W ] = 0, (17)

where

S = Siσi =

(
S3 S−

S+ −S3

)
, (18)

W = Wiσi =

(
W3 W−

W+ −W3

)
. (19)

Here S± = S1 ± iS2,W
± = W1 ± iW2, [A,B] = AB − BA, σi

are Pauli matrices.

A. Lax Representation
Let us consider the system of the linear equations

Φx = UΦ, (20)
Φt = V Φ. (21)

Let the Lax pair U − V has the form [3]-[14]

U = −iλS, (22)

V = λ2V2 + λV1 +
i

λ+ ω
V−1 − i

ω
V0, (23)

where

V2 = −iε1S, (24)
V1 = 0.25ε1[S, Sx], (25)

V−1 = V0 =

(
W3 W−

W+ −W3

)
. (26)

With such U, V matrices, the equation

Ut − Vx + [U, V ] = 0 (27)

is equivalent to the M-XCIX equation (7)-(8). It means that
the M-XCIX equation (7)-(8) is integrable by the Inverse Tranform
Method (ITM).

B. Shcrödinger-type Equivalent Counterpart
Our aim in this section is to find the Shcrödinger-type equivalent

counterpart of the M-XCIX equation. To do is, let us we introduce
the 3 new functions ϕ, p and η as

ϕ = αeiβ , (28)

p = −
[
2S−W3 − (S3 + 1)W− +

S−2W+

S3 + 1

]
eiς , (29)

η = 2S3W3 + S−W+ + S+W−, (30)

where

α = 0.5(S2
1x + S2

2x + S2
3x)

0.5, (31)

β = −i∂−1
x

[
tr(SxSSxx)

tr(S2
x)

]
, (32)

ς = exp

[
iθ − 1

2
∂−1
x

(
S+S−

x − S+
x S−

1 + S3

)]
(33)

and θ = const. It is not difficult to verify that these 3 new functions
satisfy the following equations

iϕt + ε1(0.5ϕxx + |ϕ|2ϕ)− 2ip = 0, (34)
px − 2iωp− 2ηϕ = 0, (35)
ηx + ϕ∗p+ ϕp∗ = 0, (36)

It is nothing but the nonlinear Schrödinger-Maxwell-Bloch equation
(NSMBE). It is well-known that the SMBE is integrable by IST. Its
Lax representation reads as [15]-[16]

Ψx = AΨ, (37)
Ψt = BΨ, (38)

where

A = −iλσ3 +A0, (39)

B = λ2B2 + λB1 +B0 +
i

λ+ ω
B−1. (40)

Here

A0 =

(
0 ϕ

−ϕ∗ 0

)
, (41)

B2 = −iε1σ3, (42)
B1 = ε1A0, (43)
B0 = 0.5iε1α

2σ3 + 0.5iε1σ3A0x, (44)

B−1 =

(
η −p

−p∗ −η

)
. (45)

C. Reductions
1) Principal Chiral Equation: Let us we set ε1 = 0. Then the

M-XCIX equation reduces to the equation

iSt +
1

ω
[S,W ] = 0, (46)

iWx + ω[S,W ] = 0. (47)

It is nothing but the principal chiral equation. As is well-known that
it is integrable by ITM. The corresponding Lax pair is given by

U = −iλS, (48)

V = − iλ

ω(λ+ ω)
W. (49)

2) Heisenberg Ferromagnetic Equation: Now let us we
assume that W = 0. Then the M-XCIX equation reduces to the
equation

iSt + 0.25ε1[S, Sxx] = 0. (50)

It is the HFM (1) within to the simplest scale transformations.

