


Abstract—Real time image and video processing is a demand in

many computer vision applications, e.g. video surveillance, traffic
management and medical imaging. The processing of those video
applications requires high computational power. Thus, the optimal
solution is the collaboration of CPU and hardware accelerators. In
this paper, a Canny edge detection hardware accelerator is proposed.
Edge detection is one of the basic building blocks of video and image
processing applications. It is a common block in the pre-processing
phase of image and video processing pipeline. Our presented
approach targets offloading the Canny edge detection algorithm from
processing system (PS) to programmable logic (PL) taking the
advantage of High Level Synthesis (HLS) tool flow to accelerate the
implementation on Zynq platform. The resulting implementation
enables up to a 100x performance improvement through hardware
acceleration. The CPU utilization drops down and the frame rate
jumps to 60 fps of 1080p full HD input video stream.

Keywords—High Level Synthesis, Canny edge detection,
Hardware accelerators, and Computer Vision.

I. INTRODUCTION

EAL time processing of image and video applications is
essential for functions such as image segmentation, object

recognition, and feature tracking. Those functions help in
making critical decisions in many applications e.g. video
surveillance, machine vision and medical imaging. The
preparation phase in many video and image processing is to
extract the edges from the image. The edge detection is
applied to an unexpected enormous number of edges, thus the
processing time used for this operation cannot be expected and
become a challenge. Besides, the processing itself in real time
is complex and usually demands high computational power.
Therefore, processing of real time video and image algorithms
is not capable of running on devices with low computing
power at a reasonable frame rate.

The optimal solution is the collaboration of CPU and
hardware accelerator to offload the computational intensive
tasks to the hardware. This solution provides significant
advantages in run-time speed and energy [1]. In this way,
pixel based image processing and feature extraction are
processed in hardware domain as hardware accelerators, while
frame based feature processing and decisions are done in

Hanaa M. Abdelgawad is a M.Sc. degree student at Computer and Systems
Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt (e-
mail: hanaa.mabdelgawad@gmail.com).

Mona Safar is Lecturer and Researcher at Computer and Systems
Department, Faculty of Engineering, Ain shams university, Cairo, Egypt (e-
mail: mona.safar@eng.asu.edu.eg).

Ayman M. Wahba is Vice Dean for Education and Student Affairs.
Professor at Computer and Systems Engineering Department, Ain Shams
University, Cairo, Egypt (e-mail: ayman.wahba@eng.asu.edu.eg).

software domain.
In this paper, we study Canny edge detection, then apply the

HLS constraints and optimization techniques on this
algorithm. HLS is an automated design process that deals with
the generation of behavioral hardware descriptions from high-
level algorithmic specifications. This approach enables the
automatic synthesis of high-level, untimed or partially timed
specifications (such as in C or SystemC) to a low-level cycle-
accurate register-transfer level (RTL) specifications for
efficient implementation in ASICs or FPGAs. HLS raises the
level of abstraction for hardware design nearer to that of
software design. It enables the validation of the functional
correctness of the design more quickly than with traditional
hardware description languages.

The computation of the Canny algorithm is implemented as
software core and hardware core. The algorithm is applied on
live videos or Test Pattern Generator (TPG) videos using the
Zynq-based Targeted Reference Design (TRD) provided by
Xilinx. The TRD Qt GUI provides the option to switch
between the two implemented cores: software and hardware.
The implementation is synthesized and tested on Zynq-7000
AP SoC ZC702 board.

The rest of the paper is organized as follows. Section II
discusses the previous approaches of implementing image and
video processing algorithms on FPGA and the related work
using HLS. Section III briefly illustrates Canny edge detection
algorithm explored in this work. Section IV shows our
implementation of Canny on ZYNQ platform using Vivado
HLS. The achieved results are discussed in Section V.
Conclusions are offered in Section VI.

