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Abstract—This paper presents a flexible synchronous federated
learning (FlexSync-FL) approach for Low Earth Orbit (LEO)
satellite constellation networks, where LEO satellites train local
models and conduct a collaborative global model at the Network
Operations Center (NOC). Unlike the standard synchronous FL,
FlexSync-FL employs a dual-trigger synchronization mechanism
that initiates global model aggregation either upon receiving
updates from all clients (satellites) or after a predefined maximum
interval time has elapsed. Furthermore, FlexSync-FL leverages
inter-satellite links (ISLs) to facilitate forwarding local models
among satellites, especially for those without direct visibility
to ground gateway stations (GWs). In particular, FlexSync-FL
aims to mitigate the impact of long latency and intermittent
connectivity, inherent in satellite networks, on the FL process.
The effectiveness of the proposed FlexSync-FL framework is
demonstrated through simulations that employ Long Short-
Term Memory (LSTM) networks to train local models at each
LEO satellite for traffic forecasting using real-world aeronautical
datasets.

Index Terms—6G, NTNs, LEO satellite communications, FL,
traffic forecasting.

I. INTRODUCTION

A. Background and Motivations

The exponential increase in global communication demand
necessitates highly efficient, scalable, and robust communi-
cation networks. The recent advancements in satellite tech-
nologies, particularly Low Earth Orbit (LEO) constellation
networks, provide a promising solution to meet these demands.
Specifically, LEO satellite networks provide significantly re-
duced propagation delays and enhanced data rate transmission
compared to Geostationary (GEO) satellites as they operate
at lower altitudes. However, the decentralization characteristic
of LEO networks introduces distinct challenges, necessitating
the development of efficient distributed algorithms for effective
network management [1], [2].

Although centralized frameworks are preferred for their
simplicity and centralized control, their applicability in de-
centralized LEO satellite constellation networks is limited. In
particular, satellite constellations cover extensive geographic
areas and serve diverse user communities. This results in high
volumes of heterogeneous data, variable network conditions,
and complex management requirements. In such environments,
traditional centralized approaches may not be effective as they
require the transfer of large amounts of data to a central unit
for processing, increasing communication costs and potentially

compromising data privacy. Furthermore, centralized models
struggle with the dynamic nature of LEO networks, where
satellites are constantly in motion, leading to changes in
network topology and traffic patterns.

Federated Learning (FL) technology, introduced by Google
in 2016, enables training ML models across decentralized
edge devices holding local data samples without exchanging
them instead of centralizing data on a single server as such
in the classical learning approaches [3]. This decentralized
approach addresses privacy concerns by keeping sensitive data
on the devices and reduces the amount of data exchanged
with the central entity, presenting a promising solution to
challenges faced in LEO satellite networks. In this paradigm,
each satellite in the constellation can use its local data to
train an ML model1. The satellites then share their model
updates with a central entity, e.g., the Network Operation
Center (NOC), which aggregates these updates to refine the
global model. In particular, satellite constellations are typically
owned and operated by a single entity [5]. Thus, unlike
conventional FL, where client availability is stochastic, the
spatio-temporal scope of FL in satellite constellations is more
deterministic and predictable.

While the deterministic, predictable, and partially control-
lable device participation in satellite FL facilitates coordinating
the learning process, it also introduces challenges related to
orbital mechanics and connectivity between satellites and the
central entity. Precisely, connectivity patterns in satellite FL
are influenced by orbital dynamics, which govern the move-
ment and positioning of satellites. As a result, the availability
of direct communication links between satellites and the cen-
tral entity becomes limited, affecting the convergence speed in
FL [5], [6]. Consequently, Inter-Satellite Links (ISL) technol-
ogy, which enables direct communication and data exchange
between proximate satellites within a constellation, can be
leveraged to mitigate the limitations imposed by unavailable or
disrupted ground communication links. Specifically, ISL can
be utilized to exchange locally trained ML model updates and
forward them to the central entity for aggregation, reducing the
dependency on direct links with the central entity and enabling
efficient FL within the constellation.

