
Design and optimization of very high voltage magnetic transformer for aerospace applications

Andrés Ferrer López

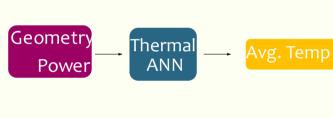
ABSTRACT

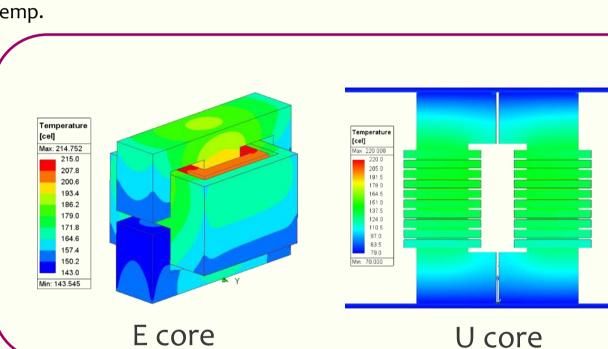
To achieve climate neutral air mobility by 2050 set by ACARE (Advisory Council for Aeronautics Research in Europe), requires the aviation industry to do a further step. In this context, HECATE (Hybrid ElectriC regional Aircraft distribution TEchnologies) project from Clean Aviation is born. CEI-UPM is working in the design and optimization of a magnetic component for the hybrid-electric propulsion system of the aircraft that is being designed by Collins Aerospace. Transfomer will be part of an isolated DC/DC converter in the KHVDC supply rail based on LLC and DAB converters.

andres.ferrer@alumnos.upm.es/CEI

TRANSFORMER SPECIFICATIONS

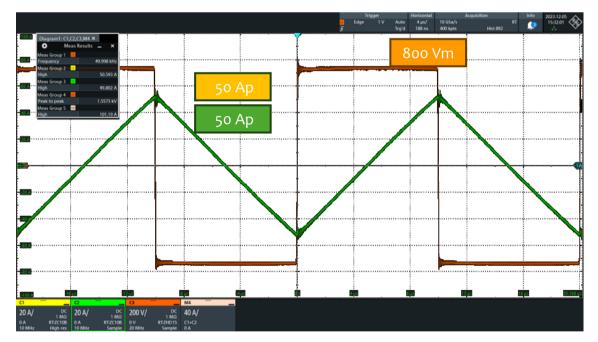
Parameters	Value
Power	100 – 300 kW
Frequency	25- 100 kHz
Primary voltage (square)	800 V
Primary current (senoidal)	150 - 300 A rms
Secondary current (senoidal)	200 - 400 Arms
Turns ratio	6:4
Lmag	20 – 40 μH
Llk	1 – 5 µH
$ \begin{array}{c} j\omega(1-k^2)L_P \\ L_{lk} \\ L_{mag} \end{array} $ $j\omega k^2 L_P$	R_L

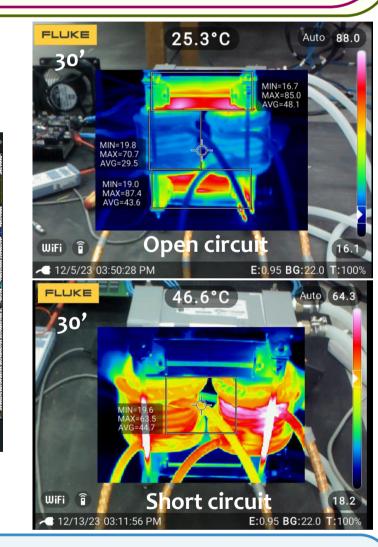




ANN WITH E-TYPE CORE PROCESS

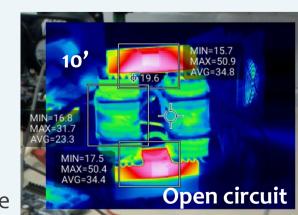
Inputs: V, I, P Outputs: Geometry, Z matrix, Power, Avg Temp.


Using the ANN Geometry — Magnetic — Z matrix


Experimental results

Open circuit test (core losses)

Short circuit test (winding losses)



Excellent parallel windings. Identical current waveforms.

Future work New prototype. More tests! 26 kW/kg 26 kW/kg 10:7

Conclusions

- ANN is a useful tool but E core not suitable for this application.
- Finally, the prototype designed with FEM simulations performed as expected.
- Poor heat transfer between **ferrite tiles**. New prototype is built with **stacked U cores**.

