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A B S T R A C T

The dynamic properties of assembled structures are governed by the substructure dynamics
as well as the dynamics of the joints that are part of the assembly. It can be challenging
to describe the physical interactions within the joints analytically, as slight modifications,
such as static preload, temperature, etc. can lead to significant changes in the assembly’s
dynamic properties. Therefore, characterizing the dynamic properties of joints typically involves
experimental testing and subsequent model updating. In this paper, a machine-learning-based
approach to joint identification is proposed that utilizes a physics-based computational model
of the joint. The idea is to combine the computational model of the joint with dynamic
substructuring techniques to train the machine-learning model. The flexibility of dynamic
substructuring permits the enforcement of compatibility and equilibrium conditions between the
component models from the experimental and numerical domains, facilitating the development
of machine-learning models that can predict the dynamic properties of joints. The proposed
approach provides an accurate data-driven method for joint identification in real structures,
while reducing the number of measurements needed for the identification. The approach permits
the identification of a full 12-DoF joint, enabling the coupling of 3D dynamic models of
substructures. Compared to the standard decoupling approach, no spurious peaks are present
in the reconstructed assembly response. The proposed approach is validated numerically and
experimentally by reconstructing the assembly response and comparing the results with known
assembly dynamics.

. Introduction

The dynamics of typical elements within assembled structures, such as beams, bars, plates, etc., can be accurately described
sing updated finite-element (FE) models. On the other hand, accurately modeling an assembly’s dynamics is more difficult due
o the inherent dynamics of the joints connecting the substructures. However, by properly identifying the dynamic properties of
he joints, the assembly’s dynamics can be accurately predicted. Due to the complex interactions at the interface of the connected
ubstructures, the joints are difficult to model using the FEM formulation. Therefore, the dynamic properties of joints are typically
btained with experimental testing.

Over the years, various approaches to joint identification have been proposed. Tsai and Chou [1] proposed an experimental
pproach to identifying the properties of bolted joints based on the measured frequency response functions. This approach was
alidated on a simple assembly of two beams and a bolted joint, resulting in a two-DoF joint model. The authors showed how
eglecting the joint dynamics leads to an erroneous prediction of the assembly dynamics. Using the proposed approach, a good
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prediction of the assembly dynamics can be achieved, provided that the mass of the joint can be neglected. Ren and Beards [2]
presented an FRF-based joint identification method in which the joint can be represented in terms of stiffness, mass, and damping
matrices. A weighted least squares approach was presented to identify the joint properties, with the emphasis on obtaining a set of
equations that is the least sensitive to measurement error. However, care must be taken to choose a suitable weighting approach to
ensure that the joint-identification equations are not underdetermined or that the noise is not amplified. Another method for joint
identification was presented by Čelič and Boltežar in [3], extending Ren and Beards’ least squares solution. The authors emphasized
the importance of the rotational DoFs in the identification procedure and demonstrated that neglecting the RDoFs leads to an
erroneous prediction of the assembly’s response. Due to the difficulty in measuring the RDoFs, the RDoF FRFs were estimated using
accurately calibrated FE models. The authors published a second paper in which they discussed the influence of coordinate reduction
on the identification of the dynamic properties of joints [4]. Two approaches to joint identification were presented: the direct and
the average solutions. The direct solution is frequency dependent, whereas the average solution finds the best joint parameters in
a least-squares sense for the frequency range of interest. It was shown that all the joint DoFs must be considered to obtain a valid
average solution. However, the latter is significantly more robust in the presence of noise.

Wang et al. [5] presented four equations for joint identification. By proposing a method for estimating the unmeasured FRFs, both
he measured and unmeasured FRFs were used for the identification. Mehrpouya et al. used a known set of equations to identify the
ynamics of multiple joints [6]. By neglecting the rotational and in-plane joint parameters, the number of measurements required
o identify the joint parameters was reduced. A methodology for the identification of the joint dynamics in 3D structures using
similar inverse receptance coupling method was presented in [7], where the joint’s inertial properties were also considered. A

wo-node twelve-DoF joint was proposed, with three translational and three rotational DoFs per node, allowing the assembly of 3D
tructures.

In [8] equations for identifying the dynamic stiffness of a joint were deduced, resulting in the same set of equations as in the work
f Ren and Beards. The dynamics of the joint were identified using a least squares approach to find the equivalent mass, stiffness,
nd damping matrices. In all of the above research, the dynamics at the interface were estimated by using accurately calibrated
umerical models or by using measurements near the interface, which introduces errors to the identified joint dynamics, which might
ot be negligible, especially when there is a need for a highly accurate dynamic model of the joint. In [9] the dynamic response of
he coupling elements was obtained using an in situ decoupling method without measurements of the individual substructures.
n [10] the dynamic properties of rubber isolators were characterized using two approaches: a frequency-based substructuring
FBS) approach and the in-situ decoupling approach mentioned above and the results were compared with measurements of the
solator stiffness using a servo hydraulic testing machine. Since direct measurements of the rubber-isolator dynamics are typically
ot feasible, two fixtures, which were assumed to behave rigidly in the frequency range of interest, were attached to either side of
he isolator and subsequently decoupled using FBS. The virtual point transformation (VPT) was applied to reconstruct the rotational
oFs from conventional translational measurements, yielding a full twelve-DoF dynamic model of the joint. The in-situ method is
ttractive since no measurements of the separate substructure dynamics are needed; however, the joint mass is neglected in the
rocess, which is not always feasible. To account for the joint mass, correction terms were considered; however, the connecting
ubstructures must be assumed to behave rigidly, and therefore an in-situ approach can only account for the joint mass if the
onnecting substructures are rigid, which is typically not the case in practice. On the other hand, the decoupling approach does
ot assume a negligible mass; however, a large number of measurements has to be performed and spurious peaks can occur in the
icinity of the natural frequencies of the rigidly-coupled substructures. Joint dynamics were also obtained using system equivalent
odel mixing (SEMM) and an updating scheme without measuring the dynamics at the interface [11]. Although this method can

dentify joints without interface measurements, the identified joint is prone to errors near the natural frequencies of a rigidly coupled
ssembly.

Recently, a characterization of rolling tires was presented by Minervini et al. [12]. The tire dynamics were characterized using
our distinct FBS decoupling approaches by altering the compatibility and equilibrium conditions. Since the physical interactions
nside the joints are typically complex, they can represent one of the main sources of nonlinearity in assemblies. For example, Jamia
t al. [13] used a detailed, three-dimensional model of a bolted flange joint to study the frictional behavior at the contact interface
ue to microslip phenomena. An equivalent model of the joint consisting of Jenkins elements was proposed, and the parameters of
he equivalent model were identified for the detailed model.

Purely physics-based modeling requires a detailed understanding of all mechanisms, which often proves infeasible or ineffective
n practice. In contrast, machine learning (ML) offers the possibility to solve complex engineering and scientific problems with a
ata-driven approach [14]. The ML domain provides a wide range of algorithms with the common goal of automating the learning
rom acquired data [15]. In the subdomain of ML called supervised learning, an ML model is trained to predict target values
outputs) based on the acquired data (inputs) [16]. The advantage of such an approach is that it does not require an understanding
f the physical relationships between the inputs and outputs. Typical ML applications include face, speech, and handwriting
ecognition [17], spam detection [18], autonomous vehicle control [19], object detection [20], etc. ML algorithms are also applied
n structural dynamics and vibro-acoustics, e.g., in multi-bolt looseness detection [21], active noise cancellation [22], structural
amage detection [23], prognostics and health monitoring [24], and brake-noise detection, characterization and prediction [25].

