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ABSTRACT

The general understanding of user behaviour has been often over-
looked in the field of Virtual Reality (VR) and Extended Reality
(XR) at large. In this work, we want to fill this gap by exploring
the relationship between the way in which users navigate in im-
mersive content and the predictability of their trajectories. Inspired
by works from social science, our key assumption is that there are
navigation trajectories that can be accurately predicted, while oth-
ers exhibit eclectic patterns that are more challenging to anticipate.
However, it is not yet clear how to effectively distinguish between
these behaviours. In this context, we conduct an extensive data
analysis across multiple datasets investigating users’ movements in
VR. The ultimate goal is to understand if a specific metric from infor-
mation theory, such as the entropy of trajectory, can be adopted as
a discriminating metric between predictable navigation trajectories
and unpredictable ones. Our findings reveal that users with highly
regular navigation styles tend to exhibit lower entropy, indicating
higher predictability of their movements. Conversely, users with
more diverse navigation patterns show higher entropy and lower
predictability in their trajectories. Answering the question “how
can we distinguish users more predictable than others?” would be
crucial for different purposes in future immersive applications such
as enabling new modalities for live streaming services but also for
the design of more personalised and engaging VR experiences.
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1 INTRODUCTION

Immersive technologies, such as Virtual Reality (VR), are envisioned
to lead the next generation virtual worlds [13]. The objective is to
offer a compelling user experience, going beyond the passive nature
of traditional video and providing higher degrees of immersion and
interaction. In particular, VR technology replaces the real world
with a fully digital environment, typically a 360° or spherical video,
in which people are immersed and feel present. To mimic a real-life
scenario, only a restricted portion of the virtual environment is
displayed based on the viewers’ head movements. This technology
has been available for a number of years and has already found
numerous applications in real-world use cases, including health-
care, entertainment, and education [5, 21, 34]. However, there are
still challenges that need to be overcome. For example, a critical
open problem is the ability to predict users’ navigation trajecto-
ries (i.e., user behaviour) within the virtual space. Being able to
anticipate viewers’ movement is essential to ensure high-quality
content and smooth navigation during the immersive experience.
For instance, in a tile-based adaptive streaming scenario, each user
receives at high quality only tiles that overlap the predicted dis-
played portion of the content [28]. This strategy, while effective
from both a bandwidth and quality perspective, strongly depends
on the performance of the selected prediction algorithm. An erro-
neous estimate would immediately lead to re-transmissions, and
hence, a possible stall or quality reduction effect. While new learn-
ing models have been proposed [3, 12, 14, 16, 24], the data analysis
and exploration have been overlooking, limiting the hypothesis and
understanding of users’ behaviour, which is crucial for enhancing
the prediction process [27, 35].

The analysis of human navigation trajectories in the 3D space is
a multidisciplinary challenge. For example, in social sciences and
transportation research, trajectory analysis plays a significant role
in several applications such as traffic control, route optimisation,
and personalised advertisements but also to prevent the spread of
epidemics [9, 40]. In this context, for many years, a fundamental
research question has been related to the understanding of the pre-
dictability of mobility trajectory. As a pillar solution to this problem,
an entropy-based metric has been proposed, able to capture the
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Figure 1: Comparison of navigation trajectories with different levels of Actual Entropy (AE in the legend). Each row corresponds
to two videos selected from two distinct datasets. In the middle column, the navigation of users is characterised by low entropy
values while high entropy users are given in the right column.

variability of human navigation behaviours, and thus estimate their
predictability [32]. This metric, namely actual entropy, measures
the information carried within a given trajectory, considering both
the visiting rate but also the temporal order of visited areas. The
information captured by the entropy is highly related to the de-
gree of predictability of a variable, with low values of entropy for
highly predictable events [11]. In the context of VR, the entropy
of navigation trajectories has been applied for general behavioural
studies. These preliminary investigations have demonstrated the
superiority of actual entropy in detecting general patterns in navi-
gation compared to heatmaps, primarily due to its consideration of
the temporal order of navigation positions [29]. More in general,
these studies have shown that viewers are typically consistent in
their way of navigating: the areas that most likely will be displayed
by a user do not depend only on the visual characteristic of the
multimedia content but also on the personality, preferences and
past history of the specific viewers [29, 30].

