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Abstract: Studying sea ice and its interaction with climate 

change is crucial due to its significant impact on the environment, 

society, and global stability. The pressing need to address the 

underlying reasons for the rapid melting of Arctic and Antarctic 

sea ice is underscored by its adverse effects on the environment 

and society. In this proposed study, a Convolutional Neural 

Network (CNN) is utilized to predict ice types using data from the 

NSIDC DAAC Advanced Microwave Scanning Radiometer - 

Earth Observing System Sensor (AMSR-E) collection. This dataset 

contains parameters such as sea ice types and spans data products 

from June 2002, obtained from the NASA Data Centre. By 

employing hand-crafted features as input and a single layer of 

hidden nodes, the CNN used in this approach generates improved 

estimates of ice types, outperforming traditional image analysis 

methods. At each stage, ConvNets use diverse filter banks, feature 

extraction pooling layers, and fully connected layers with basic 

activation functions like Relu. This allows the network to build 

multifaceted hierarchies of features. The sea ice type estimates 

produced by the CNN are then compared with those obtained from 

passive microwave brightness temperature data using existing 

algorithms as well as a proposed CNN algorithm, resulting in an 

increased classification accuracy of 98.58%. This improvement is 

particularly notable in the reduction of the error rate, which has 

been effectively minimized from 3.01% without feature selection to 

1.42% with infinite feature selection. When compared to existing 

algorithms, the CNN demonstrates superior performance. These 

findings underscore the impact of input patch size, CNN layer 

count, and input size on the model's performance. 

Keywords: Advanced Microwave Scanning Radiometer - Earth 

Observing System Sensor (AMSR-E), Convolutional Neural 

Network (CNN). 

I. INTRODUCTION

In the field of operational sea ice analysis, experts use

AMSR-E data to create ice charts, which are crucial for 

providing guidance and support in ice-covered regions. 

However, manually generating these data analyses is a time-

consuming process and can be prone to human errors.  
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With new satellite missions such as AMSR-E and the 

European Sentinel mission, we anticipate a significant 

increase in the volume of satellite imagery. The increasing 

volume of data poses a challenge in efficiently analyzing and 

processing imagery. Previous studies have explored 

automated methods for extracting valuable information from 

AMSR-E imagery. These studies have used specific features 

tailored for particular tasks, such as HH autocorrelation, 

cross-polarization ratio, and scaled polarization difference for 

estimating sea ice concentration. Over its operational 

lifespan, AMSR-E data have significantly enhanced our 

understanding of the seasonal evolution of sea ice, providing 

important insights into dynamic changes over time. AMSR-

E, operating as a passive microwave radiometer, is unaffected 

by sunlight and certain channels are not impacted by clouds, 

allowing data collection even in cloudy conditions. Various 

techniques such as grey-level co-occurrence matrix features, 

Gabor filters, and Markov random fields have been 

successfully used to classify AMSR-E imagery into different 

ice types and ice/water conditions. Generating a robust set of 

engineered features for automatic information extraction 

from Synthetic Aperture Radar (SAR) imagery poses a 

significant challenge. It needs to be adaptable across diverse 

geographic regions, seasons, and imaging geometries. To 

comprehensively capture a wide range of ice conditions, it 

may be necessary to tailor features specific to various 

locations or seasonal variations. For example, creating a 

comprehensive database containing HH and HV backscatter 

values calculated on a region-specific basis, considering 

factors such as incidence angles and wind speeds could prove 

to be invaluable. Analysts derive sea ice concentration 

estimates from AMSR-E images, relying heavily on their 

nuanced understanding of local sea ice conditions and adept 

interpretation of visual cues within the images. This complex 

process involves examining diverse characteristics of AMSR-

E images across different scales. Emulating the visual 

method's capability to synthesize information from various 

scales and incorporate past knowledge is necessary to carry 

out this task effectively. CNN has a solid reputation for its 

ability in feature extraction from images, excelling precisely 

at considering information across various scales. 

In the current research, a CNN is strategically used to assess 

ice types based on the acquired AMSR-E imagery. This 

innovative approach not only promises efficiency and 

accuracy but also aligns with the evolving technological 

landscape in the field of sea ice analysis. 
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II. BACKGROUND WORK 

Consider using image feature learning from AMSR-E 

imagery for ice concentration estimation, which expands 

upon the feature learning methods used in previous research. 