In the field of structural dynamics, the use of ML is challenging due to its data-driven nature, typically requiring a large training
ata set to compensate for the lack of a physical background. It is costly and time-consuming to acquire the measurements for all the
ystem configurations. Therefore, the amount of available training data is often insufficient to obtain reliable models. Considering
he limitations of the physics-based and ML modeling approaches, the idea of their integration has gained momentum in recent
2

ears. The objective of such an integration can be, among others, to employ physics-based computational models (e.g., digital
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twins [26]) to generate samples for training ML models [27]. Since it is particularly difficult to obtain large amounts of training
data in structural dynamics, using a physics-based computational model to generate the training data provides a viable approach to
implementing ML algorithms. Ritto et al. [28] proposed a digital-twin-based approach to structural damage identification using a
physics-based computational model to generate the dynamic response data needed to train various ML algorithms. The latter were
subsequently used to identify the severity and location of the damage in the observed structure.

The challenge when using ML for joint identification is to obtain a sufficiently large training data set of assembly responses.
btaining assembly admittances experimentally is impractical, since obtaining just a single experimental assembly admittance is

ime consuming. Even if the experimental approach was practical, the joint would have to be replaced after each test, making the
cquisition of an experimental training data set infeasible. The problem of obtaining training data can be alleviated by numerically
enerating a set of joint admittances using a computational model. Since the objective is to identify the dynamic properties of
oints based on the assembly responses, the generated joint admittances must be coupled with substructures to form an assembly
esponse. Therefore, the use of dynamic substructuring is essential as it makes it possible to evaluate the dynamic behavior of large
nd complex systems by considering the individual substructures separately through compatibility and equilibrium constraints [29].
ynamic substructuring makes is possible to combine the experimental and numerical component models, providing a hybrid
odeling approach that can efficiently generate assembly responses for a given set of joint response models.

In general, the available joint-identification approaches can obtain satisfactory results, although they typically assume a negligible
oint mass, perform measurements near the interface due to the inaccessibility of the interface and can suffer from spurious peaks,
hich decreases the accuracy of the identified joint dynamics. Furthermore, they typically require a large set of measurements.
his paper presents a conceptually new framework for identifying a joint’s dynamic properties using a physics-based computational
odel to facilitate the training of an artificial neural network (ANN). Since dynamic substructuring can combine component models

rom the experimental and numerical domains, it proves to be well suited to obtain large sets of coupled assembly responses
rom the known substructure admittances and the generated joint admittances. The objective is to combine elements of dynamic
ubstructuring with the data-driven aspect of machine learning by exploiting their complementary advantages, i.e., eliminating the
eed for a physical description of the interactions at the interface and efficiently generating a large set of assembly admittances. This
oncept is similar to the approach presented in [28], as the procedure therein relies on the use of a physics-based computational
odel to generate training data, although in this case for the purpose of damage detection. However, the approach described therein
as not experimentally validated on a real structure. In our approach the use of an ANN facilitates the prediction of the dynamic
roperties of joints based on the FRFs of assemblies. The data-recognition capability of ANNs is utilized to identify the parameters of
he joints connecting substructures based on the FRFs of a real assembled structure. Furthermore, the proposed approach can identify
he joint parameters without the need to perform measurements at the interface between the substructures in the assembled state.
he interface dynamics of the individual substructures in the decoupled state are obtained by transforming the measurements near
he interface using the VPT, thereby eliminating the need for a numerical model of the individual substructures, as is the case for
ome of the earlier research and the SEMM-based approaches. The contribution of the proposed approach is threefold: first, the
pproach demonstrates how significantly fewer measurements are needed to identify the joint dynamics. Second, the approach can
e used in-situ, i.e. the joint can be identified from the dynamics of an existing assembly. The final contribution is successfully
raining an ANN to identify the parameters of the joint based on the FRF data, which is the easily measurable property of real
tructures. The proposed approach is benchmarked against an established joint identification approach based on the FBS decoupling
rocess. By accurately identifying the joint dynamics, the accuracy of the predicted assembly dynamics can be greatly improved,
hich is important for characterizing the full-vehicle NVH profile [12], minimizing NVH-related problems in compressors [30] or
ecreasing the vibrations of the camera on unmanned aerial vehicles by actively controlling the gimbal system [31].

The paper is organized as follows. The next section summarizes the theory of the Lagrange-multiplier frequency-based substruc-
uring (LM-FBS) method and the VPT. Then, the joint’s computational model is presented along with the framework for generating
raining samples and a neural network scheme. Section 4 demonstrates the proposed approach in a numerical case study. Section 5
rovides an application of the presented method on an experimental case, and finally, the conclusions are drawn in Section 6.

. Frequency-based substructuring

In order to couple substructures based on their frequency-response models, the LM-FBS method [29] is adopted here.

.1. LM-FBS method

The LM-FBS method makes it possible to determine the assembled system admittance 𝐘AB, in which the FRFs of the individual
ubsystems are considered. For the sake of brevity, the derivation presented here is limited to the coupling of two substructures.
owever, an arbitrary number of substructures can be used. The equation of motion in the frequency domain for the uncoupled

ubstructures, shown in Fig. 1(a), is:

𝐮(𝜔) = 𝐘A|B(𝜔)
(

𝐟 (𝜔) + 𝐠(𝜔)
)

. (1)

The vector 𝐮(𝜔) represents the responses to the external force vector 𝐟 (𝜔) acting on the assembly, and 𝐠(𝜔) is the vector of
3

nterface forces holding the substructures together. To account for all the subsystems, their individual admittance matrices must be
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Fig. 1. Schematic overview of the substructuring problem: (a) Uncoupled substructures A and B, (b) Coupled assembly AB.

stacked into a block diagonal matrix 𝐘A|B1:

𝐮 =

⎡
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⎢

⎢

⎢

⎢

⎣
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⎥

⎥

⎥
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⎥

⎥

⎦

, 𝐠 =
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⎢

⎢
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𝟎

𝐠A
2

𝐠B
2

𝟎
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⎥

⎥

⎥

⎥

⎥

⎦

. (2)

The relations between the substructures are expressed in terms of the compatibility and equilibrium conditions. The inclusion of
both is achieved using the Boolean matrix 𝐁. The compatibility conditions are expressed with Eq. (3), which ensures the same
displacement of the substructures at the interface in the coupled state (Fig. 1(b)). The equilibrium conditions (Eq. (4)) are introduced
by replacing the interface forces with a set of unknown Lagrange multipliers 𝝀:

𝐁𝐮 = 𝟎 , (3)

𝐠 = −𝐁T𝝀 . (4)

Solving the set of Eqs. (2)–(4) by eliminating the Lagrange multipliers yields the response of the coupled structure:

𝐮 = 𝐘AB 𝐟 =
[

𝐘A|B − 𝐘A|B 𝐁T (

𝐁𝐘A|B 𝐁T)−1 𝐁𝐘A|B
]

𝐟 . (5)

The dynamic properties of the assembled system are governed by the admittance matrix 𝐘AB. The LM-FBS method requires the full-
DoF response models of the individual substructures with DoFs at the interface collocated for all substructures. However, the DoFs
measured on both sides of the interface do not usually coincide in the case of experimental testing of substructures with complex
geometries. Even if collocation could be achieved, the lack of RDoFs, which are not measurable with conventional translational
transducers, would pose a problem. Both problems mentioned above can be resolved using the VPT.