In this paper, we want to move a step further and investigate
the role of entropy in the predictability of navigation trajectories
in the VR domain. Having a holist metric capable to capture in
advance the user behaviour and determining whether the viewers’
navigation trajectory is more predictable could be crucial for the
prediction task at large. For example, such a metric can be used to
recognise outliers during the data preparation or to select the most
suited prediction models based on the users’ profiles. To motivate
our intuition, Figure 1 shows the navigation trajectories for two
different VR videos of users with different behaviours and thus
opposite values of actual entropy (corresponding values of entropy
are provided in the caption of each sub-figure). When individuals
exhibit a highly regular pattern or limited movements, their actual
entropy tends to be small, indicating high predictability in their
navigation trajectories. For instance, users in Figure 1 (b,e) explore
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only a small portion of the content (i.e., central area of the video)
and focus on the first scene/object that they detected. Conversely,
in the same selected videos, certain viewers exhibit a more eclectic
approach to experiencing the VR content, with a tendency to navi-
gate the entire video and not focus on specific areas as shown in
Figure 1 (c,f). This behaviour suggests being more challenging to
predict and more prone to high prediction errors. In this case, the
actual entropy of these users is indeed higher.

To validate our intuition, we explore the correlation between the
entropy of navigation trajectories in VR and their prediction error.
Our analysis is based on several public collections of VR trajecto-
ries (i.e., 7 different datasets). As a predictive tool for navigation
movements, we consider a simple yet powerful publicly available
algorithm, deep-position-only baseline introduced in [24]. By com-
paring the prediction error per trajectory with the corresponding
values of entropy and distinguishing users in two classes of entropy
(i.e, low and high), our results confirm our initial hypothesis. Nav-
igation trajectories characterised by low values of entropy led to
small prediction errors, and thus are easier to be predicted. While
users more eclectic and characterised by high values of entropy
have on average high values of prediction error. Thanks to its ability
to detect discontinuity and randomness in trajectories, the actual
entropy seems a promising tool also in the VR context.

To summarise, the main contributions of this work are the fol-
lowing: (1) conducting an extensive data analysis across a wide
range of VR datasets; (2) exploring novel criteria that leverage an
entropy-based metric to differentiate users based on their naviga-
tion profiles, and (3) examination of the correlation between these
groups of users and their predictability in navigation. Given the
importance of data preparation, augmentation and exploration in
every machine learning task, we believe that current works focused
only on finding the right deep learning architecture to forecast
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users’ trajectories should be paired with a proper data exploration
strategy. Such strategy, including a holistic metric able to capture
key behavioural features, is currently missing in the literature and
this work aims at moving a step forward to fill in this gap.

2 BACKGROUND

The main objective of this study is to conduct an extensive data
analysis across several publicly available VR datasets in order to
understand the relationship between the way in which users navi-
gate within the immersive content and the ability to predict their
trajectory. We aim also to identify a key metric that can be utilised
to improve prediction accuracy and enhance our understanding of
user behaviour in immersive virtual environments. To ensure clarity
and consistency, we introduce the following notation. VR dataset
collects navigation trajectories of a set of user ¢ who displayed a set
of 360° videos V. Viewers are provided by a VR device - typically
a head-mounted display (HMD), that allows changing viewport
according to their viewing direction. Therefore, the sequence of
spatio-temporal points representing over time the user’s viewing di-
rection identifies the navigation within the immersive content [26].
Formally, for a given video v € V of duration T seconds the VR
trajectory of users u € U can be denoted as X}, = [x1,X2,...,XT],
where xt denotes the 3D spatial coordinates of the viewing direction
at time ¢. This direction can be either approximated by the head or
gaze position in the VR settings. This paper focuses on the analysis
of datasets containing head-motion trajectories. Thus in our sce-
nario, X stores the head coordinates which can be represented in
different formats, e.g., Quaternion, Euler angles or Cartesian coordi-
nates. In the case of Cartesian coordinates, x; is equal to the tuple
(6t ¢¢) with 0 < 0 < 27 and 0 < ¢ < 7. To be compliant with most
of the behavioural analysis tools, the spherical content can be also
quantized into N regular block, each one with an assigned ID value
B = [b1, by, .., bN]. Thus, the user trajectory can be also represented
as the temporal sequences of the blocks to which x belongs at time .

In the following, we define key concepts required to understand
the data analysis that we conduct in the next section. First, we
introduce the entropy-based metric (i.e., actual entropy) considered
in our investigations, and how it has been applied until in the VR
context. Then, after a brief overview of the main current solutions
for predicting users’ trajectories in VR, we summarise the predic-
tive model (i.e., deep-position-only baseline) that we selected in our
analysis as a predictive model.