This approach has the potential to effectively analyze 

complex datasets. Deep learning, a type of feature learning, 

can autonomously interpret complex data visuals at high 

abstraction levels. In the field of image recognition, deep 

CNN’s are widely used due to their efficiency in modeling 

local image structures at different scales.  

However, there has been limited research on using CNNs to 

extract features from satellite imagery. Training CNN models 

requires a large volume of high-quality training data, which 

can be expensive and impractical to obtain, especially for 

tasks like ice concentration due to extensive geographical 

coverage and diverse surface conditions. This challenge is 

particularly evident in tasks related to ice concentration, as 

algorithms designed for estimating ice types from passive 

microwave data may exhibit biases, especially in areas with 

thin ice and low ice concentration levels. The assessments 

provided by analysts are generally considered the most 

reliable and accurate source of ice concentration information. 

Therefore, the extensive image analysis database available at 

the NASA Image Data Store can be utilized to explore the 

application of a CNN for estimating ice types from AMSR-E 

imagery. 

III. PROPOSED WORK ARCHITECTURE-CNN 

WITH DDDTDWT FILTER 

In this study, use the Double Density Dual-Tree Discrete 

Wavelet Transformation (DDDTDWT) as a technique to 

remove noise from images of different types of ice. We also 

apply Grey Level Co-Occurrence Matrices (GLCM) for 

feature extraction. We select suitable features such as 

contrast, dissimilarity, energy, entropy, homogeneity, 

correlation, and variance for classification. 

During the process, oriented wavelets are generated using 

the dual-tree double-density 2-D transformation, and the 2-D 

input image undergoes a type-tree discrete wavelet 

transformation. In this transformation, use "fdf" for the first 

level and "df" for subsequent levels as the analysis filters. The 

coefficients resulting from the DDDTDWT image filtering 

are organized. A structured version of the Gray-Level Co-

occurrence Matrix (GLCM) is used to derive feature values 

for each ice type, which are then organized into an array. 

As part of the DDDTDWT approach, the results are 

provided to the convolutional neural networks algorithm, as 

shown in Figure 1. 

 

Figure: 1. Proposed Work Architecture-CNN with DDDTDWT Filter 

Specifically, the AMSR-E/Aqua Daily L3 12.5 km Sea Ice 

Concentration, & Snow Depth Polar Grids V003 Level-3 

gridded product (AE_SI12) includes brightness temperatures 

ranging from 18.7 to 89.0 GHz, sea ice concentration, and 

snow depth over sea ice in dual-pol (HH and HV) 

Polarizations. These comprehensive datasets contribute to a 

thorough understanding of the sea ice conditions in the study 

area over the specified time frame. 
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Figure: 2a) Study Area Figure 2b) The dataset for the AMSR-E Level 3 Standard Sea Ice Products 

A. Dataset: AMSR-E Imagery 

The study area, as illustrated in Figure 2(a) and Figure 2(b), 

encompasses data spanning a decade from July 2, 2012, to 

December 14, 2022, utilizing AMSR-E imagery. Throughout 

the study duration, Sea ice products with AMSR-E Level 3 

standard were supplied by the National Snow and Ice Data 

Center (NSIDC). These products comprise sea ice 

concentration, generated using the NT2 algorithm, sea ice 

temperature, and snow depth on sea ice produced from the 

AMSR-E algorithm. 

B. AMSR-E Images Pre-processing 

To optimize the management of data volume and reduce 

image speckle noise, a crucial step is taken with all AMSR-E 

images, subjecting them to an 8 × 8 block averaging process. 

Neural networks become more efficient while operating at 

this reduced scale since it requires a smaller spatial context 

window. This approach gains favor due to the relatively 

limited number of available training samples. The sub-

sampled images maintain a pixel spacing of one kilometer, 

with pixel values ranging from 0 to 255. Enhancing CNN 

performance follows the standard practice of employing input 

normalization. In this particular investigation, a 

normalization procedure is applied to the pixel values in the 

dual-polarized AMSR-E images. This involves computing 

the mean and standard deviation of pixel values across the 

complete dataset for each channel. Subsequently, these 

calculated means are subtracted from each pixel value, 

followed by division by the respective standard deviation. 

