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Human motion transfer on 3D avatars has witnessed substantial progress, driven by the advancements of 3D pose estimation using
RGB data. This technology analyzes human movements captured through RGB cameras, enabling tracking of 3D body landmarks and
leading to the animation of 3D avatars. Utilizing RGB input offers a range of advantages, democratizing avatar creation by eliminating
the need for specialized equipment, such as sensors, markers, or specialized studios. Recent years have seen remarkable strides in this
field, leveraging deep learning models and sophisticated computer vision algorithms to capture intricate movements and gestures
from RGB video footage. This study introduces a novel real-time approach leveraging RGB input to generate realistic 3D animations. It
comprises three phases: i) 3D human pose estimation using MediaPipe, ii) correction of MediaPipe’s landmarks’ inaccuracies, especially
regarding depth dimension, and incorporation of bones’ rotation information, and, finally, iii) transfer of the motion to the target 3D
avatar.
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1 INTRODUCTION

3D human body pose estimation is the process of determining the three-dimensional (3D) configuration of a person’s
body from input data such as images or videos. It involves identifying key body joints or landmarks and estimating
their positions and orientations in 3D space. The goal is to accurately reconstruct the pose of the human body, including
the positions and orientations of body parts such as the head, torso, arms, and legs, in 3D coordinates. Because of its
extensive applications across various domains, including motion capture for animation and gaming, human-computer
interaction, healthcare, sports biomechanics, robotics, surveillance and security, try-on and fashion, and various VR
and AR applications, 3D human pose estimation has garnered significant interest in the computer vision field.

Camera-based 3D human pose estimation holds paramount significance for Virtual Reality (VR) and Augmented
Reality (AR) applications as it easily enables the capturing and interpretation of human movements in real-time. In VR
environments, where users interact with virtual worlds through immersive experiences, accurate pose estimation is
crucial for enabling natural and intuitive interactions. By tracking the movements of users’ bodies, VR systems can
render realistic avatars and objects that respond dynamically to users’ actions, enhancing the sense of presence and
immersion. Similarly, in AR applications, where virtual elements are overlaid onto the real world, precise pose estimation
enables seamless integration of virtual objects into the user’s environment, facilitating interactive experiences such
as virtual try-on, gaming, and educational simulations. Moreover, camera-based pose estimation can be leveraged
in healthcare, sports training, and motion analysis, offering valuable insights into human movement patterns and
facilitating personalized coaching and rehabilitation programs. Overall, the accurate and real-time estimation of 3D
human poses using camera-based techniques is pivotal for unlocking the full potential of VR and AR technologies,
enabling immersive, interactive, and engaging experiences across various domains.
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Recent advances in 3D human body pose estimation technology help us move a step forward towards accurate
real-time transfer of human motion to an immersive environment using a single camera. Deep learning methods,
particularly Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), have significantly enhanced
accuracy and robustness in pose estimation tasks. Multi-view fusion techniques have also played a crucial role by
integrating information from multiple camera viewpoints to improve performance, especially in challenging scenarios.
Attention mechanisms have further refined these models by enabling them to focus on relevant features or body parts,
particularly useful in crowded scenes or complex poses. Additionally, self-supervised learning approaches and generative
models have expanded the capabilities of pose estimation systems, allowing for better utilization of unlabeled data and
generating realistic and diverse 3D human poses. Finally, efforts to optimize algorithms for real-time performance have
made these systems more practical for applications in live streaming, Virtual Reality (VR), and Augmented Reality (AR)
environments.

Challenges in 3D human body pose estimation persist despite recent advancements. One significant hurdle is the
inherent complexity of human body articulation, which includes a wide range of movements and poses. Ambiguities
in pose interpretation, such as occlusions and self-occlusions, pose challenges for accurate estimation, particularly in
cluttered environments. Limited availability of in-the-wild annotated datasets, especially for diverse populations and
activities, hinders the training of robust models, leading to uncertainties in depth perception and unrealistic human
poses. Furthermore, issues related to real-time performance, including computational efficiency and latency, remain
areas of concern, particularly for applications requiring rapid processing. Additionally, ensuring generalization across
various body shapes, sizes, and clothing types presents a persistent challenge for pose estimation algorithms.

In this study, our focus lies on real-time human movement transfer from monocular RGB input to a target 3D avatar
within an immersive environment, using 3D human pose estimation technology. More specifically, we want to enable
real-time 3D avatar animation in a Unity1 environment using a single RGB camera with the ultimate aim to develop an
eXtended Reality (XR) application for rehabilitation purposes. To achieve our goal, initially, we employ MediaPipe’s
3D pose estimation algorithm2 to extract human body landmarks’ coordinates in 3D space. However, inaccuracies in
the estimated depth information often degrade the quality of the final result. Moreover, the MediaPipe algorithm’s
output lacks bone longitudinal rotation insights, occasionally resulting in unrealistic human poses. Consequently, when
employing the original MediaPipe output, we may encounter unrealistic human motions within the Unity environment,
particularly in scenarios where the viewpoint is suboptimal or the pose is particularly challenging.