II. RELATED WORK

Developments in HLS attract many software and hardware
designers to enhance the implementation of different
solutions. Evolutionary hardware design implementation on
Zynq is discussed in [2]. Traffic management is one of the
tracks that are delivered in [3] and [4] to proof the concept of
implementing real time video solutions on hardware. High
level synthesis implementation of the Sobel filter is clarified in
[5] with the optimization techniques used. Besides, power
evaluation of Sobel filter on Xilinx platform is introduced in
[6]. Feature extraction is implemented in [7] on FPGA using
Xilinx system generator. The implementation of high-
performance, low-power FPGA-based optical flow
accelerators in C is shown in [8].

High Level Synthesis of Canny Edge Detection
Algorithm on Zynq Platform

Hanaa M. Abdelgawad, Mona Safar, Ayman M. Wahba

R

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:1, 2015

148International Scholarly and Scientific Research & Innovation 9(1) 2015 scholar.waset.org/1307-6892/10000239

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
1,

 2
01

5
w

as
et

.o
rg

/P
ub

lic
at

io
n/

10
00

02
39

http://waset.org/publication/High-Level-Synthesis-of-Canny-Edge-Detection-Algorithm-on-Zynq-Platform/10000239
http://scholar.waset.org/1307-6892/10000239

Fig. 1 Canny Edge Detection Flow

Sadri in [1] provides a clear knowledge about the AXI
interfaces in Zynq platform with more details about
Accelerator Coherency Port (ACP) to improve energy and
performance of applications. Canny implementation was
synthesized on three different Xilinx FPGAs: Spartan-3E,
Spartan6, and Virtex 5 FPGA in [9] by using the Xilinx ISE
12.1 toolchain. The implementation of a hardware accelerator
for edge detection based on the Canny edge filter is described
in [10]. In this paper, Canny edge detection hardware
accelerator is implemented using HLS as IP core on Zynq
platform.

III. CANNY EDGE DETECTION

Canny edge detection is one of the most widely-used edge
detection algorithms due to its reliable performance with noisy
images. The computationally intensive nature of this algorithm
imposes high clock frequencies and significant power
consumption on general microprocessor architectures,
especially when it is necessary to meet real-time constraints.

Canny edge detector is a multi-step detector [10]. Canny
edge detector stages are shown in Fig. 1 to determine the edge
texture. Canny edge detector performs smoothing and filtering
from noise by Gaussian blur mask. It is followed by
convolving the image with partial derivatives of a 2D
Gaussian function Gx and Gy to get the edge strength matrix
G and the edge direction edge Angle matrix. G and edge
Angle matrices are used in non-maxima suppression
operation.

The local maximum is found by comparing the pixel with
its neighbors along the direction of the gradient. The pixel that
has no local maximum gradient magnitude is eliminated. The
comparison is made between the actual pixel and its
neighbors, along the direction of the gradient. It is applied to
remove any unwanted pixels which may not part of the edge.
Hysteresis thresholding is the last stage where two threshold,
high and low, are used. Edge pixels stronger than the high
threshold are marked as strong; edge pixels weaker than the
low threshold are suppressed and edge pixels between the two
thresholds are marked as weak. Those operations will give a
thin edge in the output image.

IV. IMPLEMENTED CANNY EDGE DETECTOR ON ZYNQ

PLATFORM

The HLS implementation of Canny on Zynq platform
requires the knowledge of the algorithm, the challenges of
implementing embedded Canny edge detection using HLS tool
and the knowledge of the target Zynq platform [11].

A. HLS Implementation Challenges

HLS coding differs from the normal C coding to target the
embedded domain. Available tools require coding in a specific
style, with additional constraints inside files or within the code
as pragmas. In the implementation of Canny hardware
accelerator using Vivado HLS, different HLS constraints and
optimizations are used targeting ZYNQ platform. Those stages
are illustrated as follow:

1. Grayscale Conversion

Since the Canny algorithm is processed on Grayscale
images, the input frame image in a RGB or BGR color format
is converted to the Y'UV color space (RGB  Y'UV). It is
done using HLS video libraries: cvtcolor function and two
other supported functions chroma downsampling and chroma
upsampling. The processed Y'UV image applies a filter to
convert it back to RGB. The luminance intensity conversion is
a sum of different weight of each color component of R, G,
and B which results in same gray scale level. Y'UV has an
advantage that some of the information can be discarded in
order to reduce bandwidth. The accuracy of the brightness
information of the luminance channel has higher impact on
human eye than the spatial sensitivity to color.