2.1 Entropy in User Navigation Analysis

Information-Theoretic (IT) metrics have been applied to a wide
range of disciplines, becoming a de-facto statistical tool for data
analysis in several fields such as physics, computer science, and neu-
roscience [33]. Specifically, the concept of actual entropy has been
introduced as a metric to quantify the variability or predictability
in human mobility behaviour by Song et al. [32]. Since the informa-
tion captured by the entropy is closely related to the predictability
of a variable, authors exploited this correlation by measuring the
information carried within a given trajectory to estimate the pre-
dictability of human mobility as main novelty they consider both
the visiting rate but also the temporal order of visited areas. More
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formally, the actual entropy can be estimated from the past his-
tory of the user’s trajectory by Lempel-Ziv compression algorithm
[41]. Let X = [x1,X32,...,XT] be a trajectory of positional points
in a discredited space (x; = b; with b € B as introduced at the
beginning of Section 2), and let Ly = [x¢, X¢+1, ... X(s-1)+A,] be a
sub-sequence of X starting at time ¢ and spanning A; time-slots,
the actual entropy assumes the following form:

n -1
H!(X) ~ (l > /1,) log, (n) (1)
=

where A; is the length of the shortest sub-sequence in X starting
at time-slot ¢ and not appearing between time 1 and ¢t — 1. To
be noted, the actual entropy of a given trajectory X is inversely
proportional to the sum of the shortest non-repeated sub-sequences
within it (i.e, X7, As). The original metric proposed in [32] has
been extended to other aspects of human behaviour, including
social interaction [8, 31], modelling the global spread of emerging
diseases [6, 36] but also to the context of behavioural analysis in
VR. Specifically, this metric has been applied to characterise the
navigation of each subject individually looking for patterns over
time and across different contents [29]. Recently, navigation within
more challenging VR system, such as while displaying volumetric
content, has also been studied through this metric to investigate the
consistency of users [30]. Thanks to its versatility and successful
application across diverse domains, we find the entropy of trajectory
to be particularly appealing also for improving the accuracy in the
prediction of VR navigation movements or their classification.

2.2 Navigation Trajectory Forecasting

The prediction of head movements in VR content has been studied
since the beginning of this technology [4]. The first and among the
simplest techniques were based on the past and current trajectory
of a single user by simple linear regression techniques, neglect-
ing other viewers and video content information [1, 22] Thanks
to significant advancements in the field of machine learning and
deep learning, these techniques found also widespread application
in the VR context. For example, clustering approaches have been
applied: a novel viewport prediction algorithm based on a graph-
based clustering defined specifically for immersive content [25] has
been proposed in [19], while authors in [18] presented a hybrid
clustering approach which also takes into account the video content.
Similarly, other deep learning frameworks have been augmented
with the use of saliency maps [20, 24, 38]. Recently, a transformer
method has been proposed as viewport prediction for 360° videos
taking advantage of this novel architecture able to capture long-
term dependencies and hidden patterns in the data [2]. However,
the focus of this work is not to advance the state of the art in pre-
dicting head movement while experiencing VR content. Our goal is
to investigate any existing correlation between the entropy of navi-
gation trajectories in VR with the ability to predict such movements.
Thus, we chose to consider a simple yet robust prediction baseline,
known as the deep-position-only baseline, also thanks to the repro-
ducible resources presented in [24]. Specifically, this is a simple
sequence-to-sequence LSTM-based architecture that disregards the
video content and takes as input only the sequence of past and cur-
rent positions of the users. Authors in [24] have shown the ability



IXR ’23, October 29, 2023, Ottawa, ON, Canada

Silvia Rossi, Laura Toni, & Pablo Cesar

Table 1: Key features of the VR navigation datasets analysed in this work.

length # participants

# training | test

Name Dataset # video
1_MMsys2017_1[7] 5 70s.
2_MMsys2017_2 [17] 10 60s.
3_MMsys2017_3 [371 9 30-45s.
4_CVPR2018 [39] 208 20-60s.
5_MMSys2018 [10] 76 20s.
6_PAMI2018 [38] 19 10-80s.
7 _MM2022 [15] 27 60s.

57 3]2
25 8|2
48 5)4
34 134 |74
58 61115
57 145
100 2116

of this framework to overcome traditional baselines (e.g., copy last
position or linear regression) but also other current start-of-the-art
deep learning architectures, even those with additional inputs such
as meta-data and/or video content information. In the following, we
consider the same setting for the prediction problem as presented
in [24]. Specifically, we start the prediction phase after a window
of 6 seconds to avoid the initial exploration phase typical of VR
viewers. Finally, we set the prediction horizon and past history
window equal to 5 seconds and 1 second, respectively.