2.2. Virtual point transformation

A virtual point is chosen near the physical interface of the substructures where the admittance matrix is obtained using a
geometric transformation. Several responses and excitations are measured near this point (𝐘uf ∈ C𝑛u×𝑛f ) and then projected onto
the interface deformation modes (IDMs). If only the rigid body IDMs are included in the transformation (rigid interface behavior),
we have 𝑚 = 6 DoFs for each virtual point. If the interface exhibits a more complex dynamic behavior, flexible IDMs can also be
added [32]. The transformation is achieved using the following equation:

𝐘qm = 𝐓u𝐘uf𝐓T
f , (6)

where 𝐓u is the displacement transformation matrix, and 𝐓f is the force transformation matrix. 𝐘qm ∈ C𝑚×𝑚 is the VP admittance
matrix with perfectly collocated force/moment and translation/rotation DoFs.

Assuming the interface exhibits only rigid behavior, the displacement vector 𝐪 consists of three translations 𝐪t = [𝑞𝑋 , 𝑞𝑌 , 𝑞𝑍 ]T

and three rotations 𝐪𝜃 = [𝑞𝜃𝑋 , 𝑞𝜃𝑌 , 𝑞𝜃𝑍 ]
T. The following relation can be written between the 𝑚 VP responses 𝐪 and the 𝑛u sensor

displacements 𝐮:

𝐮 = 𝐑u𝐪 + 𝝁u . (7)

The columns of 𝐑u ∈ R𝑛u×𝑚 consist of IDMs constructed from the relative sensor locations and orientations with respect to the VP
(Fig. 2). It is a common practice to overdetermine Eq. (7) so that 𝑛u > 𝑚. For more information about the construction of 𝐑u, the
reader is referred to [33]. Vector 𝝁u captures any residual motion not included in the subspace of the IDMs. If the rigid assumption
of the interface is valid in the considered frequency range, the residual motion will most likely be negligible. By considering only
rigid IDMs, flexible motion is filtered out of 𝐪 and the interface problem is weakened due to the reduction. Solving Eq. (7) for 𝐪 in
a least-mean-square sense yields the displacements of the VP2:

𝐪 =
(

𝐑T
u𝐑u

)−1 𝐑T
u𝐮 = 𝐓u𝐮 ⇒ 𝐓u =

(

𝐑T
u𝐑u

)−1 𝐑T
u . (8)

1 An explicit dependence on frequency is omitted to improve the readability of the notation, as will be the case for the remainder of the paper.
2 To obtain more flexibility in the transformation, a frequency-dependent symmetric weighting matrix 𝐖 can be considered in the derivation of 𝐪, see [34].
4



Mechanical Systems and Signal Processing 198 (2023) 110426J. Korbar et al.
Fig. 2. Interface connection example using a virtual point.3

Similarly, the forces and moments at the virtual point 𝐦 are obtained for a measured vector of forces 𝐟 . Again, assuming rigid
IDMs, the force vector 𝐦 consists of three forces and three moments (𝐦 = [𝑚𝑋 , 𝑚𝑌 , 𝑚𝑍 , 𝑚𝜃𝑋 , 𝑚𝜃𝑌 , 𝑚𝜃𝑍 ]

T). The contributions of all
the input forces can be combined and expressed as follows:

𝐦 = 𝐑T
f 𝐟 , (9)

where 𝐑T
f ∈ R𝑚×𝑛f is the matrix containing the positions and orientations for all the impact locations with respect to the VP. A more

detailed description of 𝐑f can be found in [33]. By solving Eq. (9) for 𝐟 we obtain the following expression:

𝐟 = 𝐑f

(

𝐑T
f 𝐑f

)−1
𝐦 = 𝐓T

f 𝐦 ⇒ 𝐓T
f = 𝐑f

(

𝐑T
f 𝐑f

)−1
. (10)

To alleviate the inconvenience of constructing the IDM matrices, the application of the VPT can be facilitated by using the
open-source Python package pyFBS [35].

3. Joint’s computational model and neural networks

In this paper an ANN is used to identify the joint parameters based on the response model of an assembly. The proposed
identification approach relies on the assembly of an analytical joint model and two known substructures. The substructuring
approach can be used to generate a large training data set of assembly responses, facilitating the training of an ANN. The objective
is to identify the joint parameters based on the FRFs remote from the assembly interface. The advantage of such an approach is
twofold: fewer measurements are required since no measurements need to be performed at the assembly interface (as opposed to
identifying the joint parameters with the conventional FBS approach), and multiple joints can be characterized using the same
trained ANN as long as the joint is the only varying component in the assembly.

3.1. Analytical joint model

To generate the training set of joint response models, the analytical model of the joint must first be established. A two-node
joint model with six DoFs per node is adopted, resulting in a twelve-DoF joint model. Each node contains three translational and
three rotational DoFs. The nodes interact with each another via linear springs. The joint is schematically depicted in Fig. 3 as a
superposition of objects with mass (or mass moment of inertia) connected by springs.

The joint mass and stiffness matrices are defined by the submatrices 𝐊J
s and 𝐌J

s of each node:

𝐊J
s =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑘𝑥 0 0 0 0 0
0 𝑘𝑦 0 0 0 0
0 0 𝑘𝑧 0 0 0
0 0 0 𝑘𝜃𝑥 0 0
0 0 0 0 𝑘𝜃𝑦 0
0 0 0 0 0 𝑘𝜃𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐌J
s =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚 0 0 0 0 0
0 𝑚 0 0 0 0
0 0 𝑚 0 0 0
0 0 0 𝐽𝑥 0 0
0 0 0 0 𝐽𝑦 0
0 0 0 0 0 𝐽𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (11)

3 The position vector from the VP to the center of the triaxial accelerometer is denoted by 𝐫𝑘. The unit vector for each sensor axis is 𝐞𝑘𝑖 and the response
in each axis is denoted by 𝑢𝑘 (𝑖 ∈ (𝑥, 𝑦, 𝑧)). The position vector from VP to the force impact is 𝐫ℎ, the impact direction is 𝐞ℎ and the impact magnitude is 𝑓ℎ.
5
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Fig. 3. Schematic of the DoF-to-DoF joint model.