2. Memory Structures

The biggest bottleneck, in the computational intensive
image and video applications, is the memory accesses and
memory buffers. Canny edge detector is considered as
multiple video pipeline in which live video streams are written
into memory (input), then processing is done through different
stages and memory is read to send out live video streams
(output). Through Canny stages, the convolution filters
operate on a local neighborhood of pixels, called memory
window. Those filters require accessing a pixel more than
once.

Thus, handling data stream on an FPGA requires a memory
architecture to retain data for multiple accesses. An efficient
memory architecture for streaming data uses a combination of
line buffers for storage of complete image lines and memory
windows for the actual processing of local neighborhoods.
Fig. 2 shows window-buffer memory architecture used on the
input frame image. The line buffer stores the new coming
image data, which is then used to update the memory window.
The window moves to the right and all of its contents are
shifted to the left to update it with the new data. The pixels of
the rightmost column are obtained from the current column of
the line buffer as well as the new input element.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:1, 2015

149International Scholarly and Scientific Research & Innovation 9(1) 2015 scholar.waset.org/1307-6892/10000239

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
1,

 2
01

5
w

as
et

.o
rg

/P
ub

lic
at

io
n/

10
00

02
39

http://waset.org/publication/High-Level-Synthesis-of-Canny-Edge-Detection-Algorithm-on-Zynq-Platform/10000239
http://scholar.waset.org/1307-6892/10000239

Fig. 2 Line buffer and window buffer used in the convolution operation

3. Loops Optimization Using Directives

In order to apply the computational intensive pixel tasks
like Gaussian blur, Gradient filter and non-maxima
suppression, loops are used to process the pixel with its
neighborhood pixels. There is a HLS constraint of writing
loops: only perfect and semi-perfect loops [12] are allowed to
be automatically synthesized in HLS. To enhance the
performance of those implemented operations, the loop
optimization directives are used to direct the generated RTL in
a certain way.

For the Gaussian blur operation, a built-in HLS video
library is used in the hardware implementation core
(hls::Gaussianblur <5,5> (img,dst)). While in software
implementation, the 5x5 filter is implemented.

For the Gradient operation and the non-maxima suppression
stage, input frame image is processed on the whole window
buffer using loops. The Gradient strength and the Gradient
direction are saved as struct data type called edgeValues.
edgeValues fields are edge angle and edge strength, which are
used in the non-maxima suppression. Listing 1 shows an
example of the optimized nested for loop used in the
algorithm.

LISTING 1 OPTIMIZED HLS LOOP

for(int row = 0; row < rows+1; row++){
 for(int col = 0; col < cols+1; col++){
 #pragma HLS loop_flatten off
 #pragma HLS dependence variable = &buff_A false
 #pragma HLS PIPELINE II = 1
 //Image processing Code
 }
}

Without optimization directives on the loop, each loop

iteration will run in the same hardware state and each loop
iteration will run on the same hardware resources. Thus, loops
enforce a minimum execution latency depending on the loop
condition which is, in our case, (Width x Height) of the input
image frame. Incrementing the loop counter always consumes
1 clock cycle, therefore the nested for-loop in the gradient
filter will always take at least (Width x Height) clock cycles.
Different optimization directives are used to enhance the
performance of the algorithm.
 Pipeline Directive Loop pipeline causes inputs to be

passed to the function or loop more frequently. This
decreases latency for the entire loop and increases
throughput. Pipeline directive uses Loops Initiation
Interval (II) factor, it is used to define the number of clock

cycles between start of new loop body.
#pragma HLS PIPELINE II = 1

In our implementation, the gradient filter and non-maxima
suppression loop operation uses II=1, which means that one
loop body per clock cycle. Thus, the filter is a ‘fully pipelined’
datapath.
 Flatten Directive Perfect and semi-perfect loops are

automatically flattened, flattening eliminates state
transitions between loop hierarchy levels and a loop state
transition (counter increment) takes 1 clock cycle. In our
case, we use the option to turn off the automatic
flattening.