1In this paper, we focus on regenerative satellites, which are equipped with
advanced functionalities that enable them to collect, process, and transmit data
autonomously [4].



B. Literature Review and Contributions

FL over LEO satellite constellations is an emerging research
area that has gained significant attention recently. For instance,
the work in [5] introduced FL within satellite constellations,
highlighting its unique challenges and opportunities due to the
distinct connectivity patterns. A classification for satellite FL
based on communication capabilities, constellation design, and
server location is presented. In [7], the authors proposed an
asynchronous FL approach based on FedAvg for large LEO
satellite constellations and evaluated its performance using
MNIST and CIFAR-10 datasets. The study in [8] proposed
a FL framework called FedLEO that optimizes the FL process
in LEO satellite constellations. The framework uses intra-plane
model propagation and sink satellite scheduling to improve FL
convergence speed. The work in [9] presented AsyncFLEO, an
asynchronous FL framework for LEO satellite constellations
that aims at enhancing FL efficiency within satellite communi-
cations. High altitude platforms (HAPs) have been employed
as parameter servers to reduce the convergence time. The au-
thors of [10] proposed a communication scheme to enhance FL
efficiency in mega-constellations of LEO satellites by utilizing
ISL between satellites in the same orbit and the predictable
movements of satellites, along with partial data aggregation.
In particular, long propagation delays in satellite networks
present significant challenges for traditional FL approaches,
primarily affecting model consistency and synchronization.
Specifically, these delays lead to synchronization difficulties
in model updates, as satellites at varying distances from the
central entity experience different transmission times. This
can result in some satellites operating with outdated models,
thereby reducing the overall accuracy and efficiency of the
federated model.

In this paper, we propose a flexible synchronous FL frame-
work (FlexSync-FL) for traffic forecasting in LEO satellite
constellation networks connected with ISL. The framework
incorporates a maximum waiting threshold for initiating the
aggregation of the global model. Upon reaching this prede-
termined interval, FlexSync-FL proceeds with the aggregation
process, incorporating the local models that have been received
by that time. This prioritizes updates from satellites with direct
communication links to GWs or through a minimal number
of ISL transmissions to improve the convergence time of FL.
Furthermore, if model updates have been collected from all
participated satellites, the aggregation process will be initiated
ahead of the maximum interval time. Note that satellites
excluded from a particular model aggregation cycle due to
high transmission delay can be reintegrated into the process
in subsequent cycles once their position becomes closer to
the GWs. This ensures that all satellites have the opportunity
to contribute to the FL process over time, enhancing global
model accuracy. Finally, the proposed framework employs
Long Short-Term Memory (LSTM) networks to train local
prediction models on each LEO satellite for traffic forecasting
by utilizing real-world aeronautical datasets to assess the
performance and efficacy of the FlexSync-FL approach. In
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Figure 1: The considered system model.

particular, accurate traffic forecasting is crucial in enhancing
traffic management, optimizing resource allocation, and facil-
itating informed infrastructure planning.

II. SYSTEM MODEL

We consider a constellation of K LEO satellites consisting
of L distinct orbital planes. Within each orbit l ∈ L where
L is the set of the orbital planes, there are Kl satellites. Let
hk represent the altitude of the kth satellite. Each satellite k
traverses at a velocity given by

vk =

√
µ

hk + re
, (1)

where re = 6371 km represents the mean radius of the Earth
and µ = 3.98 × 1014 m3/s2 is the geocentric gravitational
constant. Given this velocity, the orbital period T orb

k for the
satellite k is subsequently defined as T orb

k = 2π(re +hk)/vk.
We consider a set S of GWs connected to the NOC through
fiber-optic connections, as shown in Fig. 1. Satellites com-
municate with GWs through radio frequency (RF) links. A
communication link between a satellite k ∈ K and a GW
s ∈ S can be established if the satellite falls within the
visibility range of the GW, ensuring line-of-sight (LoS) link
between them is not obstructed by the Earth. Let αmin the
minimum elevation angle, the GW s ∈ S and satellite k ∈ K
are visible if

αk,s(t) ≜ ∠ (Cs, Ck(t)− Cs) ≤
π

2
− αmin, (2)

where Ck and Cs represent the positions of satellite k and the
GW s, respectively.