The connection of nodes leads to the following joint mass and stiffness matrices:

𝐊J =
[

𝐊J
s −𝐊J

s
−𝐊J

s 𝐊J
s

]

, 𝐌J =
[

𝐌J
s 𝟎

𝟎 𝐌J
s

]

. (12)

The joint admittance matrix 𝐘J can be obtained by inverting the joint dynamic stiffness matrix 𝐙J [36]:

𝐘J =
(

𝐙J)−1 , where 𝐙J ≜ −𝜔2𝐌J +𝐊J . (13)

The dynamic response of an undamped joint can be expressed using Eq. (13). Alternatively, the joint admittance matrix can be
obtained by solving the eigenvalue problem −𝜔2𝐌J +𝐊J = 𝟎, yielding 𝑛 eigenfrequencies 𝜔𝑟 and the corresponding eigenvectors φ𝑟.
A damping ratio 𝜁𝑟 can be defined for each non-rigid body mode φ𝑟 and the mode-superposition method can be used to synthesize
the FRFs of the joint admittance matrix [36]:

𝐘J ≈ − 1
𝜔2

𝑛RB
∑

𝑟=1
ϕ𝑟ϕ

T
𝑟 +

𝑛
∑

𝑟=𝑛RB+1

ϕ𝑟ϕ
T
𝑟

−𝜔2 + 2j𝜔𝜁𝑟𝜔𝑟 + 𝜔2
𝑟
. (14)

The modes ϕ𝑟 used in Eq. (14) are mass normalized. The number of rigid-body modes, corresponding to the eigenfrequencies 𝜔𝑟 = 0,
is denoted by 𝑛RB, while the total number of eigenfrequencies and mode shapes of the joint is denoted by 𝑛. The joint admittance
matrix 𝐘J can be obtained using Eq. (13) for an undamped joint or using Eq. (14) for a damped joint.

3.2. Generating training data using FBS

The objective of this paper is to identify the dynamic properties of a joint based on the frequency response of an assembly. If
the proposed analytical joint model can describe the true joint’s dynamics sufficiently well, the joint can be identified by predicting
the parameters of the joint model. The prediction is facilitated by using an ANN, which can be viewed as a function for predicting
joint parameters based on the FRF matrix of a given assembly. The ANN can correctly predict the joint parameters only if the ANN
parameters are set properly, which is achieved during the training process. To effectively train the ANN, a significant amount of data
is required. Each training sample contains a set of randomly generated joint parameters and the FRF matrix of the corresponding
assembly.

Each set of joint parameters should be randomly generated according to a chosen distribution. For example, if all the values
of a joint parameter within a certain range should have equal probability, a uniform distribution should be chosen. If the value
of a parameter 𝑥𝑘 spans multiple orders of magnitude, the log-uniform distribution can be considered, resulting in the order of
magnitude (i.e. log (𝑥𝑘)) being uniformly distributed.

After the joint parameter samples are generated, the coupled dynamic response for each joint sample must be calculated. First,
one of the Eqs. (13) or (14) should be used to obtain the FRF matrix 𝐘J𝑖 of the joint training sample, where J𝑖 denotes the 𝑖th joint
sample for training. Once the joint FRFs are generated, LM-FBS coupling (Eq. (2)) is used to obtain the FRF matrix 𝐘AJB𝑖 of the
assembly for each generated joint. The details of the coupling procedure are presented in Section 4.

3.3. Artificial neural networks

Once the assembled FRFs are calculated, the configuration of the ANN must be selected. In this work a deep feedforward ANN
was chosen. The building blocks of ANNs are called neurons. In the case of fully connected ANNs, multiple neurons are stacked in
6
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Fig. 4. A simple artificial neural network with three layers.5

layers, with each neuron connected to all the neurons in the adjacent layers. Each neuron can be viewed as a set of mathematical
operations, i.e. a weighted sum and an activation function. Let us denote the output of the 𝑗th neuron in layer (𝑙 − 1) as 𝑙−1𝑎𝑗 . The

eighted sum 𝑙𝑧𝑖 computed by the 𝑖th neuron in the 𝑙th layer is expressed as:
𝑙𝑧𝑖 =

∑

𝑗

𝑙−1𝑤𝑖𝑗
𝑙−1𝑎𝑗 + 𝑙𝑏𝑖 , 𝑙 ≥ 1 , (15)

ith weights and biases denoted by 𝑙−1𝑤𝑖𝑗 and 𝑙𝑏𝑖, respectively. Eq. (15) can also be written in matrix form:

𝑙𝐳 = 𝑙−1𝐖 𝑙−1𝐚 + 𝑙𝐛 . (16)

o calculate the output of the 𝑖th neuron, an activation function4 𝑙𝑓 is used:
𝑙𝑎𝑖 = 𝑙𝑓 (𝑙𝑧𝑖) . (17)

he Eqs. (15) and (17) are used to calculate the output of each layer until the final layer is reached, where the outputs should
pproach the values of the joint parameters. A visual representation of a simple three-layer ANN can be found in Fig. 4.

The layer 𝑙 = 0 represents the input of the ANN, where the input values are denoted by 𝐱. These are used as the input for the
econd layer, i.e., 𝑙 = 1. Thus, in Eq. (16), when 𝑙 = 1, the term 𝑙−1𝐚 is replaced by 𝐱. The weights are typically set randomly
uring the ANN initialization, with the biases set to zero. For the ANN to predict the values of the joint parameters, the ANN must
e trained by optimizing the weights and biases. First, a loss function is defined that evaluates the error between the predicted
nd target values. Typically, a quadratic loss function is implemented to evaluate the difference between the predicted and target
i.e., generated) values of the joint parameters. A gradient-descent6 algorithm can be used to iteratively minimize the loss function,
esulting in optimization of the ANN parameters (i.e., weights and biases). Since the loss function depends on the values of the ANN
arameters, the gradient of the loss function with respect to the ANN parameters can be calculated. In each iteration, the gradient
which points in the direction of the steepest ascent of the loss function) is calculated. The gradient is scaled and subtracted from
he current ANN parameters, updating the values of the parameters. This process is repeated until the minimum of the loss function
s found.

.4. Training data preparation

FRFs are evaluated at discrete frequency points, resulting in large arrays of complex values (e.g., in the range from 1 to 2000 Hz
t a resolution of 1 Hz, a single FRF is represented by a set of 2000 complex values). Therefore, using FRFs as the training data
ould lead to an unnecessarily large input layer, which is unfavorable for three main reasons. First, the number of ANN parameters
ncreases with the size of the input layer, extending the time required to train an ANN. Second, increasing the number of ANN
arameters means that additional training samples should be obtained to prevent overfitting. Third, the assembly’s FRFs might be
ess sensitive to the change in joint parameters at these frequencies, suggesting that the values of the FRFs at certain frequencies
re not as relevant to the training process. In addition, some FRFs might not be sensitive to changes in the joint parameters overall,
.g., due to low transmissibility. Therefore, it does not seem reasonable to use the raw FRF data of the coupled AJB structure as
he input data for the ANN. To overcome the problem of the input data size, a dimensionality-reduction technique must be used.

4 A typical activation function is the sigmoid function 𝑓 (𝑧) = 1∕(1 + e−𝑧) .
5 For the sake of simplicity, only the output values 𝑙𝐚 are displayed to represent the neurons, with a detailed illustration of the mathematical operations for

the first neuron of layer 𝑙 = 2.
6 To be precise, stochastic gradient descent is used in conjunction with the backpropagation algorithm to calculate the gradients. For more information, the
7

interested reader is referred to [16,17].
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Principal component analysis (PCA), which has been applied to FRF data in the past [37,38], is widely used for this purpose. Due
to the low transmissibility, some FRFs are ignored, as the joint’s dynamic properties have a negligible effect on these FRFs. In the
following, the process of converting the assembly admittance matrices 𝐘AJB𝑖 to the training data matrix 𝐀𝑝 is presented.