To tackle the challenges outlined above, we propose two intermediary steps between the landmark extraction and the
final step of motion transfer to the target 3D avatar. These two steps aim to: i) address MediaPipe’s output’s inaccuracies,
particularly for the estimation of the depth dimension, and ii) enrich MediaPipe’s output with bones’ longitudinal
rotation information. Our approach consists of two sequential fully connected deep neural networks: the Landmarks’
Correction Network and the Bones’ Rotation Information Enrichment Network. The Landmarks’ Correction Network
receives MediaPipe’s output (including the 3D coordinates of body landmarks) as its input and output a corrected
version of their 3D coordinates. Subsequently, the Bones’ Rotation Information Enrichment Network takes the corrected
MediaPipe output as its input and extracts an enhanced version of the corrected MediaPipe’s output, which incorporates
bones’ rotation information. Both deep neural networks were trained using the ground-truth data from the TotalCapture
dataset [20], which we augmented with bones’ longitudinal rotation information specifically for training the Bones’
Rotation Information Enrichment Network. In this manuscript, we begin by outlining the challenges we encountered

1https://unity.com/
2https://developers.google.com/mediapipe/solutions/vision/pose_landmarker
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and then detail all the steps of the development of our proposed system aiming to enhance MediaPipe’s 3D human
pose estimation output and adapt it to real-time 3D avatar animation needs. We present our methodology, describing
the architecture and training configuration of our two deep neural networks, along with the process that we followed
to generate an enhanced version of TotalCapture’s ground-truth to be used for the training of our Bones’ Rotation
Information Enrichment Network and the procedure of mapping the final estimations of 3D body landmarks onto the
target 3D avatar. Additionally, we present the results of our final evaluation, which encompasses both pose estimation
accuracy and inference performance. Our proposed Landmarks’ Correction Network effectively reduced the Mean
Per Joint Position Error (MPJPE) by 3.5 cm, achieving a notable improvement from 7.4 cm to 3.9 cm compared to the
original MediaPipe output.

The rest of this paper is organized as follows. In section 2, we briefly present the most prominent related works in
the field of 3D human body pose estimation divided into specific categories. Section 3 describes in detail the three steps
of our proposed approach. Then, in section 4, the training details of our networks, as well as the experimental results
are provided. Finally, we conclude our paper with section 5, where we discuss the main outcomes and refer to our
future steps to further improve our work.

2 RELATEDWORK

Until recently, motion capture technology was the most common method used to transfer the movement of a human
to a target 3D avatar. This technology involved recording the movements of actors using special suits equipped with
markers or complex sensors, which were then translated onto 3D avatars [2]. While this motion capture technology
offers more realistic animations, it is expensive and often requires specialized equipment and facilities. With the recent
advances in computer vision and artificial intelligence (AI), RGB-based human 3D pose estimation has significantly
advanced animation making by providing cost-effective, flexible, and real-time solutions for capturing human motion.
These methods leverage affordable RGB cameras, allowing motion capture in diverse environments without the need
for specialized equipment. Moreover, their non-intrusive nature eliminates the requirement for physical markers on
subjects, enhancing comfort during capture sessions. Providing this widespread accessibility, RGB-based methods
democratize motion capture technology, empowering animators of all skill levels to create realistic animations efficiently.
In this section, we present a brief overview of relevant studies in the domain of human 3D pose estimation from RGB
video input. The related work is divided into 3D human pose estimation skeleton-only methods and human mesh
recovery methods. The differences between the two categories are clarified in the following subsections. In addition,
we provide a brief overview of related research works that are focused on refining the output of MediaPipe’s 3D pose
estimation algorithm, similar to our approach, or enriching the estimated 3D poses with supplementary information to
improve the final data for motion transfer to the 3D avatar.

2.1 Skeleton-only methods

3D human pose estimation skeleton-only methods focus solely on estimating the positions of skeletal joints without
considering the surface geometry of the human body. These methods typically output a simplified representation of the
human body as a skeletal structure.