IV. THE (1+1)-DIMENSIONAL M-LXIV EQUATION

The (1+1)-dimensional M-LXIV equation (or shortly M-LXIV
equation) reads as [3]:

iSt + ε2i[Sxxx + 6(βS)x] +
1

ω
[S,W ] = 0, (51)

iWx + ω[S,W ] = 0. (52)

The corresponding Lax pair is given by

U = −iλS, (53)

V = λ3V3 + λ2V2 + λV1 +
i

λ+ ω
V−1 − i

ω
V−1, (54)

where [3]

V3 = −4iε2S, (55)
V2 = 2ε2SSx, (56)
V1 = ε2i(Sxx + 6βS), (57)

V−1 = W =

(
W3 W−

W+ −W3

)
(58)
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with β = rq = 0.125tr[(Sx)
2]. The functions ϕ, p and η as (28)-(30)

give us the Schrodinger equivalent of the (1+1)-dimensional M-XCIV
equation. It has the form (see e.g. [17], [18])

iqt + iε2(qxxx + 6rqqx)− 2ip = 0, (59)
irt + iε2(rxxx + 6rqrx)− 2ik = 0, (60)

px − 2iωp− 2ηq = 0, (61)
kx + 2iωk − 2ηr = 0, (62)

ηx + rp+ kq = 0. (63)

This system is nothing but the Hirota-Maxwell-Bloch equation. Its
Lax representation reads as

Ψx = AΨ, (64)
Ψt = [−4iε2λ

3σ3 +B]Ψ, (65)

where

A = −iλσ3 +A0, (66)

B = λ2B2 + λB1 +B0 +
i

λ+ ω
B−1. (67)

Here

B2 = 4ε2A0, (68)
B1 = 2iε2rqσ3 + 2iε2σ3A0x, (69)

A0 =

(
0 q
−r 0

)
, (70)

B0 = ε2(rxq − rqx)σ3 +B01, (71)

B01 =

(
0 −ε2qxx − 2ε2rq

2

ε2rxx + 2ε2qr
2 0

)
, (72)

B−1 =

(
η −p
−k −η

)
. (73)

This system we can reduce to the form

iqt + iε2(qxxx + 6δ|q|2qx)− 2ip = 0, (74)
px − 2iωp− 2ηq = 0, (75)

ηx + δ(q∗p+ p∗q) = 0. (76)

V. THE (1+1)-DIMENSIONAL M-XCIV EQUATION

The Myrzakulov-XCIV equation or shortly M-XCIV equation
reads as [3]:

iSt + 0.5ε1[S, Sxx] + ε2i[Sxxx + 6(βS)x] +
1

ω
[S,W ] = 0, (77)

iWx + ω[S,W ] = 0. (78)

A. Lax Representation
The Lax pair of the M-XCIV equation (77)-(78) is given by

U = −iλS, (79)

V = λ3V3 + λ2V2 + λV1 +
i

λ+ ω
V−1 − i

ω
V−1, (80)

where [3]

V3 = −4iε2S, (81)
V2 = −2iε1S + 2ε2SSx, (82)
V1 = ε1SSx + ε2i(Sxx + 6βS), (83)

V−1 = W =

(
W3 W−

W+ −W3

)
(84)

with β = rq = 0.125tr[(Sx)
2].

B. Reductions
The M-XCIV equation admits some integrable reductions. For

example, it has the following integrable reductions.
1) The M-XCIX Equation: Let ε2 = 0. Then the M-XCIV

equation takes the form

iSt + 0.5ε1[S, Sxx] +
1

ω
[S,W ] = 0, (85)

iWx + ω[S,W ] = 0. (86)

It has the Lax pair of the form

U = −iλS, (87)

V = λ3V3 + λ2V2 + λV1 +
i

λ+ ω
W − i

ω
W, (88)

where [3]

V2 = −2iε1S, (89)
V1 = ε1SSx, (90)

W =

(
W3 W−

W+ −W3

)
. (91)

2) The M-LXIV Equation: Now let us consider the case ε1 = 0.
In this case the M-XCIV equation transforms to the equation

iSt + ε2i[Sxxx + 6(βS)x] +
1

ω
[S,W ] = 0, (92)

iWx + ω[S,W ] = 0. (93)

The corresponding Lax pair reads as

U = −iλS, (94)

V = λ3V3 + λ2V2 + λV1 +
i

λ+ ω
V−1 − i

ω
V−1, (95)

where [3]

V3 = −4iε2S, (96)
V2 = 2ε2SSx, (97)
V1 = ε2i(Sxx + 6βS), (98)

V−1 = W =

(
W3 W−

W+ −W3

)
(99)

with β = rq = 0.125tr[(Sx)
2].