The signal-to-noise ratio (SNR) for a given satellite k and
a GW s across an RF channel characterized by additive white
Gaussian noise (AWGN) can be expressed as

SNRk,s(t) =
PtrGkGs

N0BLk,s(t)
, (3)



where Ptr is the transmit power, Gk and Gs are the antenna
gain of satellite k and GW s, respectively, N0 is the noise
level, and B is the channel bandwidth. Lk,s(t) denotes the
path loss between satellite k and GW s defined as Lk,s(t) =(

4πdk,s(t)f
c

)2

, where dk,s(t) is the distance between satellite
k and GW s at time t, f is the carrier frequency, and c is
the light speed. Therefore, the maximum achievable data rate
between satellite k and GW s is given by

rk,s(t) = ϱ(t)B log2(1 + SNRk,s(t)), (4)

where ϱ(t) is a time-varying variable that represents the
dynamic connectivity between satellite k and GW s over time
slots and is defined by

ϱk,s(t) =

{
1 if αk,s(t) <

π
2 − αmin,

0 otherwise.
(5)

Accordingly, the required time for transmitting data with
size D between a satellite k that has a direct LoS link with
GW s at time slot t can be calculated by

TGW
k,s (t) =

Transmission︷ ︸︸ ︷
D

rk,s(t)
+

Propagation︷ ︸︸ ︷
dk,s(t)

c
. (6)

We consider that ISLs use laser beams to enable high-speed
and secure direct data exchange between satellites without
the need for terrestrial infrastructure, thereby reducing latency
and increasing data throughput. Establishing an ISL requires
the involved satellites to maintain a direct LoS without any
blockages, such as the curvature of the Earth. Considering two
satellites, k and k′, the maximum allowable distance dISLmax for
establishing an ISL between them is given by [11]:

dISLmax =
√

(hk + re)2 − r2e +
√
(hk′ + re)2 − r2e , (7)

where hk and hk′ are the altitudes of satellites k and k′,
respectively. This equation ensures that the laser link remains
unobstructed by the Earth’s surface. Therefore, we define the
propagation delay for a laser link between satellite k and k′

as follows:

T ISL
k,k′ =

{
dk,k′

c if dk,k′ ≤ dISLmax,

∞ if dk,k′ > dISLmax,
(8)

where dk,k′ represents the distance between satellite k and k′.
Here, the ISL propagation delay is considered infinity when
the distance dk,k′ exceeds dISLmax meaning that a direct LoS
communication link cannot be established between the two
satellites. Note that due to the high data rate of laser links, the
transmission delay is typically negligible [12]. Consequently,
in this work, we consider the total delay for an ISL to be
solely attributed to the propagation delay.

Accordingly, the total time required to transmit data from
satellite k to GW s considering both ISL delay and satellite-
to-GW delay can be obtained by

T tot
k,s =

{
TGW
k,s , if ϱk,s = 1,∑I
i=1 T

ISL
k,k′(i) + TGW

ks,s
, if ϱk,s = 0,

(9)

where I is the number of ISL hops required to reach a satellite
that has direct LoS with the GW, k′ ∈ K, k′ ̸= k, and ks
denotes the satellite that has a direct LoS link with the GW s.
In this work, we consider that all LEO satellites have the same
computation capabilities for training local models. Thus, our
analysis is focused on transmission and propagation delays,
as these delays are variable over time, influenced by network
dynamics and satellites positions.

III. FEDERATED LEARNING FRAMEWORK

The process of the conventional FL typically consists of
local training and global aggregation. During local training,
each device j uses its own dataset Dj to compute a local model
update through an optimization algorithm, e.g., Stochastic
Gradient Descent (SGD), as follows

θn,m+1
j = θn,m

j − η∇f
(
θm
j ;Dj

)
, (10)

where θn,m
j is the model parameters of the client j at local

iteration m of the global round n, η is the learning rate, and f
is the loss function. Once local training is complete, the local
models are sent to a central server for global aggregation. This
aggregation is often performed as a weighted average of the
local models [13]:

θn+1
g =

∑
j∈J

ξjθ
n,M
j , (11)

where θn+1
g is the global model at global iteration n + 1,

and ξj ,∀j ∈ J are weights that could be determined by the
number of samples on each device. The updated global model
is then sent back to all participating devices for another round
of local training, completing one FL iteration.