VNect [11] is a single-person 3D pose estimator that runs in real-time. It consists of a Convolutional Neural Network
(CNN) part that regresses 2D and 3D joints on images, and a skeleton fitting part that combines the 2D-3D predictions
with the temporal history of the sequence to produce a temporally stable, camera-relative, full 3D skeletal pose. To ensure
skeletal stability (e.g. fixed-size bones), during the skeleton fitting process, the regressed 3D joints are converted into
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joint angles while keeping only the 3D position of the root joint (hips). XNect [10] is a more advanced version of VNect
that supports multi-person 3D pose estimation. Another method is PhysCap [18] that introduces physics constraints in
the process of 3D pose estimation. It uses VNect as a backbone to get 3D skeleton joints from images and then passes
them through a physics-based pose optimizer in order to output a physically plausible and temporally stable human
motion without deformations like floor penetrations or foot skating. To achieve that, it also utilizes a trained neural
network to detect foot contact events on images. In contrast to previous methods, Single-Shot Multi-Person Absolute
3D Pose Estimation (SMAP) [24] employs a different approach by initially regressing a series of 2.5D representations of
body parts. Subsequently, it reconstructs the 3D absolute poses based on these 2.5D representations using a depth-aware
part association algorithm. This single-shot bottom-up strategy enables the system to enhance its understanding and
reasoning regarding inter-person depth relationships, thereby enhancing both 3D and 2D pose estimation from a single
RGB image. In MotioNet [17] a deep neural network with embedded kinematic priors is used to decompose sequences
of 2D joint positions into two separate attributes: a symmetric skeleton and a sequence of 3D joint rotations associated
with global root position and foot contact labels. These attributes are fed into a Forward Kinematics (FK) layer that
outputs 3D positions. In [21] a single-person 3D pose estimation model named Pose Estimation using TRansformer
(PETR) is proposed, which uses a High-Resolution Net (HRNet) [19] to estimate 2D joints on images and then passes
those joints through a transformer encoder network combined with a fully connected layer and outputs the final 3D
pose. In the same work, a second model, named Pose Estimation on Bone Rotation using Transformer (PEBRT), is
presented. PEBRT follows a similar architecture to PETR, but instead of 3D positions, it predicts the rotation matrices
for each bone using a 2D pose as input. The rotation matrices are applied to a T-pose skeleton model to get the final
3D pose. No temporal information or receptive fields are required to generate kinematically realistic human poses. In
MocapNet [12] they use 2D joints as input, while the output is a BVH (BioVision Hierarchical data) animation file. The
2D joints are first splitted into groups (lower body, upper body and hands) and used to form the enhanced Normalized
Signed Rotation Matrices (eNSRM), which encode a relation between each pair of the joints. Both the matrices and the
2D joints are fed into a neural network ensemble and the outputs of the networks are further refined using Hierarchical
Coordinate Descent (HCD). Furthermore, in Ray3D [23] they propose a lifting method to map 2D human pose keypoints
to 3D. To eliminate the impact of camera parameters variations the 2D keypoints are converted into 3D rays firstly in
Camera Coordinate System (CCS) and then in Normalized Coordinate System (NCS). Subsequently, they are fed to
pose estimation network and trajectory network to predict the final 3D pose. With unnormalization, the 3D pose under
world coordinate system is obtained. By conducting experiments on four benchmarks they show that their method
significantly outperforms existing state-of-the-art models.

Google has also developed a 3D human pose estimator that is integrated into its open-source, cross-platform
framework, called MediaPipe3. MediaPipe enables building on-device machine learning algorithms to analyze arbitrary
data such as video, audio and text. Its main advantage is the ready-to-use solutions it offers on many machine learning
tasks. These solutions are light enough to run on any device and in real-time (either on CPU or GPU). Concerning the
3D human pose estimation, MediaPipe offers the Pose Landmark Detection solution 4, which is based on the BlazePose
[1] method. BlazePose is a lightweight CNN architecture tailored for real-time human pose estimation on mobile devices.
During inference, the network generates 33 body keypoints for a single person and runs at over 30 frames per second on
a Pixel 2 phone. This rapid performance makes it well-suited for demanding real-time use applications, such as fitness
tracking and sign language recognition. Notable contributions of BlazePose include an innovative body pose tracking

3https://developers.google.com/mediapipe
4https://developers.google.com/mediapipe/solutions/vision/pose_landmarker
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solution and a lightweight body pose estimation neural network that combines heatmaps and regression techniques to
estimate the keypoints’ coordinates while ensuring computational efficiency. The variant of BlazePose model integrated
into the MediaPipe framework utilises GHUM [22], a 3D human shape modeling pipeline, to estimate the complete 3D
body pose of an individual from images or videos. Additional insights into the MediaPipe 3D human pose estimation
algorithm are provided in Subsection 3.2, as we utilize this algorithm within the framework of the proposed method
outlined in this paper.

2.2 Human mesh recovery methods

Human mesh recovery methods aim to reconstruct the complete 3D surface geometry of the human body, including the
skin or clothing. These methods generate a detailed mesh representation that captures the shape and appearance of the
human body in three dimensions, often incorporating finer details such as clothing folds and surface textures.

Video Inference for Body Pose and Shape Estimation (VIBE) [6] estimates both body pose and shape using RGB
video input. Its output is a sequence of pose and shape parameters in the SMPL [8] body model format. This work
introduces a recurrent architecture that propagates information over time. It proposes a discriminative training of
motion sequences using the AMASS dataset [9] and a self-attention mechanism in the discriminator so that it learns to
focus on the important temporal structure of human motion, as well as a new motion prior (MPoser) from AMASS.
The result generated by VIBE can easily be converted into 3D avatar animation files; however, the resulting avatar
remains stationary at the axes’ origin and lacks dynamic movement within the 3D environment. Human Motion Model
for Robust Estimation of temporal pose and shape (HuMoR) [13] introduces an expressive generative model, employing
a conditional variational autoencoder, to capture pose changes throughout motion sequences. Additionally, it presents
a versatile optimization method, utilizing HuMoR as a motion prior, to effectively estimate feasible pose and shape
from uncertain inputs. Extensive assessments confirm the model’s ability to generalize across various motions and
body types, following training on extensive motion capture data. Moreover, it facilitates motion reconstruction from
diverse input modalities, such as 3D keypoints and RGB(-D) videos. This method, though, cannot be used for real-time
applications as it requires multiple iterations. Furthermore, [3] introduces Pose2Mesh, which is a system based on
graph convolutional neural networks (GraphCNN) that directly estimates the 3D coordinates of human mesh vertices
from the 2D human pose. Utilizing the 2D human pose as input offers essential human body articulation information,
while maintaining relatively uniform geometric properties between the two domains. Moreover, the proposed system
overcomes representation challenges by effectively leveraging mesh topology through a GraphCNN in a coarse-to-fine
fashion.