 Unroll Directive Unroll for-loops to create multiple
independent operations rather than a single collection of
operations. In the nested for loop, It is used in the inner
loop. It is used in loop iterations like this

#pragma HLS UNROLL

 Dataflow Directive is used at the top-level function in the
algorithm to allow sequential loops to operate
concurrently.

All those directives in turn decreases latency and improves
the throughput of the RTL design, but at the cost of additional
hardware. Xilinx Vivado HLS provides optimized video HLS
library that includes embedded OpenCV library and Video
interfaces [13]. Not all functions in OpenCV library are
provided in the embedded form, the available functions
provide the designer with a memory infrastructure and specific
algorithm implementations. The generated solution is only as
good as the provided C code. Therefore, the C code has to be
optimized for hardware use, to improve the quality of the
hardware solution [14].

B. Zynq Architecture

The hardware platform used is Zynq 7000 AP SoC image
and video kit. XC7Z020 board consists of dual 1GHz core
ARM Cortex-A9 processor and a programmable logic FPGA
region (PL). PS comes with a high performance memory
system of 512Mb RAM, which is large enough for the video
applications. PL includes 140 on chip static RAM modules,
called Extensible Block RAM (BRAM). Each has a capacity
of 36 Kb, this gives a total of 560KB of on chip static RAM
available in the FPGA.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:1, 2015

150International Scholarly and Scientific Research & Innovation 9(1) 2015 scholar.waset.org/1307-6892/10000239

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
1,

 2
01

5
w

as
et

.o
rg

/P
ub

lic
at

io
n/

10
00

02
39

http://waset.org/publication/High-Level-Synthesis-of-Canny-Edge-Detection-Algorithm-on-Zynq-Platform/10000239
http://scholar.waset.org/1307-6892/10000239

Fig. 3 The block diagram of the system using Zynq-7000 operations

The BRAM cells are designed as dual-port RAM and thus
can be read and written simultaneously. DDR3 DRAM is
configured to run at 533 MHz, and the AXI interface is
running at 355 MHz. This provides a good hardware solution
for the memory problem.

In the system block shown in Fig. 3, the input image frame
received from the live video through AXI VDMA, then it is
filled in openCV matrix of size equal to the frame rows and
columns. AXI VDMA implements a high-performance, video-
optimized DMA engine with frame buffering. AXI VDMA
transfers video data streams to and from memory. The video
pipeline is running at 1080p60 (1920 x 1080 frames at 60
frames/sec). Each frame consists of 4 bytes per pixel to
represent a high-quality video stream such as RGBA or YUV
4:4:4. ZYNQ communicates using AXI interface which is part
of Advanced Microcontroller Bus Architecture (AMBA)
Open Standard Interconnect. AMBA is a high bandwidth
interconnect between PS and PL.

There will be interface conversion to convert the input
matrix to AXI video stream where the image frame inside
HLS generated Canny edge detection IP core can be
processed. HLS video libraries provide different interfaces. In
this work, cvMat2AXIvideo, AXIvideo2cvMat,
hls::AXIvideo2Mat and hls::Mat2AXIvideo are used.

To provide high-speed AXI master interfaces in the PL
with lower latency and direct access to the Zynq-7000 AP
SoC memory interfaces, connections to the high performance
(HP) interfaces are required. The Zynq-7000 AP SoC contains
four HP interfaces that are 64-bit slave interfaces designed for
high throughput. This architecture allows the basis of video
systems capable of handling multiple video streams and
multiple video frame buffers sharing a common DDR3
SDRAM memory.