A. Proposed FlexSync-FL Algorithm

In the proposed FlexSync-FL framework, LEO satellite
nodes collect and process data locally, which is then used
in the FL training process. The NOC is responsible for
coordinating the training of machine learning models across
multiple satellite network nodes, as well as aggregating the
locally trained models and updating the global model. The
overall process involves the following steps: 1) Local training
process at the satellites and 2) Global model aggregation
process at the NOC.

1) Local Training Process at the Satellites: The local train-
ing procedure executed at each satellite closely resembles the
typical client-side computations in the standard FL systems.
Each satellite initializes its local model by setting the weights
θn,0
k equal to the received global model weights θn

g , where n
denotes the global training round index. Subsequently, satellite
k proceeds to train the local model. Each satellite trains
local models θk,∀k ∈ K using the collected local data Dk.
The model parameters are updated using the SGD algorithm.
The updated model at each local iteration m is computed as
follows:

θn,m+1
k = θn,m

k − η∇f (θn,m
k ;Dk) , (12)
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Figure 2: Illustration of the global model update sequence.

where ∇f(θn,m
k ;Dk) is the gradient of the loss function

evaluated at the current weights and using the data Dk, defined
as

f(θ,D) = 1

|D|
∑
y∈D

g(θ,y), (13)

where |D| is the cardinality of D and g(θ,y) is the loss
computed using the current model weights θ and a single data
sample y from the D. After M steps of local training, satellite
k computes the local gradient θn,M

k and sends it to the NOC
through GWs.

2) Global Model Aggregation Process at the NOC: The
NOC is responsible for aggregating the local updates re-
ceived from the satellites through the GWs and updating
the global model accordingly. The significant distances in
satellite communication systems can substantially impact the
overall efficiency of FL due to the long propagation delays. In
particular, waiting for local model updates from all satellites
can delay the global model updating process because some
satellites may occasionally move out of the direct visibility
of ground stations and require multiple ISL transmissions
to forward their updates to the NOC, impacting the overall
convergence process. Thus, the proposed FlexSync-FL algo-
rithm introduces a maximum waiting time Tmax for the global
model aggregation to begin. This allows only those satellites
within the direct visibility range of GWs or require a minimal
number of ISL transmissions to participate in the global
model aggregation process. Satellites that require lengthy ISL
transmissions to forward their updates, which may introduce
long delays in the FL process, are temporarily excluded from
the model aggregation process. This selective participation
approach reduces the latency of gathering updates from all
satellites, improving the convergence speed of the algorithm.

As illustrated in Fig. 2, once the waiting period reaches
Tmax, the FlexSync-FL approach initiates the global model
aggregation process with the adequate local models that have
been received by that point. The initiation of the global model
computation may occur prior to the maximum time threshold
Tmax provided that the NOC has obtained the local models
from all participated satellites. Therefore, the time between

Algorithm 1: FlexSync-FL Global Model Aggregation

Input: θn
g and θn,M

k ,∀k ∈ K
Output: Updated global model θn+1

g

repeat
Obtain δn+1 using equation (15);
if δn+1 = 1 then

Set K̂n+1 = ∅
foreach k ∈ K do

if T tot
k,s ≤ Tmax then
Get θn,Mk from the satellite;
Update K̂n+1 ← K̂n ∪ {k};

else
Discard satellite k;

Update θn+1
g ←

∑
k∈K̂

|Dk|
|Dtot|θ

n,M
k ;

n← n+ 1;
Send the updated global model to the satellites;

else
Keep the global model unchanged;

until Maximum iterations achieved

two consecutive global iterations, Tn,n+1
g , is determined by

the following equation:

Tn,n+1
g = min

(
max(T tot

1,s , T
tot
2,s , . . . , T

tot
K,s), Tmax

)
,∀s ∈ S.