2.3 Refinement methods for 3D pose estimation outputs

As our research revolves around the utilization and refinement of the MediaPipe 3D pose estimation algorithm, it is
pertinent to acknowledge prior efforts that have also focused on improving the accuracy and effectiveness of MediaPipe’s
output.

In contrast to other technical solutions, Google’s Mediapipe stands out as a leading framework for 3D human body
recognition. Nonetheless, despite its maturity, Mediapipe still exhibits several shortcomings in accurately detecting 3D
human posture. In [7], the authors address the issue of inaccurate human pose detection by MediaPipe’s algorithm
by employing several strategies. Firstly, they enhance the accuracy of 2D human pose detection by applying a speed
threshold correction method to each joint. Secondly, to rectify inaccuracies in the depth (Z value) captured by monocular
cameras, they statistically correct the Z value of joint points based on human tilt angles. Additionally, they normalize the
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simulated proportions of each body limb to accurately correct the Z value of human pose under varying body postures.
Finally, to mitigate jitter, lag, and periodic noise in multiple frames caused by changes in joint speed, the authors
apply one euro filtering and mean filtering to the joint data. Through extensive testing on individuals of different
heights, weights, ages, and genders, their study confirms that the improved Mediapipe achieves a 3D human pose
detection accuracy of over 90% in multi-pose recognition tests. However, the aforementioned study does not support
real-time applications. Additionally, the authors of [4] endeavor to conduct an initial evaluation of the accuracy and
suitability of the MediaPipe library for applications such as physical therapy. Their findings reveal that pose estimation
accuracy is strongly influenced by factors such as the camera’s viewing angle and the specific exercise being performed.
While optimal conditions yield high accuracy, the performance diminishes significantly under less favorable conditions.
Moreover, in [16], the authors propose an intensive feature consistency (IFC) network, which refines Mediapipe’s 2D
landmarks to generate an accurate and stable skeleton. The IFC network utilizes a global body intensity module, which
tracks the body position in the frame, and a local joint part adjustment module which ensures the joints’ location
distribution to be concentrated. The method reduces the impact of body joint movement diversity by interpreting
long-term consistent view. The network was tested on two benchmark datasets and has shown an improvement of
99.1% of Percentage of Correct Key-points (PCK) body and 94.7% of PCK torso accuracy under 31 frames per second
(FPS) on a CPU. The method is well-suited for fitness applications and mobility activities.

2.4 Longitudinal rotations estimation methods

Although commonly used in human pose estimation methods, minimal stick figure representations, as the one shown in
Figure 3, do not provide the needed kinematic information to compute the six degrees-of-freedom (DoF) of each bone in
space. Each ‘stick’ is defined only by two points however, at least three non-collinear points are required to fully define
the orientation of the local reference frame of a body segment [14]. In this section, we provide a brief overview of some
scientific papers that aim to tackle this problem by enriching the stick figures’ representations with extra information
to include the longitudinal bones’ rotations.

STONES [5] is such an example, that presents an innovative machine learning technique designed to estimate those
rotations from a minimal set of body points. This approach utilizes a recurrent deep neural network, which takes
3D joint positions from a simplified stick figure representation, typical of data obtained from conventional depth
camera sensors, and accurately predicts longitudinal segment rotations. Validation of this method was conducted in
an exergaming context, including activities like lunges, squats, and kicks, which are increasingly prevalent in various
healthcare domains. Estimations demonstrated an accuracy exceeding 98% with mean errors of approximately 1 degree.
Notably, this deep learning approach outperforms other machine learning strategies and achieves accuracy levels
comparable to state-of-the-art motion capture systems while maintaining real-time processing speeds. Moreover, in
Motion Envelopes (ME) [14] they use a geometric method that generates a surface based on the line segment defined by
two points that compose a body segment, obtained by linear interpolation of the trajectories traced through time. By
computing the normal vector to this surface, it is then possible to determine a third vector perpendicular by applying a
cross-product between the previous ones and, therefore, to estimate the 3D orientation of the local reference frame
of the segment. The proposed ME method enabled the estimation of the segments orientation of a stick figure model
during gait movements for lower limbs and upper arms.
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Fig. 1. The pipeline of our proposed approach.

3 THE PROPOSED APPROACH

In this section, we provide a detailed description of our proposed approach for capturing human motion from a
conventional RGB video and transferring it onto a target 3D avatar within an immersive environment.