When selecting training sample patches in proximity to the 

land, challenges arise as the CNN may encounter confusion. 

Land pixels have the potential to misrepresent near by water 

areas, creating an illusion of ice where there is none. The 

impact of this issue is contingent on the size of the training 

patches. In this instance, 45 by 45 pixel patches are utilized, 

equivalent to approximately 2 kilometers by 2 kilometers on 

the ground. A straightforward removal of land pixels and 

setting them to 0 could introduce misinterpretations. Instead 

of straightforward removal of land pixels a land mask is 

applied to the AMSR images, replacing land pixels with those 

resembling either ice or water. This strategic move reduces 

land interference and, while it may lead to reliance on nearby 

ice or water pixels for ice concentration determination, tests 

demonstrate that the land mirroring method effectively 

mitigates the impact of land on ice concentration and extent 

estimates. Currently, alternative methods for masking land 

pixels remain unexplored. 

 In addition, each pixel's incidence angle in the AMSR 

image is carefully computed to understand the surface 

interaction of the signal generated by the radar. These angle 

values are then transformed into images, ensuring a range of 

values similar to the AMSR images themselves. Each 

extracted patch, coupled with the ice concentration and extent 

located at the patch center from the image analysis, acts as 

one sample used to train the CNN. In cases where patches 

exhibit a boundary shape, they are labeled based on the 

central pixel's shape, although using a label that describes the 

ice concentration as a mix of both shapes might offer more 

accuracy. These challenges form the basis for further 

exploration in future research endeavors. 

C. Overview and Configuration of the CNN 

A Convolutional Neural Network (CNN) functions as a 

learning structure with distinct components, each undergoing 

three crucial steps: convolutional filtering, non-linear 

transformation, and pooling layers. Usually, a CNN is made 

up of several of these parts, each of which learns different 

features of an image. Subsequently, additional layers 

interconnect these learned features. In this context, a CNN is 

designed with three filtering layers and two connecting 

layers, as outlined. The detailed architecture of this CNN is 

illustrated in Figure1.  

Within the convolutional layers, K convolution filters of 

size (𝐶𝑥𝐶𝑦, 𝐶𝑧), labeled as Ck, convolve the input matrix 

(width of 𝑆𝑥 pixels, height of 𝑆𝑦pixels, and number of 

channels designated as 𝑆𝑧) representing a patch recovered 

from the AMSR image. The image patch is subjected to each 

filter with a stride indicated by P.The outcome of this 

convolutional operation results in K feature maps, denoted as 

ℎ𝑘, each having dimensions 𝑀𝑥and 𝑀𝑦 as outlined in 

Equation (1). 

ℎ𝑘 = (𝐶𝑘 ∗ 𝑥) + 𝑏 in which , k = 1,2 … K                     (1) 

𝑀𝑥 =
𝑆𝑥 − 𝐶𝑥

𝑃
+ 1 

𝑀𝑦 =
𝑆𝑦 − 𝐶𝑦

𝑃
+ 1 

In this context, the symbol (∗) is utilized to illustrate the 

convolution process. The size of the feature maps (𝑀𝑥 × 𝑀𝑦) 

is specified when considering padding in images. Each 

convolutional layer incorporates filters of varying sizes and 

quantities, learning the values of these filter weights and a 

parameter known as bias from the training data. 

Every element in the feature maps is subjected to the 

activation function after the convolution. Here, the Rectified 

Linear unit (ReLu) activation function is employed, 

surpassing the older sigmoid function as it accelerates the 

learning process and yields superior features. 

Post the non-linear transformation, the subsequent step is 

sub-sampling or pooling.  
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Max pooling is adopted due to its simplicity and effective 

performance (LeCun, 2010). Max pooling outputs the 

maximum value within each pooling window. For instance, 

with a pooling window size and step size both set to 2, a max-

pooling layer produces the maximum value within every non-

overlapping two by two window of its input. The 

convolutional layers are succeeded by fully connected layers, 

serving as classification modules utilizing features extracted 

from earlier stages. Each neuron in a fully connected layer is 

connected to all neurons of its input layer. The initial fully 

connected layer takes a stack of feature maps (ℎ𝑘) as inputs. 

