

Annual Meeting

Design and optimization of mediumfrequency and high-power transformer for aerospace applications using ANN

ABSTRACT

Daniel López Álamos

daniel.lopez.alamos@alumnos.upm.es/CEI

To achieve climate neutral air mobility by 2050 set by ACARE (Advisory Council for Aeronautics Research in Europe), requires the aviation industry to do a further step. In this context, **HECATE** (Hybrid ElectriC regional Aircraft distribution TEchnologies) project from Clean Aviation is born. CEI-UPM is working in the design and optimization of a magnetic components for the hybrid-electric propulsion system of the aircraft that is being designed by Collins Aerospace. Transfomer will be part of an isolated DC/DC converter in the KHVDC supply rail based on LLC and DAB converters. As the investigation of the E core transformer don't goes as expected because temperature increases too much, we are working in a U core transformer.

TRANSFORMER SPECIFICATIONS

ameter	Value	Parameter	Value
ower	100 – 300 kW	Primary current (senoidal)	$150-300 \text{ A}_{\text{RMS}}$
requency	25 – 100 kHz	Secondary current (senoidal)	$200-400 \text{ A}_{\text{RMS}}$
Primary voltage (Square)	800V	Magnetizing Inductane	20 – 40 uH
Turns ratio	6:4	Leakage inductance	1 – 5 uH