As we mentioned before, our aim is to enable real-time translation of human body motion from RGB input to a
3D avatar. To achieve this goal, we devised a system comprising three principal phases: i) 3D human pose estimation,
ii) correction of MediaPipe’s landmarks’ inaccuracies, especially at the depth dimension, and incorporation of bones’
rotation information, and iii) transfer of the motion to the target 3D avatar. In Figure 1 there is a simplified diagram of
the proposed system’s pipeline. This section begins with an overview of the TotalCapture dataset that we employed
throughout our method’s implementation. Then we analyze each one of the three phases of the proposed system,
providing a comprehensive overview of our methodology in the subsequent subsections.

3.1 The TotalCapture Dataset

Throughout the implementation of our proposed system, we utilized the TotalCapture dataset [20], which employs 8
calibrated, static full HD RGB cameras along with 13 Inertial Measurement Units (IMUs) positioned on different body
parts. Captured in an indoors environment within a 4x6 meter volume, the dataset offers synchronized video, IMU data,
and Vicon5 labeling, totaling ≈ 1.9 million frames across multiple subjects, activities, and viewpoints. Ground-truth
poses provide 21 pixel-accurate 3D joint positions and angles derived from the Vicon marker-based motion capture
system, ensuring reliable ground-truth labeling. This dataset comprises 4 male and 1 female subjects, each performing 5
diverse activities repeated 3 times —Walking, Acting, Running, Freestyle and range of motion sequences (ROM)— and
presents challenging scenarios including yoga, giving directions, bending over, and crawling. For our study, we solely
utilized the camera and ground-truth data. The ground-truth is provided in CSV and BVH file formats. The CSV files
contain 21 3D joint positions in global coordinates. The BVH files contain 27 3D joint positions in global coordinates
and, also, contain the rotation of the joints. In our work, we use the data provided in the BVH files, as the bones’
rotation information is important for our final resutls. Figure 2 shows some video frame examples that come from the
TotalCapture dataset. The examples depict some poses that subject 1 performs during walking, acting and freestyle
activities captured from camera 1. In Figure 3 we can see the 27 3D joints provided in the BVH ground-truth files.

3.2 Step 1: 3D Pose Estimation using MediaPipe

In the context of our work, we employed MediaPipe’s 3D body landmark detection algorithm, which extracts human’s
3D body joints in real-time given an RGB input. The MediaPipe Pose Landmarker is designed to identify human body

5https://www.vicon.com/
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Fig. 2. TotalCapture video frame examples.

Fig. 3. The skeleton of TotalCapture BVH ground-truth files.

landmarks within images or videos, facilitating the analysis of posture and movement categorization. Leveraging
Machine Learning (ML) models, it operates effectively with both single images and video sequences, providing body
pose landmarks in both image coordinates and 3D world coordinates. Specifically, this algorithm employs a multi-stage
approach to predict pose landmarks. Initially, a pose detection model identifies human bodies within the input image or
video frame, while a subsequent pose landmarker model yields estimates for 33 3D body pose landmarks. These 33
body landmarks are shown in Figure 4.

For the pose estimation process Mediapipe uses the BlazePose model. BlazePose is a lightweight Convolutional Neural
Network (CNN) which has an architecture similar to MobileNetV2 [15], specifically tailored for real-time on-device
fitness applications. BlazePose [1] integrates GHUM [22], a 3D human shape modeling pipeline, facilitating the precise
estimation of an individual’s complete 3D body pose from images or videos. The 33 output landmarks are represented
either as 3D normalized coordinates in image space or 3D world coordinates in camera space. As far as the normalized
coordinates, the x and y values range from 0.0 to 1.0 relative to the video frame’s width and height, respectively. The z
coordinate, denoting the landmark’s depth, is measured from the midpoint of the hips which serves as a reference point
and the smaller the value the closer the landmark is to the camera. The magnitude of z uses roughly the same scale as x.
On the other hand, the x, y and z values of the world coordinates are measured relative to the hips and they are in meters.
The visibility parameter for each body landmark, ranging from 0.0 to 1.0, indicates the likelihood of the landmark being
visible and unobscured in the video frame. For estimating 3D body landmarks, the MediaPipe framework provides three
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Fig. 4. The 33 body landmarks detected by MediaPipe’s 3D Pose Landmarker.

Fig. 5. MediaPipe results on TotalCapture video frame examples.

models with varying complexities (0, 1, or 2), where reduced complexity leads to faster execution but lower estimation
accuracy. In our work, we used the model with complexity 1, to keep the balance between estimation accuracy and
real-time performance.

3.2.1 Challenges of MediaPipe’s 3D Pose Estimator. Though the efficiency gains in inference time offered by MediaPipe’s
3D pose estimation algorithm are undeniable, only a few studies have been conducted concerning its qualitative
evaluation. As mentioned in [4], MediaPipe’s pose estimation is highly dependent on the camera’s viewing angle as well
as the performed exercise. Through our research, we found that specific limitations persist in accurately determining
the depth of each body landmark in certain situations. In Figure 6 we provide an example, where we estimate a pose
from a TotalCapture’s video frame using MediaPipe’s algorithm. The blue dots represent the estimated MediaPipe
body landmarks, whereas the red ones are those from the TotalCapture ground-truth data. When examining these 3D
points from a frontal perspective, it looks that MediaPipe’s estimations closely resemble those of the ground-truth.
However, when viewed from the side, it becomes evident that MediaPipe inaccurately estimates depth (depicted by the
blue dots). Additionally, MediaPipe lacks any information regarding bones’ longitudinal rotation, as it solely outputs 3D
points. These inaccuracies and deficiencies pose challenges when transferring the estimated poses to a target 3D avatar,
resulting in unrealistic human movements.
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Table 1. Correspondance of landmark indices between MediaPipe and TotalCapture skeletons

Mediapipe 11 12 13 14 15 16 17 18 19 20 23 24 25 26 27 28 31 32
TotalCapture BVH 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26

Fig. 6. Example of MediaPipe’s inaccurate depth estimation. Blue dots represent the estimated 3D points of Mediapipe, while red
dots are the 3D points provided by the TotalCapture ground-truth.