These feature maps, arranged in a flat, linear format, are 

transformed into the output space using a weight matrix 

named W and a bias referred to as b. Subsequently, the 

function f is employed to generate the output. 

D. Learning and Assessments 

The network is configured for predicting ice types from 

AMSR-E image patches. Utilizing the loss function, 

discrepancies between the CNN output and ice types from 

image analysis are penalized. Following each training 

session, the loss function is evaluated by computing the loss 

using the current model on the validation dataset. Commonly 

used in regression tasks, the loss function quantifies the 

squared disparity between predicted and actual values, with 

the objective of minimizing this difference. Here, the training 

employs backpropagation with a mini-batch stochastic 

gradient descent (SGD), which will leveraging the derivatives 

of the loss function. These variations are backpropagated 

through each pixel in the predictions, updating network 

elements based on the variations of the loss to the parameters 

over each mini-batch. Sequential adjustments to the training 

parameters are implemented, following an epoch-based 

training approach, where each epoch iterates through all 

training samples once. Every 20,000 mini-batches, the 

learning rate is lowered by a factor of 10 in order to improve 

training efficiency. Training concludes when the loss 

function's score exhibits minimal change (less than 0.001) for 

20 consecutive epochs, preventing early convergence, a 

common occurrence.  A supplemental method called dropout 

is used to lessen overfitting. A dropout layer stochastically 

sets neuron outputs in a layer to zero with a predetermined 

probability. In this case, a dropout layer with a dropout rate 

of 0.5 is utilized, randomly selecting half of the neurons, 

forcing the network to acquire more representative features. 

For experimentation, 500 scenes are randomly divided into 

400 learning images, and the remainder for assessment 

images. Post-training the CNN model, it is applied to estimate 

ice types for each pixel location in the target AMSR-E 

images. The CNN model, employing a stride of 1 on input 

images, advances the input window one pixel at a time during 

forward propagation. 

IV. IMPLEMENTATION AND UTILIZATION 

Utilized tools in Python encompass TensorFlow, Geo 

Pandas, Basemap, and Py Torch. TensorFlow, a 

comprehensive framework, furnishes extensive tools and 

resources for the construction and training of neural 

networks. Complementary to the pandas library, GeoPandas 

broadens its capabilities to handle geospatial data effectively. 

Basemap, a toolkit for Matplotlib, facilitates the creation of 

static, interactive, and publication-quality maps, proving 

useful for various mapping and visualization tasks. 

Renowned for its flexibility and dynamic computation graph, 

PyTorch is employed. In the Python environment, the 

implementation of AMSR-E image pre-processing and 

patching leverages the capabilities of these tools. TensorFlow 

and PyTorch contribute to the construction and training of 

neural networks, while GeoPandas and Basemap enhance the 

handling and visualization of geospatial data, offering a 

robust framework for comprehensive AMSR-E image 

analysis. 

A. Ice Types and its Features 

Feature selection is accomplished using the infinite feature 

selection method. Table 9.1 displays the features with and 

without selection for various ice types, including multi-year 

ice (MYI), first-year ice (FYI), young ice (YI), and open 

water (OW). 

In this context, MYI refers to ice that has endured at least 

one melt season and is typically 2 to 4 meters thick. FYI is 

ice thicker than 30 centimeters but has not experienced a 

summer melt season. YI represents ice formed during the 

current winter season and is less than one year old. OW 

designates areas without ice coverage. 

For C-NN, specific features are identified, such as contrast, 

dissimilarity, energy, homogeneity, correlation, and variance. 

Contrast measures intensity differences between neighboring 

pixels, useful for distinguishing high and low ice 

concentration or extent. Dissimilarity, a measure of intensity 

differences, aids in distinguishing ice concentration or extent. 

Energy, the sum of squared pixel values, gauges overall 

image brightness related to ice characteristics. Homogeneity, 

reflecting pixel similarity, helps identify uniform ice areas. 

Correlation, indicating linear relationships, can uncover 

patterns in ice characteristics. Variance, measuring pixel 

value spread, identifies areas of high or low ice concentration. 

These feature values are then utilized in the next step for 

selecting desired features. 