C. Equivalent Counterpart
To find the Schrodinger equivalent, we again us the functions ϕ,

p and η as (28)-(30). Finally the Schrodinger equivalent of the
(1+1)-dimensional M-XCIV equation has the form (see e.g. [17],
[18])

iqt + ε1(qxx + 2rq2) + iε2(qxxx + 6rqqx)− 2ip = 0, (100)
irt − ε1(rxx + 2r2q) + iε2(rxxx + 6rqrx)− 2ik = 0, (101)

px − 2iωp− 2ηq = 0, (102)
kx + 2iωk − 2ηr = 0, (103)

ηx + rp+ kq = 0. (104)

This system is nothing but the Hirota-Maxwell-Bloch equation. Its
Lax representation reads as

Ψx = AΨ, (105)
Ψt = [−4iε2λ

3σ3 +B]Ψ, (106)

where

A = −iλσ3 +A0, (107)

B = λ2B2 + λB1 +B0 +
i

λ+ ω
B−1. (108)
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Here

B2 = −2iε1σ3 + 4ε2A0, (109)

B1 = 2iε2rqσ3 + 2iε2σ3A0x + 2ε1A0, (110)

A0 =

(
0 q
−r 0

)
, (111)

B0 = (iε1rq + ε2(rxq − rqx))σ3 +B01, (112)

B01 =

(
0 iε1qx − ε2qxx − 2ε2rq

2

iε1rx + ε2rxx + 2ε2qr
2 0

)
,

(113)

B−1 =

(
η −p
−k −η

)
. (114)

If p = δk∗, r = δq∗, this system we can reduce to the form

iqt + ε1(qxx + 2δ|q|2q) + iε2(qxxx + 6δ|q|2qx)− 2ip = 0, (115)

px − 2iωp− 2ηq = 0, (116)

ηx + δ(q∗p+ p∗q) = 0. (117)

Note that the (1+1)-dimensional HMBE (115)-(117) admits the
following integrable reductions.

i) The NSLE as ε1 − 1 = ε2 = p = η = 0:

iqt + qxx + 2δ|q|2q = 0. (118)

ii) The (1+1)-dimensional complex mKdV eqation as ε1 = ε2 −
1 = p = η = 0:

qt + qxxx + 6δ|q|2qx = 0. (119)

iii) The (1+1)-dimensional Schrodinger-Maxwell-Bloch equation
as ε1 − 1 = ε2 = 0:

iqt + qxx + 2δ|q|2q − 2ip = 0, (120)
px − 2iωp− 2ηq = 0, (121)

ηx + δ(q∗p+ p∗q) = 0. (122)

iv) The (1+1)-dimensional complex mKdV-Maxwell-Bloch
equation as ε1 = ε2 − 1 = 0:

qt + qxxx + 6δ|q|2qx − 2p = 0, (123)
px − 2iωp− 2ηq = 0, (124)

ηx + δ(q∗p+ p∗q) = 0. (125)

v) The following (1+1)-dimensional equation as ε1 = ε2 = 0:

qt − 2p = 0, (126)
px − 2iωp− 2ηq = 0, (127)

ηx + δ(q∗p+ p∗q) = 0. (128)

or

qxt − 2iωqt − 4ηq = 0, (129)
2ηx + δ(|q|2)t = 0. (130)

vi) The following (1+1)-dimensional equation as δ = 0:

iqt + ε1qxx + iε2qxxx − 2ip = 0, (131)
px − 2iωp− 2η0q = 0, (132)

where η0 = 0. Again we note that all these reductions are integrable
by IST. The corresponding Lax representations we get from the Lax
representation (105)-(106) as the corresponding reductions.

VI. CONCLUSION

Heisenberg ferromagnet models play an important role in
modern theory of magnets. They are based on nonlinear partial
differential equations. Some of these models are integrable by using
the Inverse Scattaring Method, and namely their equations are
soliton equations. In this paper, we have studied some Heisenberg
ferromagnet equations (models) with self-consistent potentials. We
have investigated their Lax representations. Also we have found their
Schrödinger type equivalent counterparts.
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