The main focus of this work is to eliminate the depth inaccuracies and enhance the corrected MediaPipe’s results
with bones’ rotation information using Deep Learning (DL).

3.3 Step 2: Enhancement of MediaPipe’s Results

As we already mentioned, the purpose of our proposed method is twofold. Firstly, to eliminate MediaPipe’s pose
estimation errors primarily on depth estimation. Secondly, to enrich MediaPipe’s output with extra information so as to
include the longitudinal bones’ rotations. To achieve both of our goals, we trained two different neural networks, which
we describe in the following subsections.

3.3.1 Landmarks’ Correction Network. For the automatic correction of the MediaPipe output’s inaccuracies, we trained
a fully connected neural network that takes the MediaPipe’s world landmarks (x, y, z and visibility) as input and
returns the corrected joint’s positions (x, y, z). As ground-truth, we use the TotalCapture data provided in the BVH files.
However, as you can see in Figures 4 (MediaPipe skeleton structure) and 10 (TotalCapture’s BVH skeleton structure), the
TotalCapture’s skeleton structure is different from MediaPipe’s and for that reason, for the training of our network we
used only the joints that are common in both skeletons. In total, we selected 18 joints. Table 1 shows the correspondence
between the indices of the MediaPipe 3D joints and the TotalCapture’s 3D joints provided in the BVH ground-truth
files. The BVH joints are converted in hips-based format (see Section 3.4 for details). The network consists of 4 dense
layers that make proper data transformations. In Figure 7 we can see the architecture of our proposed Landmarks’
Correction Network, as well as the inaccurate 3D joint points estimated by MediaPipe that we feed the network with
and the corrected output. The input layer of the network has 72 nodes to get 18 Mediapipe’s landmarks with 4 values (x,
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Fig. 7. Landmarks’ correction network architecture.

Table 2. The axes used for the bones’ vertical vectors

BVH Joints 8 9 14 15 19 20 23 24
Axis x x -x -x z z z z

Fig. 8. Example of longitudinal rotation of upper limb in Unity environment.

y, z and visibility) each (18 x 4 = 72). However, the output size is 54 (18 x 3 = 54) as we only calculate the corrected
landmarks’ positions.

3.3.2 Bones’ Rotation Information Enrichment Network. Given two joint 3D positions, we can calculate the intermediate
bone’s direction. The longitudinal rotation of the bone can be described either as an angle or a vector orthogonal to
the bone’s direction (see Figure 8). In our method, we use the vector representation as it was more convenient for the
avatar mapping process. We calculated these vectors only for the bones of the upper and lower limbs. For the torso area,
the longitudinal rotation of the spine can be calculated using the shoulder and hips joints without the need of extra
information. As starting points of the vectors we used the starting points of the corresponding bones. The ending points
of the vectors were chosen on an axis vertical to the bones’ direction. However, each bone has two axes orthogonal
to its direction (see Figure 10), so we choose one of them. In table 2 you can see the axis used for each BVH joint. In
total, we calculated 8 ending points, one for each orthogonal vector. Then, we trained a fully connected neural network
to estimate those points (the ending points of the bones’ orthogonal vectors) using the 18 BVH joints. In Figure 9 we
can see the architecture of our proposed Bones’ Rotation Information Enrichment Network, which consists of 4 dense
layers.
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Fig. 9. Bones’ rotation information enrichment network architecture.

3.4 Step 3: Transfer of Human Movement to Target 3D Avatar

The main idea on mapping the human pose from a video to an avatar is to determine the avatars’ bones orientation
based on the detected 3D landmarks. The reason we cannot use the detected landmarks’ positions as starting and
ending points for the avatar’s bones is that the skeleton generated from Mediapipe is not consistent. That means a bone
e.g. of the left arm may be larger than the corresponding bone in the right arm or a bone may have different size in
consecutive frames of the video. Moreover, the skeleton structure of the avatar may be different from the Mediapipe
skeleton (see Figures 4 and 11). Thus, the only way to transfer the movement is to calculate the directional vectors of
the bones from the Mediapipe skeleton and apply them to the corresponding bones of the avatar.