B. CNN Classification with Infinite Feature Selection and 

Without Feature Selection by Using DDDTDWT Filter 

Now, applies on features derived from the outcomes of the 

noisy single and double filter using DDDTDWT with GLCM 

transformation technique by with and without feature 

selection. With a single filter and double filters through a 

combination have checked with a selected number of 

features. After results, changes have been observed with a 

single filter or double. A limited number of features including 

contrast, energy, correlation, and homogeneity, are chosen 

with infinite feature selection method for classification. 

In this context of CNN, the features such as contrast, 

energy, homogeneity, correlation, dissimilarity, entropy, and 

variance have been selected by Infinite Feature selection 

method. Here, dissimilarity is a measure of the difference in 

intensity between neighboring pixels in an array element to 

distinguish between areas of high and low ice concentration 

or ice extent. Entropy is a measure of the randomness or 

disorder in an array element called feature values to identify 

areas of mixed ice types or concentrations, which would have 

higher entropy values.  
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Variance is a measure of the spread of pixel values in an 

array element to identify areas of high or low ice 

concentration or ice extent. These feature values are 

subsequently utilized in the subsequent step for selecting 

desired features shown in Table 1 as an example. 

Table 1. Features of Ice Types Derived After Filtering by 

Using DDDTDWT and GLCM with a 4-Bands of a 

Single Image 

Features MYI FYI YI OW 

Contrast 2.0112 2.853 0.2881 2.0269 

Dissimilarity 0.3184 0.4298 0.0427 0.3122 

Energy 0.8066 0.7625 0.9451 0.4485 

Entropy 0.5053 0.6071 0.1542 0.9806 

Homogeneity 0.9554 0.9395 0.9943 0.9558 

Correlation 0.6780 0.6268 0.8772 0.9167 

Variance 5.5241 6.3561 2.5119 32.3216 

In the Table 1, Contrast, and Dissimilarity is more in FYI, 

and less in YI; Energy is more in YI, and less in OW; Entropy 

is more in OW, and less in YI; Homogeneity is more in YI, 

and less in FYI; Correlation is more in OW, and less in FYI; 

Variance is more in OW and less in YI. 

C. Selection of Features 

Here, have been selected features such as contrast, energy, 

homogeneity, correlation. The selected features are being 

done by using infinite feature selection algorithm based on 

the mean and intensity values of features shown in Table 2. 

 

 

 

 

 

 

Table 2. Features of Ice Types by Using Infinite Feature 

Selection 

Features MYI FYI YI OW 

Contrast 2.0112 2.853 0.2881 2.0269 

Energy 0.8066 0.7625 0.9451 0.4485 

Homogeneity 0.9554 0.9395 0.9943 0.9558 

Correlation 0.6780 0.6268 0.8772 0.9167 

         NOTE: MYI-Multi Year Ice, FYI-First Year Ice, YI- Young Ice OW-

Open Wate 

D. Performance Metrics for all Ice Types with Infinite 

Feature Selection and Without Feature Selection 

Here, Table 3 displays the results obtained using overall 

accuracy, error rate, and various metrics like Matthews's 

correlation coefficient (MCC), sensitivity, specificity, and 

F1-Score. Matthews's correlation coefficient (MCC) provides 

a score between -1 and +1, considering true positives, true 

negatives, false positives, and false negatives. A score of +1 

signifies a perfect prediction, 0 indicates a random prediction, 

and -1 represents the opposite. 

Sensitivity, or the true positive rate (TPR), measures the 

proportion of correctly identified actual positives. In the sea 

ice context, it evaluates a classification model's ability to 

accurately identify different ice types. Specificity, or the true 

negative rate (TNR), assesses the proportion of correctly 

identified actual negatives. In the sea ice scenario, it gauges a 

classification model's ability to accurately identify areas 

without specific ice types. F1-Score, the harmonic mean of 

precision and recall, considers false positives and false 

negatives. In the sea ice context, it evaluates the overall 

accuracy of a classification model in identifying various ice 

types. Accuracy, the ratio of correctly classified samples to 

the total number of samples, measures the overall 

performance of a classification model. In the sea ice scenario, 

it reflects the model's ability to accurately identify different 

areas with specific ice types. 