3 DATA ANALYSIS

This section describes the set of datasets of VR navigation trajec-
tories on which we based our data analysis. Then, we show the
results of our in-depth data analysis aimed at understanding how
the way to explore video content by users affects their prediction.

3.1 User Navigation Datasets

Our extensive data analysis is based on 7 publicly available datasets
which gather head motion trajectories in 360° videos. Table 1 out-
lines the key information per dataset, which is described in detail
in the following:

e 1_MMsys2017_1 [7]: this dataset collects navigation trajec-
tories of 57 users who navigated within 5 sequences of the
same duration (70 seconds);

e 2_MMsys2017_2 [17]: this collection is composed of 10 videos
with a length of 60 seconds. Originally, the trajectories of 50
participants have been collected but only half of them have
been used in the further experiments of prediction presented
in [12] and in [23];

e 3_MMsys2017_3 [37]: the original dataset is composed of 18
videos displayed by 48 users. However, the first set of content
has been experienced in a free-navigation experiment to
identify the natural behaviour, while the second one is more
specific to capture the user’s attention on the video content
with structured questionnaires. In our study, we consider
only the first group of data;

e 4_CVPR2018 [39]: this collection has the highest number of
VR content, ie., 208, characterised by a variable length rang-
ing from 20 to 60 seconds (36 seconds on average). However,
each video have been displayed only by 34 participants (at
least 31 per each video);

e 5_MMSys2018 [10]: a collection of 57 navigation trajectories
is presented for 19 different content. These videos, however,
are short with a fixed duration of only 20 seconds,
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o 6_PAMI2018 [38]: this dataset is composed of head-motion
trajectories collected by 58 viewers in 76 different VR content.
In this case, the videos have a variable length (i.e., between
10 and 80 seconds, on average of 25 seconds),

e 7_MM2022 [15]: the most recent VR collection is charac-
terised by the highest number of participants (i.e., 100) who
displayed 27 different 360° videos, each of 60 seconds.

These datasets are part of the unified collection presented in [23].
We also include one of the first VR navigation datasets (i.e., 1_MM-
sys2017_1) and the most recent one (i.e., 7_MM2022). In Table 1,
the number of videos included in the training and test sets is also
given. Specifically, for most of the dataset we use the same splitting
as adopted in [24], while for the newly added ones (i.e., 1_MM-
sys2017_1 and 7_MM2022), we build the training set by selecting
uniformly at random 80% of the videos, leaving the remaining 20%
for testing (ensuring to have at least two videos in the test set).
Additionally, there is no overlap between the videos in the train
and test sets.

3.2 Results

As first step of our data analysis, we explore the distribution of
actual entropy for each navigation across the different datasets.
Given that actual entropy ranges from 0 to infinity, to enable a fair
comparison on the same scale, we normalise this metric per each
individual dataset. Figure 2 shows the distributions of normalised
actual entropy per video in all the selected datasets. In each sub-
plot, the mean value of the given distribution is also represented
with a grey dotted line. It can be noted that few datasets, namely
1_MMsys2017_1, 2_MMsys2017_2 and 4_CVPR2018 have a distribu-
tion with an average value very close to or equal to 0.5 represented
in the figure with a black line. The remaining datasets have either
a higher mean value of actual entropy (5_MMSys2018) or smaller
(3_MMsys2017_3, 6_PAMI2018 and 7_MM2022) than 0.5. In the
following, we choose to not aggregate the navigation trajectories
from the different datasets. Instead, we continue our data analysis
by considering each dataset separately. Further investigations are
needed to establish a global normalisation of actual entropy across
all the datasets and we leave them for future works.

The core of our data analysis is to verify if there is any rela-
tionship between the complexity of the navigation trajectories
(measured by the entropy of the trajectory) and their ability to be
predicted. To do so, the actual entropy per user is compared with
the accuracy of their prediction. Since users are typically consis-
tent in their way of navigating within immersive content [29, 30],
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Figure 2: Density distribution of actual entropy per video in all the selected datasets. The entropy is normalised per single
dataset. The black line represent the threshold that will be used in the following while the grey dotted line is the averaged

value across each dataset.