Our implementation of this process was based on the DigiHuman project 6. However, in DigiHuman the creators use
the Mediapipe world landmarks without applying any correction method, rather than a scaling and they are not dealing
with the longitudinal rotations. That is the reason why, in some cases, the avatars show deformities and the bones
are moving unnaturally. For our experiments, we use avatars provided by Mixamo 7, which is an open 3D character
animation and rigging platform. As shown in Figure 4, the Mediapipe skeleton has no landmarks in the spine area,
whereas the avatar has (see Figure 11). To ease the mapping process we extend the Mediapipe landmarks by adding
three more (hips, spine and neck). The extra landmarks are calculated using the shoulders and upper legs positions
(Mediapipe landmarks 11, 12, 23 and 24) and they are added after the depth correction process.

Before the mapping process, the first step is to calculate the initial state of the avatar’s bones i.e. to define their lengths
and their initial orientations. This step is crucial because, as we proceed, the poses from the Mediapipe landmarks
will be applied on top of that initial state. In the mapping process, we firstly calculate the torso orientation using the
shoulders’ landmarks, the upper legs and the 3 extra landmarks we added in the Mediapipe set (hips, spine, neck). Then,
we calculate the orientation of each bone in the avatar using the corresponding set of landmarks in the Mediapipe
skeleton. The avatar’s joints follow a parental structure (e.g. the elbow is the parent joint of the wrist). To find the
position of a child joint in the avatar we use the parent’s joint position, the directional vector of the intermediate bone
and the bone’s length.

For the upper and lower limbs, we use the vertical points to calculate the longitudinal rotations. The Unity provides
the LookRotation function, inside the Quaternion package, which takes two vectors, orthogonal to each other, as inputs
and outputs the orientation they form as a quaternion. In our case, we use the bones’ directional and orthogonal vectors
6https://github.com/Danial-Kord/DigiHuman
7https://www.mixamo.com/

https://github.com/Danial-Kord/DigiHuman
https://www.mixamo.com/
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to calculate the bones’ orientations. The use of quaternios is preferable in order to eliminate the problem of gimbal lock
that is appeared when using euler angles.

As we mentioned earlier, the Mediapipe landmarks are not always stable between consecutive frames. Due to light
changes in the video and the fact that Mediapipe follows a per frame approach on pose estimation, there are small
changes of the landmarks’ positions that lead to poor results on the avatar movement. To reduce this jittering effect,
before the mapping process, we pass the landmarks through a low pass filter. This process combines the landmarks’
positions from the six last frames using a different weight for each frame in order to smooth the result and reduce
unwanted changes.

4 EXPERIMENTS AND RESULTS

In order to train our deep neural network so that it corrects MediaPipe’s depth estimation inaccuracies and enriches
its output with bones’ rotation information, we created an enhanced TotalCapture ground-truth, which contains the
bones’ rotation information. Below, we describe the process of this enhanced ground-truth, we provide details about
the training of our proposed network and, finally, we present our experimental results.

4.1 Enhanced TotalCapture Dataset

The 3D joints provided in the TotalCapture dataset are in global coordinates, while the Mediapipe world landmarks are
in hips-based format. Thus, we had to convert the TotalCapture joints into hips-based representation. As hip position,
we used the middle point between the upper right and upper left leg joints (joints 19 and 23), instead of the original
hip (joint 0) that is provided in the dataset, in order to follow Mediapipe’s format. Another issue is that the BVH files
contain animated skeletons where each joint’s position is described with respect to its parent joint, based on the parental
hierarchy of the skeleton. In order to manipulate the BVH data and extract the joints we used the Blender Python API
(bpy) 8. Using the same library we calculated the 3d points to form the orthogonal vectors of the upper and lower limbs
(see Sec. 3.3.2 for details). Lastly, we had to process the TotalCapture’s videos, with Mediapipe, to extract the world
landmarks for each frame. We selected only the frames in which the person is fully visible and their body is entirely
inside the frame in order for the Mediapipe’s result to be more accurate. We use the MediaPipe model with complexity
level of 1, which achieves good results in terms of both performance and accuracy. For our experiments we only use the
first camera (cam1), however, we intend to add more cameras in future works. Subjects 1,2,3 and 4 of the TotalCapture
dataset were used for training, while subject 5 was used only for the testing of our models.

4.2 Networks’ Training Configuration

Some details on the configuration we used for the training of our two neural networks are presented below. Our code
was implemented in Python and for the training of our deep neural networks we used Keras with Tensorflow as backend.

Landmarks’ correction network:We employed the Adam optimizer and utilized the Mean Per Joint Position Error
(MPJPE) as our loss function during training. The network underwent training for 17 epochs. Our dataset, comprising
subjects 1 to 4 from the TotalCapture dataset, was divided into 90% for training and 10% for validation purposes.

Bones’ orientation information enrichment network: For the training of this network, again, we utilized the
Adam optimizer and adopted the Mean Per Joint Position Error (MPJPE) as our loss function. The training was conducted

8https://docs.blender.org/api/current/index.html

https://docs.blender.org/api/current/index.html
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Fig. 10. BVH skeleton with joints’ local axis. Fig. 11. Mixamo avatar’s bone structure.

Table 3. Evaluation Results in MPJPE (cm)

Data MPJPE (cm)

Original MediaPipe output 7.4
Corrected MediaPipe output 3.9

over 15 epochs. The dataset, which included subjects 1 to 4 from the TotalCapture dataset, was partitioned into 90% for
training and 10% for validation.