Table 3. Performance Metrics of Ice Types with Infinite Feature Selection and Without Feature Selections by Using 

DDDTDWT and GLCM 

Ice Type  Strategy Mcc Sensi Speci  F1-Score Acc Error 

MYI 
WITH-FS 1 0.999 0.986 0.987 0.993 0.007 

WITH OUT-FS 0.995 0.986 0.986 0.978 0.986 0.013 

FYI 
WITH-FS 0.998 0.999 0.989 0.979 0.991 0.009 

WITH OUT-FS 0.975 0.972 0.969 0.934 0.962 0.038 

YI 
WITH-FS 1 0.993 0.945 0.959 0.974 0.026 

WITH OUT-FS 0.989 0.978 0.928 0.989 0.971 0.029 

OW 
WITH-FS 0.997 0.978 0.976 0.99 0.985 0.015 

WITH OUT-FS 0.925 0.962 0.963 0.989 0.959 0.04 

V. RESULTS EXAMINATION 

In this context, one critical parameters has been examined, 

namely sea ice type. This parameter serves as essential in the 

exploration of sea ice dynamics, climate change, and their 

profound impacts on both polar and global environments. 

Extensively employed by researchers and scientists, these 

parameters provide valuable insights into the state and 

behavior of sea ice across diverse regions and seasons. Their 

thorough examination contributes to a deeper understanding 

of the intricate dynamics governing sea ice, facilitating 

comprehensive analyses of its responses to environmental 

changes on a regional and global scale. 

 

A. CNN Classification with Infinite Feature Selection and 

Without Features by using DDDTDWT Filter 

This approach enables the identification of relevant 

attributes for ice types. Ultimately, the generated 

performance measures encompass various metrics for each 

class type, which includes overall accuracy, MCC, 

sensitivity, specificity, and F1-score, all achieved through the 

utilization of classification methodology shown in Table 4.  
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This methodology facilitates the identification of distinct 

ice types, including Multi-Year Ice (MYI), First-Year Ice 

(FYI), Young Ice (YI), and Open Water (OW). Multi-Year 

Ice (MYI) refers to ice that has endured at least one melt 

season and is typically 2 to 4 meters (6.6 to 13.1 feet) thick, 

thickening as additional ice accumulates on its underside. 

First-Year Ice (FYI) is thicker than 30 centimeters (11.8 

inches) but has not survived a summer melt season. Young 

Ice (YI) forms during the current winter season and is less 

than one year old, while Open Water (OW) remains 

uncovered by ice. 
 

Table 4. CNN Classification Performance Metrics of Ice Types with Infinite Feature Selection and Without Features 

Selection by Using DDDTDWT 

Strategy Mcc Sensi Speci F1 -Score Acc Error Rate 

With FS 0.9987 0.9922 0.974 0.9787 0.9858 0.0142 

Without FS 0.9713 0.9745 0.9615 0.9725 0.9698 0.0301 

Note: FS- Feature Selection, SENSI-Sensitivity, SPECI-Specificity, ACC-Accuracy 

In the end, the evaluation comprises diverse metrics for 

each ice type, encompassing overall accuracy, Matthews 

Correlation Coefficient (MCC), sensitivity, specificity, and 

F1-score, as determined by the classification methodology 

outlined in Table 4. As shown in Table 4, The Performance 

metrics of CNN with infinite feature selection and a 

remarkable accuracy rate of 98.58 percent are noted across 

various ice types, as depicted in Figure 3. The error rate stood 

at 1.42 percent. When comparing results with infinite feature 

selection and without feature selection, utilizing the de-

noising filter DDDTCWT and GLCM transformation 

technique, the CNN classifier demonstrated improved 

accuracy by 0.48 percent with M-SVM [35]. 

 

Figure 3. Illustrates the Evaluation Outcomes with 

Infinite Feature Selection and Without Feature 

Selection by using DDDTDWT Filter. Note: FS- 

Feature Selection, SENSI-Sensitivity, SPECI-

Specificity, ACC-Accuracy 

In a summary, accuracy rate of 98.58 percent was observed 

across ice types, accompanied, as demonstrated in Figure 3 

with infinite feature selection by an error rate of 1.42%, and 

without feature selection by an error rate of 3.01 percent 

through the utilization of the de-noising filter DDDTDWT 

and GLCM transformation technique, the accuracy of the 

CNN classifier is enhanced 1.59 percent. Furthermore, there 

is a significant improvement in other performance 

parameters, including MCC at 99.87% sensitivity at 99.22%, 

specificity at 97.4%, and F1-score at 97.87% with infinite 

feature selection. 