First, the FRFs are selected from the assembly admittance matrix 𝐘AJB𝑖 of each generated joint sample. From the selected FRFs,
a vector of FRF magnitudes 𝐡𝑖 is constructed for each joint.7 Each vector 𝐡𝑖 contains 𝑛 = 𝑛f ⋅ 𝑛FRFs components, where 𝑛f and 𝑛FRFs
epresent the number of frequency points and the number of selected FRFs, respectively. An initial data matrix 𝐇 ∈ R𝑚×𝑛, where 𝑚
s equal to the number of generated joint samples, is constructed by stacking the vectors 𝐡𝑖 in the rows of 𝐇. A typical element of the
riginal data matrix is denoted by ℎ𝑖𝑗 , where the subscripts 𝑖 and 𝑗 denote the row and column of 𝐇, respectively. Dimensionality
eduction (i.e., reducing the number of columns of 𝐇) can be achieved using PCA. Prior to the PCA the components should be
tandardized to obtain scale-independent principal components [39]. First, the mean response 𝐻̄𝑗 and the standard deviation 𝑆𝑗 of
he 𝑗th component (i.e., the column of 𝐇) must be evaluated:

𝐻̄𝑗 =
1
𝑚

𝑚
∑

𝑖=1
ℎ𝑖𝑗 , (18)

𝑆𝑗 =

√

√

√

√

1
𝑚

𝑚
∑

𝑖=1

(

ℎ𝑖𝑗 − 𝐻̄𝑗
)2 . (19)

The standardized counterpart ℎ̃𝑖𝑗 of a typical element is expressed as:

ℎ̃𝑖𝑗 =
ℎ𝑖𝑗 − 𝐻̄𝑗

𝑆𝑗
√

𝑚
. (20)

Replacing all the typical elements ℎ𝑖𝑗 with the standardized elements ℎ̃𝑖𝑗 yields the response-variation matrix 𝐇̃. The eigenvectors
of the correlation matrix 𝐂 = 𝐇̃T𝐇̃ are known as the principal axes of 𝐇̃. The principal axes represent the orthogonal directions
in an 𝑛-dimensional space that maximize the variance of the data projected onto each principal axis. Projecting the data onto the
principal axes yields the principal components (PCs). The data dimensionality can be significantly reduced by considering only the
first 𝑝 ≪ 𝑛 PCs with the highest variance. The principal axes can be determined by the eigendecomposition of the correlation matrix:

𝐂 = 𝐕𝐋𝐕T , (21)

here the columns of 𝐕 are the eigenvectors of the correlation matrix (i.e., the principal axes of 𝐇̃), where 𝐋 is a diagonal matrix
f the eigenvalues of 𝐂 that can be used as a measure of the significance of the principal axes. The principal axes can also be
etermined using the singular value decomposition (SVD) of the response variation matrix 𝐇̃:

𝐇̃ = 𝐔𝐒𝐕T , (22)

here 𝐔 and 𝐕 are, respectively, the 𝑚 × 𝑚 and 𝑛 × 𝑛 orthonormal matrices, and 𝐒 is an 𝑚 × 𝑛 diagonal matrix [40]. The columns
f 𝐔 and 𝐕 contain the left-singular and right-singular vectors of 𝐇̃, which form two sets of orthonormal bases. The columns of
are again the principal axes. The diagonal elements of 𝐒 are the singular values of 𝐇̃, which are identical to the square roots

f the eigenvalues of the correlation matrix 𝐂 and are typically arranged in descending order. Analogous to the eigenvalues of 𝐂,
he singular values of 𝐇̃ can also be used as a measure of the importance of the principal axes, i.e., the amount of variation in the
irection of each principal axis. The PCs are obtained by multiplying 𝐇̃ by the right-singular vectors, i.e., by projecting the data
atrix onto the principal axes. Since 𝐕 is orthonormal, the PCs, denoted by 𝐀, can be expressed as:

𝐀 = 𝐇̃𝐕 = 𝐔𝐒𝐕T𝐕 = 𝐔𝐒 , (23)

here the product 𝐕T𝐕 is the identity matrix, since 𝐕 is orthonormal. The data dimensionality can be significantly reduced by
onsidering only 𝑝 ≪ 𝑛 PCs associated with the 𝑝 highest singular values. This can be done by manually selecting the first 𝑝 columns
f 𝐀 or by projecting 𝐇̃ onto the first 𝑝 principal axes 𝐕𝑝, where 𝐕𝑝 is obtained by retaining only the first 𝑝 columns of 𝐕 associated
ith the highest singular values. The reduced data matrix, denoted by 𝐀𝑝, is calculated as follows:

𝐀𝑝 = 𝐇̃𝐕𝑝 = 𝐔𝐒𝐕T𝐕𝑝 . (24)

he matrix 𝐀𝑝 ∈ R𝑚×𝑝 contains 𝑚 samples and 𝑝 principal components used as the input to the ANN. Multiplying the reduced PCs 𝐀𝑝
y 𝐕T

𝑝 yields a reconstruction 𝐇̃𝑝 of the response-variation matrix 𝐇̃ from the first 𝑝 PCs. By rearranging Eq. (20), a reconstruction
f the original data matrix 𝐇 can be obtained. This can be used to compare the original and reconstructed data [37,38].

7 The selection of FRFs used in the ongoing joint identification is presented in Section 4.
8
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Fig. 5. Schematic of ANN training process.

Table 1
Number of neurons in each layer of the neural networks used in the numerical
and experimental studies.

Input layer Hidden layer Output layer

Numerical 200 200 7
Experimental 200 200 9

3.5. Joint identification framework

This section briefly outlines the framework for the identification of the joint’s dynamic properties. First, the ANN must be trained.
An analytical joint model is defined, and 𝑚 sets of joint parameters are randomly generated. The joint admittance matrices are
computed from the generated sets of joint parameters, and LM-FBS coupling is used to obtain the assembly admittance matrix
for each set of generated joint parameters. The coupling is followed by data preparation, where the assembly FRF magnitudes
are selected, and dimensionality reduction by PCA, yielding the reduced data matrix 𝐀𝑝. The latter is used to train the ANN. The
aforementioned steps are depicted in Fig. 5.

Both the numerical and experimental ANNs have a single hidden layer with 200 neurons. The number of neurons in each layer
is also presented in Table 1.

Once the training is complete, the joint parameters can be identified using the numerically or experimentally determined FRFs
of the assembly. The identified joint parameters are used to calculate the admittance matrix using Eq. (13) or (14). The identified
joint admittance can be coupled with A and B to obtain the reconstructed admittance of the assembly, which can then be compared
with the original assembly. The comparison facilitates the validation of the proposed joint model, as well as the ANN’s ability to
correctly identify the joint parameters. The joint identification and ANN validation are depicted in Fig. 6.