(14)
We introduce a binary variable δn+1(τ) indicates whether

the NOC will perform a global model update at time τ or not,
defined as

δn+1(τ) =

{
1 if τ − tn ≥ Tn,n+1

g ,

0 otherwise,
(15)

where τ denotes the current time and tn indicates the times-
tamp at which the global model was acquired during the
preceding iteration n. Accordingly, the update of the global
model is computed as follows:

θn+1
g =

{∑
k∈K̂n+1

|Dk|
|Dtot|θ

n,M
k , if δn+1 = 1

θn
g , if δn+1 = 0,

(16)

where Dtot =
∑

k∈KDk and the term |Dk|
|Dtot| is to adjust the

weight of each satellite’s local model in the aggregated global
model based on the local data size used in the training process.
The notation K̂n+1 denotes the set of satellites participating
in the global model aggregation at iteration n + 1, defined
as K̂n+1 = {k ∈ K : (T tot

k,s ≤ Tmax)}. After the global
model has been updated, the NOC transmits the latest model,
θn+1
g , to all connected satellites through the GWs. Algorithm

1 illustrates the global aggregation process at the NOC.

IV. PERFORMANCE EVALUATION

We consider a network that consists of 50 LEO satellites
distributed equally across 5 orbits with a fixed altitude of 550
km. Each satellite transmits model parameters via a communi-
cation channel with an allocated bandwidth of 100 MHz. The
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Figure 3: Aeronautical data analysis.

transmit power of all involved satellite nodes to the GWs is
set at 40 dBm, and the antenna gain is adjusted at 10 dBi for
both the transmitting and receiving ends [11]. Furthermore, the
noise power is set at −174 dBm/Hz. TensorFlow is utilized
for the implementation of FL algorithms. The learning rate is
set at 0.01. The Root Mean Square Error (RMSE) is used as
the primary measure for assessing the accuracy of predictions.
LSTM networks are used to train local models at each LEO
satellite for traffic forecasting.

We leverage aeronautical datasets provided by ADSB-
Exchange [14] to provide a realistic representation of traffic
variations commonly encountered in aeronautical communi-
cation systems. We focus on the fluctuations in the number
of flights over time, which are largely influenced by the
time of day. The end-users of the communication services
are the passengers aboard the aircraft. From the satellite’s
perspective, all passengers are multiplexed and considered
a singular customer entity (e.g. connected to a WiFi access
point), generating an average combined data rate of 100 Mbps
[15]. Fig. 3 provides a temporal analysis of the number of
flights, demonstrating changes during different hours of the
day. The shifts in demand over a 24-hour period show the
dynamic nature of the user base that the LEO satellites serve.

Figure 4 presents the training window and the subsequent
forecasting interval. The figure illustrates real traffic data,
encompassing both the training and testing sets, and the
forecasted traffic. We can notice a high degree of similarity
in the characteristics between the real and predicted traffic
patterns. The predicted data illustrated in this figure is ob-
tained at a single LEO satellite. In figure 5, we evaluate the
performance of the proposed approach in terms of the RMSE
at different LEO satellites using the aggregated global model,
as it measures how close the model’s predictions are to the
actual data. The results show that the RMSE values for each
LEO satellite are pretty close to each other, lying between
0.027 and 0.035. This indicates that the proposed model
performs consistently well for different nodes, regardless of
their individual traffic state.
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V. CONCLUSION

This paper has introduced the FlexSync-FL framework
designed to enhance FL processes within LEO satellite con-
stellation networks. The proposed FlexSync-FL has a dual-
trigger synchronization mechanism, which initiates global
model aggregation based on model update receipt from all
satellites or a predefined maximum time interval. Moreover,
FlexSync-FL leverages ISL to address the long latency and
intermittent connectivity in LEO satellite constellations that
impact FL efficiency. LSTM networks have been utilized to
train local prediction models on satellites using real-world
datasets for traffic forecasting. Simulation analysis has been
conducted to assist the performance of the proposed FexSync-
FL framework.
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