Data read by each AXI VDMA is sent to Xylon Display
controller capable of multiplexing or overlaying multiple

video streams to a single output video stream. The output
drives the HDMI video display interface on the board. All
AXI VDMAs are connected to separate HP interfaces by
means of the AXI Interconnect and are controlled by the
Cortex-A9 processor.

V. RESULTS AND EVALUATION

Vivado HLS facilitates the implementation of the
embedded Canny edge detector algorithm as the focus is on
the embedded Canny detector algorithm away from too much
details of the hardware. Vivado HLS accelerates system
verification and implementation times by up to a 100x
compared to RTL design entry flows.

Zynq-based TRD [15] helps in testing the implemented
core on live videos. The TRD QT GUI [16] interface shows
the implemented Canny edge detector, the software core
(implementation on PS) and the hardware core (RTL
generated Canny pipeline using HLS), on live video or TPG
video. The CPU utilization chart in Fig 4 assures that the
performance is improved up to 100x through using hardware
accelerator. One of CPU core is dedicated to handle the edge
detector SW core and the other CPU handles the GUI
interface. Table I shows the utilization estimates of Canny
hardware accelerator using Vivado HLS 2014.2 on ZC702
board.

Fig. 4 CPU Usage for Canny hardware accelerator

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:1, 2015

151International Scholarly and Scientific Research & Innovation 9(1) 2015 scholar.waset.org/1307-6892/10000239

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
1,

 2
01

5
w

as
et

.o
rg

/P
ub

lic
at

io
n/

10
00

02
39

http://waset.org/publication/High-Level-Synthesis-of-Canny-Edge-Detection-Algorithm-on-Zynq-Platform/10000239
http://scholar.waset.org/1307-6892/10000239

TABLE I
UTILIZATION ESTIMATES OF CANNY HARDWARE ACCELERATOR

 BRAM_18K DSP48E FF LUT

Expression - - 0 6

FIFO 0 - 165 735

Instance 21 79 26393 34129

Register - - 23 -

Utilization (%) 7 35 24 65

VI. CONCLUSION AND FUTURE WORK

In this paper, we show how HLS constraints and
optimization directives were applied for timing and area
optimization. The implementation of stream-based Canny
edge detector processing using C-based HLS is presented. The
results show that hardware accelerators enhance the complex
computation of the processing functions. The hardware
accelerators on FPGA enhance the computational
performance: the CPU utilization drops down and the frame
rate increases, in ZYNQ platform it is up to 60 fps for a
resolution of 1280 x 1024.

There are many computer visions application which can
take advantage of hardware accelerators to enhance
performance of real-time highly computational applications.
When targeting HLS design flow, the implementation of
C/C++ code is rapidly developed for hardware accelerator.

In the Future work, besides improving the quality of edge
texture map result by distributed Canny edge detection
algorithm [17]. Implementation of augmented reality (AR)
pipeline [18] is considered to make use of the cooperation
between CPU and FPGA. Highly computational video and
image processing operations of augmented reality will be as
hardware accelerators. This will enhance the real time
performance of AR applications.

REFERENCES
[1] Mohammadsadegh Sadri, Christian Weisy, Norbert Wehny, and Luca

Benini: "Energy and Performance Exploration of Accelerator
Coherency Port Using Xilinx ZYNQ", FPGAWorld ’13, September 10-
12, Copenhagen, and Stockholm, ACM

[2] Dobai, R.; Sekanina, L.: "Image filter evolution on the Xilinx Zynq
Platform," Adaptive Hardware and Systems (AHS), 2013 NASA/ESA
Conference on , vol., no., pp.164,171, 24-27 June 2013