4.3 Experimental Results

For the evaluation of our results, we used the mean per joint position error (MPJPE) metric in centimeters (cm). This
metric calculates the average Euclidean distance between the estimated joint coordinates and the corresponding ground
truth coordinates across all joints.

𝑀𝑃𝐽𝑃𝐸 (𝑥, 𝑥) = 1
𝑁

𝑁∑︁
𝑖=1

∥𝑚𝑥 (𝑖) −𝑚𝑥 (𝑖)∥ (1)

where N represents the number of processed joints,𝑚𝑥 (𝑖) is the estimated i-th joint coordinates and𝑚𝑥 (𝑖) is the
corresponding ground truth position of the i-th joint.

For the evaluation of our results, we analyzed the camera 1 videos of subject 5 from the TotalCapture dataset, as
the rest of the subjects (1-4) were used for the training of our networks. Initially, we computed the Mean Per Joint
Position Error (MPJPE) between the original MediaPipe’s landmark 3D coordinates and the TotalCapture ground-truth,
resulting in an MPJPE of 7.4 cm. Subsequently, employing the corrected MediaPipe results obtained from the depth
correction network, we recalculated the MPJPE against the TotalCapture ground-truth. Remarkably, our proposed
network successfully reduced the MPJPE to 3.9 cm, underscoring its effectiveness in improving estimation accuracy.
Table 3 briefly presents the evaluation results.
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Besides the decrease of the Mean Per Joint Position Error (MPJPE), our goal is also to maintain the real-time
performance of MediaPipe’s algorithm throughout the process of mapping its enhanced output to the target 3D avatar.
In order to increase performance and achieve a real-time inference, we optimized our two models using ONNX Runtime
9, which is a powerful machine-learning model accelerator. Our method achieves an inference time of approximately
28-30 frames per second (fps) on CPU.

5 CONCLUSIONS AND FUTUREWORK

In conclusion, in this study we are dealing with the process of real-time human movement transfer from monocular
RGB input to a target 3D avatar, leveraging the advancements in 3D human pose estimation technology. Initially, the
state-of-the-art MediaPipe pose estimation algorithm serves as a backbone to extract the human body landmarks’ 3D
coordinates. However, inherent inaccuracies in depth estimation and the absence of bone orientation information pose
significant challenges, often resulting in suboptimal outcomes in the avatar mapping process. To handle these difficulties,
we introduce an intermediary step between landmark extraction and motion transfer. The proposed intermediary step
is designed to correct depth inaccuracies and enrich MediaPipe’s output with longitudinal bones’ rotation information.
To achieve this, we employ a simple yet effective framework comprising two sequential deep neural networks: a
depth corrector and a rotation information enricher. The depth corrector was trained on the videos provided by the
TotalCapture dataset, using the corresponding BVH skeleton data as ground truth while the rotation information
enricher was trained on our enhanced dataset which includes the bones’ vertical vectors. The bones’ vertical vectors
are used in the avatar mapping process to calculate the longitudinal rotations. The Mediapipe’s landmarks, firstly, pass
through the depth corrector and then the corrected landmarks go to the information enricher network. Finally, both the
corrected landmarks and the vertical points are used in the Unity environment to transfer the human movement from
video to an avatar. Utilizing the ONNX library we optimize both our networks to reduce the inference time and as a
result we achieve real-time performance of around 28-30 frames per second (fps) on CPU. Throughout this manuscript,
we describe in detail each phase of our methodology, from the process of generating an enhanced TotalCapture ground-
truth to the network architectures and training methodologies that we used. Additionally, we provide detailed insights
into the methodology employed for mapping the estimated poses onto the target 3D avatar and provide quantitative
and qualitative evaluation of our approach. Notably, our proposed depth corrector network yields remarkable results,
substantially reducing the mean per joint position error from 7.4 cm to 3.9 cm when compared to MediaPipe’s original
output. These findings underscore the efficacy and promise of our approach in enhancing the accuracy and realism of
real-time human motion transfer in immersive environments.

Concerning our future steps, we aim to further enhance the capabilities of our system by exploring different deep
neural network architectures to address the specific challenges of our real-time motion transfer framework. For example,
Long Short-Term Memory (LSTM) networks will be explored to incorporate temporal information into our system.
By using temporal information, we aim to capture the dynamic nature of human motion more effectively, thereby
achieving smoother and more natural motion transfer outcomes. Another idea is to use RGB input from two stereo
cameras. In this way, we will have more information, as the subject will be simultaneously captured from two different
viewing angles, and, consequently, this will lead to reduced inaccuracies in 3D pose estimation. Moreover, we will
examine different training methodologies to optimize the performance of our deep neural networks like advanced
optimization algorithms, regularization techniques, and data augmentation strategies to refine the learning process

9https://onnxruntime.ai/

https://onnxruntime.ai/
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and enhance the generalization capabilities of our models. Finally, as we recognize the important role of data in the
development and evaluation of our system, we plan to expand our dataset selection, both for the training and testing
phases. By incorporating diverse and representative datasets, we aim to ensure that our system is capable of accurately
capturing and transferring a wide range of human motions across different scenarios and contexts.
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