we create two classes of users based on their mean value of ac-
tual entropy in each dataset. To be as generic as possible, we use a
threshold of 0.5 of the normalised actual entropy: users with a mean
value of entropy above 0.5 are considered to belong to the “high en-
tropy” category; while those with an averaged value below 0.5 are
classified as “low entropy” users. In terms of the prediction model,
as introduced in Section 2.2, we use deep-position-only baseline to
predict the navigation trajectories. For evaluating the final predic-
tion, we choose the orthodromic distance as a metric for prediction
error following the evaluation done in [24]. For each video in the
test set, Figure 3 shows the scatterplot between the actual entropy
and average prediction error for the aforementioned categories of
users. The presence of a linear correlation between these variables
is quite evident in all the analysed datasets: when the actual entropy
increases, the averaged prediction error also grows, indicating that
more predictable trajectories have lower entropy. Our initial in-
tuition is therefore confirmed. Similar observations can be done
by looking at the two categories of users. The regression line for
“low entropy” users (i.e., blue line in Figure 3) in most of the case is
below the one for the “high entropy” category (i.e., red line). This
means that the prediction error of users with “high entropy” is on
average higher, indicating that this category is more difficult to be
correctly predicted with high precision. Moreover, in Figure 3 (c)
and (e), the slope of the red line is steeper than the blue one: as the
entropy value increases, the prediction error increases more quickly
for “high entropy” users than for the other group. However, further
investigation are needed since there are exceptions of this general
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behaviour in 2_MMsys2017_2, 4_CVPR2018 and 7_MM2022. In the
latter two cases, the regression lines for the two groups are actually
equivalent both in terms of slope and range of values. To be noted as
reported in Table 1, these two datasets have the highest number of
videos and users, respectively. On the contrary, Figure 3 (b) shows
an opposite trend: the regression line of “high entropy” users is
below the one for the “low entropy” category. In this particular
dataset, we have only two videos in the test set and the lowest
number of navigation trajectories as reported in Table 1. Thus, this
contrasting behaviour could be attributed to the limited amount of
data available for the analysis in 2 MMsys2017_2.

As a final analysis, we go more in detail for two selected con-
tent such as “Diving” from 1_MMsys2017_1 and “Guitar” from
6_PAMI2018. Figure 4 shows per each participant of the datasets
the distribution of their prediction error over time. The box of each
user is coloured according to the belonging class of entropy, and
users are also arranged in ascending order based on their mean
value of actual entropy across the entire dataset, with lower values
on the left and higher on the right side. Finally, the black line rep-
resents the mean value of prediction error across all viewers in the
two selected content. The analysis reveals a distinct pattern and
confirms the previous observations: the prediction error is consis-
tently below the average for users in the “low entropy” category,
while it tends to be above the average for users in the “high entropy”
category. This trend becomes especially apparent in the extreme
cases where participants are characterised by the lowest and highest
values of entropy. However, some outlier behaviour can be detected,
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Figure 3: Scatterplot of the prediction error versus actual entropy per user in each dataset. The entropy is normalised per
dataset. Users are also divided in classes of “low” and “high entropy” based on their mean value of entropy in the entire dataset.

especially for users who fall in between the two defined classes of
entropy. For example, the participant with ID 51 Figure 4 (a) has a
prediction error above the average even if classified in the category
of “low entropy”; on the contrary, user 08 in Figure 4 (b) belongs
to the group of “high entropy” but is predicted with a quite small
error over time. This observation suggests that certain users may
exhibit less consistency in their way of navigating, leading them
to be more static or dynamic depending on the content. Introduc-
ing an additional category of users (i.e., “medium entropy”) could
better capture this inconsistency. However, further investigations
regarding the classification of users based on their entropy will be
explored in future works.

4 CONCLUSION

In this paper, we presented an extensive data analysis across several
publicly available VR datasets in order to understand correlation
between users’ head motion and trajectory predictability. To do so,
we had to identify a key metric that can be utilised to improve pre-
diction accuracy and enhance our understanding of user behaviour
in immersive virtual environments. Our results have confirmed a
consistent correlation between the entropy of VR trajectories and
their prediction error. Individuals who show a highly regular style
of navigating tend to have a low entropy of their trajectory, indicat-
ing thus a more predictable nature in their navigation. On the other
hand, users with a high value of entropy present less predictability
in their movements. However, our findings also highlight some
limitations on the applicability of this entropy-based metric that
needs further investigation. To be a more generic metric, applicable

34

across different VR datasets and capable of generating meaningful
user classes based on their level of entropy, additional research and
refinement are necessary. This will be the focus of our future work.
We will also enhance existing predictive algorithms by incorporat-
ing this metric to improve their performance and unlock the full
potential of entropy-based metrics in immersive technology.
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