[3] Russell, M.; Fischaber, S., "OpenCV based road sign recognition on
Zynq," Industrial Informatics (INDIN), 2013 11th IEEE International
Conference on , vol., no., pp.596,601, 29-31 July 2013

[4] Yan Han; Oruklu, E., "Real-time traffic sign recognition based on Zynq
FPGA and ARM SoCs," Electro/Information Technology (EIT), 2014
IEEE International Conference, pp.373,376, 5-7 June 2014

[5] Josh Monson, Mike Wirthlin, Brad L Hutchings: "Optimization
Techniques for a High Level Synthesis Implementation of the Sobel
Filter"

[6] Hong. Nguyen. T. K, Cecile. Belleudy1 and Tuan. V. Pham2: "Power
Evaluation of Sobel Filter on Xilinx Platform".

[7] Swapnil G. Kavitkar,Prashant L. Paikrao: "FPGA based Image Feature
Extraction Using Xilinx System Generator", (IJCSIT) International
Journal of Computer Science and Information Technologies,2014

[8] Monson, J.; Wirthlin, M.; Hutchings, B.L., "Implementing high-
performance, low-power FPGA-based optical flow accelerators in C,"
Application-Specific Systems, Architectures and Processors (ASAP),
2013 IEEE 24th International Conference, 5-7 June 2013

[9] Christos Gentsos, Calliope-Louisa Sotiropoulou and Spiridon
Nikolaidis:"Real- Time Canny Edge Detection Parallel Implementation
for FPGAs"

[10] Chaithra.N.M., K.V. Ramana Reddy,”Implementation of Canny Edge
Detection Algorithm on FPGA and displaying Image through VGA
Interface”, International Journal of Engineering and Advanced
Technology (IJEAT), ISSN: 2249 8958, Volume-2, Issue-6, August
2013

[11] Fernando Martinez Vallina, Christian Kohn, and Pallav Joshi, ”Zynq All
Programmable SoC Sobel Filter Implementation Using the Vivado HLS
Tool”, XAPP890 (v1.0) September 25, 2012.

[12] Louise H Crockett, Ross A Elliot, Martin A Enderwitz, Robert W
Stewart The Zynq Book: Embedded Processing with the Arm Cortex-
A9 on the Xilinx Zynq-7000 All Programmable Soc Paperback, July 14,
2014

[13] Kester Aernoudt, ”OpenCV, Zynq All Programmable SoC, and Vivado
HLS”,Xilinx,June, 2013

[14] Xilinx,”How to Accelerate OpenCV Applications with the Zynq-7000
All Programmable SoC using Vivado HLS Video Libraries”,August 28,
2013

[15] Xilinx: Zynq Base TRD Wiki http://www.wiki.xilinx.com/Technical
+Articles#TRD

[16] UG925 (v7.0) Zynq-7000 All Programmable SoC ZC702 Base Targeted
Reference Design (Vivado Design Suite 2014.2) User Guide, August
27,2014

[17] Qian Xu, Srenivas Varadarajan, Chaitali Chakrabarti, and Lina J.
Karam,"A Distributed Canny Edge Detector: Algorithm and FPGA
Implementation", IEEE Transactions on Image Processing, Vol. 23, No.
7, July 2014

[18] Bernardo Reis, Paulo Borges, Luis Arthur Vasconcelos, Jo˜ao Marcelo
Teixeira,Veronica Teichrieb, Judith Kelner,” MarkerMatch: an
Embedded Augmented Reality case study”, XII Symposium on Virtual
and Augmented Reality, Natal, RN, Brazil - May 2010

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:1, 2015

152International Scholarly and Scientific Research & Innovation 9(1) 2015 scholar.waset.org/1307-6892/10000239

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
1,

 2
01

5
w

as
et

.o
rg

/P
ub

lic
at

io
n/

10
00

02
39

http://waset.org/publication/High-Level-Synthesis-of-Canny-Edge-Detection-Algorithm-on-Zynq-Platform/10000239
http://scholar.waset.org/1307-6892/10000239

