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How rich metadata schemes

can allow for better designs via
optimization under uncertainty

Julian Quick




[llustration by Anna Maria Sempreviva, DTU

Motivation

* Data is the lifeblood of artificial intelligence and analytics

* Metadata (data about data) provides valuable contextual information,
including information about uncertainty (what we know and don’t know)

* Data/metadata management is a deliberate buisness strategy, often requiring
schema, taxonomies, or ontologies for successful knowledge integration

* Deliberate management of uncertainty information enables optimization

under uncertainty, where a product is designed to anticipate gaps in
information :



Low-level
jet stream

Need for Quantifying Uncertainty

Turbine wakes

Atmospheric

* Wind energy systems have limited
information available when predicting
CO m p I eX p h e n O m e n a Veers et al., “Grand challenges in the science of wind energy”

Science 366.6464 (2019)

* Stochastic forcing due to atmospheric e T e
turbulence § o oo

GROSS ENERGY
ESTIMATE

* Challenging to forecast future behavior ey
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* Business decisions rely on model
forecasts

. . . PO5P90 P84  Uncertainty Unicertalnty ANNUAL ENERGY
* Understanding risk can give a — gy DELVERED
. . site measurements, site measurements,
competitive edge i i et
annual wind variability, annual wind variability,
turbine performance, turbine performance
plant losses 2

Clifton, Andrew, Aaron Smith, and Michael Fields. Wind plant preconstruction energy estimates. current practice and opportunities. No. NREL/TP-5000-64735, 2016



Uncertainty Quantification Rules of Thumb =~

uncertainty

L

* Uncertainty should be reduced by adding new

. A
perfect measurements Height

* Reducing measurement uncertainty should reduce
uncertainty

* Avoid assuming a model to be reality, but have a
Bayesian approach based on experiments,
measurements, and expert knowledge
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Wake Steering OUU Example

e Upstream turbines redirect yaw orientation away from incoming
wind, “steering” the wake away from downstream turbines

* | explored the impacts of designing wake steering strategies around
uncertainty
* Quantify sensitivity of design to different uncertainties
* Quantify expected gains in energy from OUU




Optimization Under Uncertainty (OUU)

* We explored the impacts of designing wake steering strategies around
uncertainty
* Quantify sensitivity of design to different uncertainties
* Quantify expected gains in energy from OUU

* FLORIS engineering wake model is employed




Uncertainty Impacts Design S
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* Direction and speed uncertainty were
determined to be most influential
uncertainties

Front Turbine
(MW)

* Uncertainty in direction smears wake
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Leaning Uncertainty as Metadata

* Reasonable input probability distributions were developed for yaw
offsets, incoming wind direction, wind speed, turbulence intensity,

and shear, to be representative over a ten-minute period
* From experimental data, the distribution of yaw errors appears to

follow a Laplace distribution
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Confronting Model Form Uncertainty

« Goal of uncertainty quantification is to
understand how well the range of
experiment outcome, f(x), is predicted by
a computer model, m(x, 6)

* Uncertainty distributions must be assigned
to inputs

* The model form and choice of parameters Parameteric
have been carefully chosen—the same Uncertainty
knowledge should be used to form the
uncertainty paramerization



Measured Output

Managing Uncertainty “

Model o m(x + €,,0) + € = f(x) +ef
e Calibration and Validation allow for

riggourous understandings of uncertainty by
taking previous experience into account

* Epistemic Uncertainty Calibration
e Reducable. Due to lack of knowledge
 Aleatoric Uncertainty \
* Irreducable, due to natural variability Propagation Sensitivity

* Examples: wake modeling, sensor errors
* Examples: atmospheric variation, turbulence Analysis

A Measured Output
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Schema

A schema is a "blueprint”
of what data looks like.
More formally, it's an
expression of descriptive
and structural metadata

with defined semantics.

* Example: JSON File with
predefined fields Manufacturer

specifications of
measurement
uncertainty

Maintanance
Schedule

* Allows for strategic data
collection




Types of Metadata

For managing data Catalog information Contextual information Internal data structure
* Project * Keywords * Uncertainty * Data size

* Resource owner * Topics * Assumptions e Data format

e Collaborators * Persistant Identifier ¢ Collection method * Variable names and
* Funder * Related resources * Researcher notes types

* Licence * Key performance

indicators
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OntOIOgy Met Mast

Core
Schema Schema
An ontology is an explicit
specification of a
conceptualization.
* Ontologist is a common job
title in the tech sector Anemometer Turbine
* Ontologies allow schema to be S SSui
modular
° Relate COﬂCEptS using |Ogica| :,)i:::xi:::é:,nK:::kpmved and Extended Wind Energy Ontology
operators: . .
* subset (€ )taxonomy) o oTyioRIORIE OriinserbeteniOrigials | Pulshads 28 March 207
. Equivalence (E) —— — Ontology for maintenance of onshore wind turbines
° conjunction (ﬂ) ;.Ew”omicﬁ - Ontologie fiir die Instandhaltung von Onshore Windenergieanlagen
* disjunction (U) I e —
* negation (-) i ok s (
* property restrictions (v , = ) Bahim et al. (2020): Booshehri et al. (2021):
* tautology (T) ( Hamonizng FAIR Open Energy Orilogy

contradiction (1)



Invest in Metadata Infrastructure

Semantics, Schema, Ontologies
* Best to start difficult conversations

: Data
early instead

Management

* Acknowledge and embrace
connections between information
Jo[{o=S

Infrastructure

Data
* Develop modular Engineering

terminology-based ontologies (AKA
knowledge graph)

Insights, Risk-Aware Design
* Invest in metadata schema

development. This is how to be Data Science
strategic about how data is used.
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=
Conclusions

* Metadata schema allow strategic
scoping of data campaigns

*There is a plethera of information that
can be captured via uncertainty
information

* Uncertainty metadata can enable a new
generation of risk-informed designs via
optimization under uncertainty

e Let’s continue the conversation! Email
me at juqu@dtu.dk
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Ontology Data Model

More Abstract
More Concrete

Representation of concepts
Automated Processing and relationships.

For Knowledge Engineers Specifying the vocabulary and
and Researchers. terms used. For Data Architects and Developers

Allows Reasoning

Used for modelling, analysis and
For Knowledge Organization and knowledge management. For Data Storage and Retrieval
Reasoning

General N
Specific




Deterministic power production (MW)
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Wind Farm OUU

* Performed OUU for wind plant case
considering uncertainty in speed and
direction

* OUU generally favors lower yaw offsets
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