4. Numerical study

4.1. Numerical study setup

A numerical study was conducted to test the proposed joint identification approach. An undamped joint model was chosen for
the numerical study to minimize the number of parameters for the identification. It is assumed that the joint’s mass moments of
inertia have a negligible effect on the coupled FRFs. Therefore, the parameters 𝐽𝑥, 𝐽𝑦, and 𝐽𝑧 were considered as small non-zero
values to ensure the invertibility of the dynamic stiffness matrix 𝐙J. In the numerical study, a total of seven joint parameters were
identified: the mass of the joint and six stiffness coefficients. The samples of the coupled dynamic responses were obtained by
randomly generating the joint parameters and inverting the corresponding dynamic stiffness matrices, which were subsequently
coupled with A and B, resulting in a set of coupled dynamic responses 𝐘AJB𝑖 . The CAD models of the substructures A, J, B, and the
assembled AJB are shown in Fig. 7.

In both the numerical and experimental studies, a total of 12 channels were used to measure the dynamic response of A, and
nine channels were used to measure the dynamic response of B. The first three channels on A measured the response away from the
9
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Fig. 6. Validation of the ANN and joint identification.

Fig. 7. CAD models of the structures used for joint identification: (a) AJB, (b) A, (c) J, (d) B.

interface (𝐮A
1 ), the other nine channels measured the response at the interface of A (𝐮A

2 ), and the nine channels on B measured the
response at the interface of B (𝐮B

3 ). Similarly, nine impacts were located at the interface of A (𝐟A
2 ), nine impacts at the interface of B

(𝐟B
3 ), and three impacts away from the interface of B (𝐟B

4 ). The same configuration of channels and impacts was used for the coupled
AJB structures, which were generated to evaluate the performance of the proposed joint identification approach. The assemblies,
denoted AJB𝑖, represent the training samples obtained by coupling A, B, and the generated joint training samples J𝑖. In contrast,
the assemblies AJB denote the test structures obtained by modeling the assemblies as a whole and used for validation.

The VPT was applied to both A and B to facilitate coupling with the joint models. The VPT projects translational DoFs at the
interface onto a set of three translational and three rotational DoFs for both substructures A and B, while ensuring that the DoFs
of the substructures are collocated with the joint DoFs. No measurements at the interface of AJB are required to identify the joints
with the ANN. However, as shown in Fig. 7(a), measurements were performed at the interface of AJB to enable a comparison of the
10
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Fig. 8. Substructures in the numerical study: (a) A, (b) J, (c) B.

proposed approach with the standard decoupling method.8 To obtain the joint dynamics by decoupling, the VPT was applied to the
AJB assembly’s response model. The interface DoFs associated with A were projected onto one VP and the interface DoFs associated
with B were projected onto the other VP using Eq. (6). By collocating the interface DoFs, both A and B can be decoupled from the
AJB assembly, retaining only the joint dynamics. In contrast to the proposed approach, an obvious shortcoming of decoupling is
the need to measure the interface dynamics of the assembly.

4.2. Numerical joint identification

The following presents a detailed explanation of how we obtained the initial data matrix 𝐇. Applying the VPT to both A and B
transforms the substructure response models to allow for the coupling with the joint response model samples J𝑖. The equation of
motion for the uncoupled set of substructures A, J𝑖, and B is:

𝐮 = 𝐘A|J𝑖|B(𝐟 + 𝐠) . (25)

The displacements, forces, and uncoupled admittance matrix are constructed using Eq. (26):

𝐮 =
⎡

⎢

⎢

⎣

𝐮A

𝐮J𝑖

𝐮B

⎤

⎥

⎥

⎦

, 𝐟 =
⎡

⎢

⎢

⎣

𝐟A

𝐟J𝑖

𝐟B

⎤

⎥

⎥

⎦

, 𝐠 =
⎡

⎢

⎢

⎣

𝐠A

𝐠J𝑖

𝐠B

⎤

⎥

⎥

⎦

, 𝐘A|J𝑖|B =
⎡

⎢

⎢

⎣

𝐘A 𝟎 𝟎
𝟎 𝐘J𝑖 𝟎
𝟎 𝟎 𝐘B

⎤

⎥

⎥

⎦

, (26)

with the elements of Eq. (26) defined by Eq. (27):

𝐮A =
⎡

⎢

⎢

⎣

𝐮A
1

𝐮A
2

⎤

⎥

⎥

⎦

, 𝐘A =
⎡

⎢

⎢

⎣

𝐘A
12

𝐘A
22

⎤

⎥

⎥

⎦

, 𝐟A = 𝐟A
2 , 𝐠A = 𝐠A

2 , (27a)

𝐮J𝑖 =
⎡

⎢

⎢

⎣

𝐮J𝑖
2

𝐮J𝑖
3

⎤

⎥

⎥

⎦

, 𝐘J𝑖 =
⎡

⎢

⎢

⎣

𝐘J𝑖
22 𝐘J𝑖

23

𝐘J𝑖
32 𝐘J𝑖

33

⎤

⎥

⎥

⎦

, 𝐟J𝑖 =
⎡

⎢

⎢

⎣

𝐟J𝑖
2

𝐟J𝑖
3

⎤

⎥

⎥

⎦

, 𝐠J𝑖 =
⎡

⎢

⎢

⎣

𝐠J𝑖
2

𝐠J𝑖
3

⎤

⎥

⎥

⎦

, (27b)

𝐮B = 𝐮B
3 , 𝐘B =

[

𝐘B
33 𝐘B

34

]

, 𝐟B =
⎡

⎢

⎢

⎣

𝐟B
3

𝐟B
4

⎤

⎥

⎥

⎦

, 𝐠B =
⎡

⎢

⎢

⎣

𝐠B
3

𝟎

⎤

⎥

⎥

⎦

. (27c)

Using Eq. (5) yields the coupled admittance 𝐘AJB𝑖 . The coupling of A and B with the analytical joint model is shown schematically
in Fig. 8. The coupling is performed for each joint sample to obtain samples of assembly admittances for the ANN training. A total
of 𝑚 = 10 000 joint samples were generated to train the ANN. Fig. 9 presents the selection of FRFs from a coupled admittance matrix
𝐘AJB𝑖 , leading to a row 𝐡𝑖 of the initial data matrix 𝐇. Only four FRFs were used for the joint identification using the ANN, three
of which described the dynamic response to an impact in the same direction, while one FRF described the dynamic response in the
𝑦-direction to an impact in the 𝑥-direction. These FRFs were selected because of their relatively high dynamic response amplitudes
compared to other FRFs. Alternatively, the FRFs can be selected by trial and error for different combinations of FRFs. By coupling
the identified joints with A and B, a comparison can be made with the assembly FRFs and an optimal selection of FRFs can be
achieved.