B. Comparisons Between Proposed CNN with Existing 

Algorithms with Infinite Feature Selection and Without 

Feature Selection Using DDDTDWT Filter 

The comparison of CNN with existing algorithms infinite 

feature selection and without feature selection by using 

DDDTDWT Filter, Note: FS- Feature selection shown in the 

Table 5.  

Table 5. Comparison of Proposed Method on Accuracy 

and Error rate with Existing Algorithms with Infinite 

Feature Selection by using DDDTDWT 

S. No Method Accuracy Error Rate 

1 
Proposed CNN by using 

DDDTDWT 
98.58% 1.42% 

2 Wang, Lei, et. al.[31] by using RF 96.20% 4.80 % 

3 
Wang, Lei, et. al. [32] by using 

NN 
89.10% 10.80% 

4 
Giorgio Roffo, et. al. by using 
Feature Selection 

94.60% 5.40% 

 

Figure 4. Comparison of all Proposed Methods on 

Accuracy and Error Rate with Existing Algorithms with 

Infinite Feature Selection by Using DDDTDWT Filter 

In accordance with Chai, Hum Y. et al., Giorgio Roffo et 

al., and Wang et al., various approaches have been employed 

to enhance classification accuracy. For instance, the 

utilization of GLCM has yielded improvements, and feature 

selection techniques have been applied as well. Furthermore, 

the combination of RF and NN has been explored to achieve 

favorable outcomes. Notably, through the implementation of 

the C-NN algorithm, an enhancement in classification 

accuracy of 98.58%, as decorated in the graphical 

representation presented in Figure 4. This improvement is 

especially evident in the reduction of the error rate, which has 

been effectively 1.42% through the CNN with infinite feature 

selection using DDDTDWT. 
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Table 6. Comparison of all Proposed Methods on 

Accuracy and Error Rate with Existing Algorithms 

Without Feature Selection by Using DDDTDWT 

S. No Method Accuracy Error Rate 

1 
Proposed CNN by using 

DDDTDWT 
96.98% 3.01% 

2 
Wang, Lei, et. al. [31] by using 

RF. 
96.20% 4.80 % 

3 
Wang, Lei, et. al. [31]  by using 

NN. 
89.10% 10.80% 

4 
Giorgio Roffo, et. al. by using 

FS. 
94.60% 5.40% 

In accordance with Chai, Hum Y. et al., Giorgio Roffo et 

al., and Wang et al., various approaches have been employed 

to enhance classification accuracy shown in Table 6. For 

instance, the utilization of GLCM has yielded improvements, 

and feature selection techniques have been applied as well. 

 

Figure 5. Comparison of All Proposed Methods on 

Accuracy and Error rate with existing algorithms 

Without Feature Selection by Using DDDTDWT Filter 

Furthermore, the combination of RF and NN has been 

explored to achieve favorable outcomes. Notably, through the 

implementation of the C-NN algorithm, an enhancement in 

classification accuracy of 96.98%, as decorated in the 

graphical representation presented in Figure 5. This 

improvement is especially evident in the reduction of the 

error rate, which has been effectively 3.01% through the CNN 

without feature selection using DDDTDWT. 

VI. CONCLUSIONS AND FUTURE 

ENHANCEMENTS 

 In the exploration of ice types, an innovative system was 

developed to identify various ice types within a sea ice block 

by analysing satellite sea ice images.  In an exploration, with 

infinite feature selection using DDDTDWT, utilization of 

GLCM has yielded improvements. Furthermore, the 

combination of RF and NN has been explored to achieve 

favorable outcomes. Notably, through the implementation of 

the CNN algorithm, an enhancement in classification 

accuracy of 98.58%. This improvement is especially evident 

in the reduction of the error rate, which has been effectively 

minimized from 3.01% (without feature selection) to 1.42% 

through the CNN algorithm. 
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