Each FRF was evaluated at frequency points ranging from 1 to 2000 Hz with a resolution of 1 Hz, resulting in a set of 𝑛f = 2000
values. With four FRFs used to identify the joint model parameters, i.e., 𝑛FRFs = 4, each row 𝐡𝑖 of the initial data matrix 𝐇 consisted of
𝑛 = 𝑛f ⋅𝑛FRFs = 8000 components. Using PCA, the number of components in the numerical study was reduced to 200 PCs, i.e., 𝑝 = 200,
where 𝐀𝑝 ∈ R𝑚×𝑝 is the reduced data matrix used for the ANN training. The trained ANN was used to identify the analytical joint
model parameters, and the joint admittance matrix was obtained using Eq. (13). The resulting ANN contained approximately 40 000

8 Decoupling can be achieved by coupling the negative admittance matrices of A and B with AJB due to the altered equilibrium conditions (i.e., coupling
𝐘AJB, −𝐘A and −𝐘B using Eq. (5)).
11
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Fig. 9. Selection of FRFs used in the joint identification using an ANN.

parameters, which had to be optimized. Due to the large number of parameters (relative to the number of training samples), the ANN
was prone to overfitting. As Zhang et al. have shown, a sufficiently large neural network is capable of learning any dataset perfectly,
even if the labels are assigned randomly [41]. Such an ANN cannot predict the labels of a test dataset due to the randomly assigned
labels, as the ANN simply adapts too well to the training data. To circumvent the problem of overfitting, regularization methods
are usually integrated to serve as additional constraints for the ANN parameter optimization, leading to a better generalization of
the ANN [42].

The term regularization describes any procedure with the aim of improving the generalization of the ANN, i.e., increasing
the prediction performance on the test set. In our example, batch normalization and 𝐿2 regularization were implemented. While
both methods have the effect of regularization on the ANN, the use of batch normalization negates the regularization effect of 𝐿2
regularization. Nonetheless, both methods were implemented, as the use of 𝐿2 regularization significantly increases the effective
learning rate, leading to a faster optimization of the ANN, which is discussed in greater detail in [43].

A twelve-DoF joint model was also obtained using LM-FBS decoupling to compare the ANN’s performance with an existing joint
identification approach. To decouple the substructures A and B from the AJB assembly, the equation of motion of the system, prior
to decoupling, is written as:

𝐮 = 𝐘AJB|−A|−B(𝐟 + 𝐠) , (28)

where

𝐘AJB|−A|−B =
⎡

⎢

⎢

⎣

𝐘AJB 𝟎 𝟎
𝟎 −𝐘A 𝟎
𝟎 𝟎 −𝐘B

⎤

⎥

⎥

⎦

. (29)

Using Eq. (5), the dynamics of A and B are removed from the assembly, retaining only the dynamics of the joint itself. To compare
the two joint identification approaches, both the ANN-based joint and the decoupled joint were coupled to A and B, resulting in
two separate reconstructions of the assembly’s response model. Both reconstructed admittances were compared to the assembly
FRFs to evaluate the advantages and shortcomings of the proposed approach. Since decoupling is a well-established approach for
joint identification, it served as a benchmark for the ANN-based method. In addition, A and B were rigidly coupled to observe the
influence of the joint dynamics on the assembly.

The magnitude plot (Fig. 10(a)) illustrates that neglecting the joint dynamics by rigidly coupling A and B cannot be justified,
since this leads to an erroneous prediction. The reconstructed coupled FRFs based on decoupling are in reasonable agreement with
the FRFs of the real assembly, except for spurious peaks, present across the observed frequency range, especially below 500 Hz.
Performing additional simulations revealed that the spurious peaks are present at the eigenfrequencies of the assembly with fixed
displacements at the joint DoFs, as described in [44]. The ANN-based reconstructed coupled FRFs match the true assembly’s FRFs
better; therefore, the joint model can describe the true joint dynamics in the observed frequency range. Moreover, since no inversion
takes place in the ANN-based approach, there are no spurious peaks present in the reconstructed FRFs.

A comparison of the reconstructed assembly FRFs, obtained using the ANN and the decoupling approach, is presented on the
coherence plot (Fig. 10(c)), using the true dynamic response as a reference. The coherence is calculated by:

coh(𝑌 , 𝑌 ref) =
(𝑌 + 𝑌 ref)(𝑌 * + 𝑌 ref*)
2(𝑌 𝑌 * + 𝑌 ref 𝑌 ref*)

. (30)

The average coherence of the ANN and the decoupling approach are 0.94 and 0.89, respectively. It was observed that the coherence
of the ANN-based assembly response drops slightly near the resonance peaks, as the ANN is not able to identify the joint parameters
accurately enough so that the resonance frequencies would match exactly. The values of the identified joint parameters are listed in
Table 2. It should be noted that the original joint model is a separate substructure and the proposed analytical joint model differs
form the original joint model. Since the parameters of the analytical model are obtained using a trained ANN, the uncertainty of
the parameters cannot be evaluated in comparison to the true joint model.
12
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Fig. 10. Numerical study FRF comparison of joint 1: (a) Magnitude, (b) Phase, (c) Coherence. Rigidly coupled AB ( ), true response AJB ( ), ANN-based
AJB ( ), decoupling-based AJB ( ).

Table 2
Identified numerical model’s joint parameters.

Parameter Value Units

𝑚 12.6 g
𝑘𝑥 60.519 kN/mm
𝑘𝑦 48.384 kN/mm
𝑘𝑧 93.266 kN/mm
𝑘𝑡𝑥 62.697 kN m/rad
𝑘𝑡𝑦 18.732 kN m/rad
𝑘𝑡𝑧 4.297 kN m/rad

4.3. Discussion

Using the ANN-based approach, significantly fewer measurements are required to identify the joint dynamics, which is a major
dvantage over the decoupling approach. Both approaches require the dynamic response of A and B separately, accounting for 108
RFs of A (12 channels and 9 impacts) and 108 FRFs of B (9 channels and 12 impacts). However, for the ANN-based approach,
nly nine assembly FRFs were measured for the ANN (using a single triaxial accelerometer and 3 distinct impacts). In contrast, 441
ssembly FRFs were used for the decoupling approach (21 channels and 21 impacts). Moreover, the trained ANN can identify a
ariety of joints by measuring only nine FRFs for each new joint. This makes the approach experimentally appealing, as the number
f measurements needed to identify the joint is significantly reduced compared to the decoupling approach.
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Fig. 11. Numerical study FRF comparison of two additional joints: (a) Magnitude - joint 2, (b) Magnitude - joint 3. True response AJB ( ), ANN-based AJB
( ), decoupling-based AJB ( ).

The presented results can only be achieved if the dynamics of the joint measurably affect the assembly dynamics at the measured
oFs (observability and controllability). Although only four FRFs are used in the identification process, the joint dynamics can
e observed through different vibration modes of the assembly in the chosen frequency range. It should be noted that the joint
odel must be complex enough to sufficiently describe the joint dynamics. On the other hand, an overly-complex joint model
ould eventually require more measurements to ensure that all of the parameters are observable in the assembly dynamics. If the

econstructed assembly dynamics significantly deviate from the true assembly dynamics, the joint model might not be complex
nough or more measurements should be included in the identification procedure. To increase the model’s complexity, additional
ass and spring elements or cross-coupling terms between the joint DoFs can be considered. Since a good prediction of the assembly
ynamics is achieved, the analytical model of the joint seems to be adequate for the presented application.

Due to efficient experimental testing, substructures A and B can be used as a test rig for identifying multiple joints. To demonstrate
he ability to identify different joints, two additional joints were simulated by changing the Young’s modulus of the joint material,
nd the corresponding coupled responses were obtained from the finite-element model. For the sake of brevity, only the magnitude
lots are included in Fig. 11.

The average coherence of the decoupling-based AJB response was higher than the ANN-based AJB response, although spurious
eaks were observed in the decoupling-based AJB response. The ANN-based AJB response matches the true assembly response for
oth joints sufficiently well. However, some eigenfrequencies were misidentified, leading to the discrepancy between the ANN-based
esponse and the true response, as well as a decrease in the coherence near the eigenfrequencies.

. Experimental case-study

Since the numerical study yielded encouraging results, an experimental case-study was conducted to evaluate the real-world
pplicability of the proposed joint identification approach. The geometry of the physical substructures used in the experimental
xample was consistent with the substructures from the numerical study. Due to the different material parameters, as well as the
ossibility for different interactions at the interface, the eigenfrequencies of the experimental assembly were not consistent with
he eigenfrequencies of its numerical counterpart. In addition, the response of the experimental assembly was significantly affected
14
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Fig. 12. Experimentally equipped physical substructures: (a) AJB, (b) A, (c) J, (d) B.

by damping. Therefore, the damping parameters of the joint could not have been neglected, resulting in a more complex analytical
joint model for which additional joint model parameters had to be included.

5.1. Experimental setup

The experimental setup consisted of substructures A, J, and B, seven triaxial accelerometers, and an impact hammer. The
positioning of the sensors and impacts was consistent with the numerical study, allowing the use of VPT. The main sources of error in
the FRFs obtained by impact excitation include uncertainties in the location and orientation of the impacts. Inaccurate measurements
can result in a significantly lower accuracy of the VPT. Therefore, performing the measurements precisely is necessary for accurate
VP FRFs [45]. The experimental setup is shown in Fig. 12. The structures were suspended using foam pads to simulate free-free
boundary conditions.

5.2. Experimental joint identification

The joint model used in the experimental example contained 13 parameters: the joint mass, six stiffness coefficients, and six
damping coefficients. Damping was accounted for using Eq. (14), which required the identification of six modal damping ratios.
Successful identification becomes increasingly difficult as the number of joint parameters increases. The number of joint parameters
was reduced by making all the modal damping ratios associated with translational modes equal, and the same was done for
the rotational modal damping ratios. Therefore, the identification was facilitated by reducing the number of independent joint
parameters. The number of joint model parameters for identification was reduced to nine.

Data preparation for the experimental joint identification followed the same procedure as described in Section 4, i.e., FRF
selection and PCA. Again, 200 PCs were considered as the input data features for the joint identification. Due to the large number
of neural network parameters, the ANN was again prone to overfitting. To overcome this problem, batch normalization was
implemented in each layer of the ANN in conjunction with 𝐿 regularization, analogous to the ANN in the numerical study. Batch
15
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Fig. 13. Experimental example FRF comparison: (a) Magnitude plot, (b) Phase plot, (c) Coherence. Rigidly coupled AB ( ), true response AJB ( ),
ANN-based AJB ( ), decoupling-based AJB ( ).

Table 3
Experimentally identified joint model parameters.

Parameter Value Units

𝑚 37.4 g
𝑘𝑥 57.344 kN/mm
𝑘𝑦 14.379 kN/mm
𝑘𝑧 149.767 kN/mm
𝑘𝑡𝑥 9.005 kN m/rad
𝑘𝑡𝑦 15.401 kN m/rad
𝑘𝑡𝑧 3.266 kN m/rad
𝜁 tr
𝑟 1.49 /
𝜁 rot
𝑟 93.8 /

normalization provided a good generalization, meaning the testing loss closely followed the training loss throughout the training
iterations. As described in Section 4.2, 𝐿2 regularization has no regularization effect in the presence of batch normalization, although
the effective learning rate is increased, justifying the use of both regularization methods.

The results of the experimental joint identification are shown in Fig. 13. Again, the decoupling approach leads to spurious peaks.
In contrast, the response of the ANN-based approach resembles the true coupled response with some eigenfrequencies misaligned due
to misidentified joint parameters or the lack of joint model complexity to adequately describe the true joint’s dynamics. The average
coherence of the decoupling-based response and the ANN-based response were 0.80 and 0.93, respectively. Again, the coherence
was measured with respect to the true coupled response. The values of the identified parameters are listed in Table 3.
16
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5.3. Discussion

The identified values of the joint parameters follow a similar trend in both the numerical and experimental studies. In both cases,
he translational stiffness 𝑘𝑧 is higher than 𝑘𝑥 and 𝑘𝑦, while the rotational stiffness 𝑘𝑡𝑧 is lower than 𝑘𝑡𝑥 and 𝑘𝑡𝑦. A high stiffness
𝑘𝑧 is caused by the geometry of the joint. Only two thin rubber flanges ensure the substructures A and B are not in direct contact,
therefore a relatively high stiffness in the 𝑧-direction is expected compared to the 𝑥 and 𝑦 directions. The same flanges resist the
relative rotation of the substructures about the 𝑥 and 𝑦 axes, therefore the rotational stiffness about the 𝑧-axis is expected to be
relatively low. In the experimental study, the identified rotational damping ratio 𝜁 rot𝑟 is significantly higher than the translational
damping ratio 𝜁 tr𝑟 . Again, due to the geometry of the joint, less effort was needed to induce a relative angular displacement of the
substructures A and B in the assembled state due to slipping. Therefore, slipping about the 𝑧-axis could explain the higher rotational
damping.

The proposed ANN-based approach has several advantages. Compared to the decoupling joint identification approach, an overall
increase in the average coherence was achieved. The ANN-based response is not only less noisy, but also more accurately matches
the response of the real assembly since there are no spurious peaks. Further research could improve the proposed approach, e.g., by
using a different joint model or ML model. The computational model of the joint is relatively simple and does not consider the
effects of cross-coupling between the individual DoFs (the displacement of a node in a particular direction can only be caused by a
load in the same direction). The results can be improved by considering cross-coupling, which is permitted in the FBS approach.

6. Conclusion

In this work an ANN-based approach was used to identify the dynamic properties of a joint. The approach relies on the VPT to
obtain collocated DoF models of the substructures A and B, connected by the joint. A physics-based computational model (i.e., an
analytical joint model) is proposed to describe the true joint’s dynamics. Using the computational model, joint samples are obtained
by randomly generating joint model parameters. The LM-FBS coupling is used to obtain the dynamic response of the assembly for
each joint sample, and PCA is used for the dimensionality reduction. An ANN is constructed, and the PCs are used as the input
with the corresponding values of the joint model parameters as the output. After the ANN training, the approach is validated by
calculating the joint admittance matrix from the identified parameters, coupling the joint with substructures A and B, and comparing
the coupled response with the original assembly response.

The ANN was first validated in a numerical study to evaluate its ability to identify the joint dynamics. Based on the promising
results, an experimental example was conducted. The damping parameters of the joint model could not be neglected in the
experimental example since the response was significantly damped. Although additional joint parameters had to be identified, the
predicted response matched well with the original response of the assembly.

The proposed ANN-based approach is experimentally appealing. It allows an efficient identification of different joints, as
significantly fewer measurements are required for the identification compared to the decoupling approach. Although there might
be some loss of accuracy in the identified eigenfrequencies of the coupled response, the spurious peaks are not present, in contrast
to the decoupling approach. Further research could improve the ANN-based approach, e.g., by proposing a different analytical joint
model or by modifying the ML algorithm used to predict the values of the joint model parameters.
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