
 

 

  

Abstract—The paper discusses the design of a .NET Windows 

Service based agent system called MACS (Multi-Agent 

Classification System). MACS is a system aims to accurately classify 

spreadsheet developers competency over a network. It is designed to 

automatically and autonomously monitor spreadsheet users and 

gather their development activities based on the utilization of the 

software multi-agent technology (MAS). This is accomplished in 

such a way that makes management capable to efficiently allow for 

precise tailor training activities for future spreadsheet development. 

The monitoring agents of MACS are intended to be distributed over 

the WWW in order to satisfy the monitoring and classification of the 

multiple developer aspect. The Prometheus methodology is used for 

the design of the agents of MACS. Prometheus has been used to 

undertake this phase of the system design because it is developed 

specifically for specifying and designing agent-oriented systems. 

Additionally, Prometheus specifies also the communication needed 

between the agents in order to coordinate to achieve their delegated 

tasks.  

 

Keywords—Classification, Design, MACS, MAS, Prometheus. 

I. SOFTWARE DEVELOPMENT METHODOLOGY FOR AGENT- 

BASED SYSTEMS 

S agents are gaining acceptance as a technology and are 
being used, there is a growing need for practical methods 

for developing agent applications. However, one of the most 

fundamental obstacles to large-scale take-up of agent 

technology is the lack of mature software development 

methodologies for agent-based systems [8]. Numerous agent 

oriented methodologies have been proposed in the literature 

such as Prometheus [5], [6], GAIA [13], TROPOS [10], [2] 

and MaSE [11], [12], just to name a few. Additionally, there 

are other software development methodologies such as Agile, 

RUP, and Shlaer-Mellor that can be considered as alternatives 

for the design of the agent system. The section below briefly 

explains why Prometheus has been chosen for the design of 

the agent system.  

II. THE PROMETHEUS METHODOLOGY 

Prometheus is intended to be a practical methodology. As 

such, it aims to be complete: providing everything that is 

needed (start-to-end process) to specify and design agent 

systems. Other distinguishing features of the Prometheus 

methodology are [7]: 

 
M. R. Mhereeg was with Glamorgan University, Pontypridd, CF37 1DL, 

UK. He is now with the Department of Computer Science, Tripoli University, 

Tripoli, Libya (e-mail: mmhereeg@msn.com). 

- Prometheus is detailed – it provides detailed guidance on 

how to perform the various steps that form the process of 

Prometheus. 

- Prometheus supports (though is not limited to) the design 

of agents that are based on goals and plans. 

- Prometheus covers a range of activities from requirements 

specification through to detailed design. 

- Prometheus allows the creation of the communication 

between the agents when a message is sent from one 

agent to another.  

- The methodology is designed to facilitate tool support, 

and tool support exists in the form of the Prometheus 

Design Tool (PDT). 

Prometheus, through its three phases (Fig. 1), system 

specification, architectural design, and detailed design, defines 

an in-depth process for specifying and designing agent-

oriented systems. The process defines a range of artefacts 

some of which are used as permanent, and others that are used 

as ‘stepping stones’ for other artefacts. Artefacts include goals, 

capabilities, events, plans and data structures, actions and 

percepts. 

The system specification phase focuses on the identification 

of system goals, developing use case scenarios that 

demonstrate the operation of the system to be developed, 

determining the basic functionalities of the system and the 

specification of the interface between the system and its 

working environment by identifying the result actions. 

The architectural design phase builds on the artefacts 

(deliverables) from the system specification phase to 

determine the composition of the agents the system will 

contain and how they will interact. This stage is also used to 

capture the system’s overall structure and its dynamic 

behaviour.  

The detailed design is used to establish the internal design 

of each agent within the system and is not dependent on any 

one particular development platform/environment. 

Although Agile, RUP, and Shlaer-Mellor are general 

purpose software development methodologies, these methods 

could be used as alternative solutions for the design of the 

agent system. In contrast, Prometheus is developed 

specifically for specifying and designing agent-oriented 

systems, therefore it has been chosen to undertake this phase 

of the project. Additionally, Prometheus and its accompanying 

tool (PDT) beyond specifying and designing the agents 

required to construct the agency specify also the 

communication needed between these agents in order to 

coordinate to achieve their delegated tasks. Furthermore, 

Prometheus has been compared to other existing software 

development methodologies for agent-based systems [3], [4]. 

Mohamed R. Mhereeg 

The Design of the Multi-Agent Classification System 

(MACS) 

A

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:8, No:4, 2014 

631International Scholarly and Scientific Research & Innovation 8(4) 2014 scholar.waset.org/1307-6892/9998109

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r 

an
d 

Sy
st

em
s 

E
ng

in
ee

ri
ng

 V
ol

:8
, N

o:
4,

 2
01

4 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

99
98

10
9

http://waset.org/publication/The-Design-of-the-Multi-Agent-Classification-System-(MACS)/9998109
http://scholar.waset.org/1307-6892/9998109


 

The features of Prometheus distinguish it from these 

methodologies, but none of them have all of the Prometheus 

features described below [7].  
 

Fig. 1 The phases of Prometheus methodology

 

Thus, Prometheus methodology and its accompanying 

Prometheus Design Tool (PDT) have been 

specifying and designing the agents needed to construct the 

Multi-Agent System (MACS). However, 

demonstration of how Prometheus through its three phases 

(Fig. 1), system specification, architectural

design can be used to achieve this goal. 

A. System Specification  

This section discusses the artifacts and processes required in 

the system specification phase, the initial phase of the 

Prometheus methodology.  

1. Goal Specification 

a. Brief Statement of the Problem Scenario 

The system will automatically and continuously monitor 

end-users developing application in the spreadsheet domain 

over a network and gather their development activities. The 

data gathered from multiple resources will be collected in an 

Oracle Server Database for further processing. The processing 

will lead to the classification of the users based on well

defined classification criteria explained in 

classification is dependent of their knowledge and experience 

of both excel and the excel macro language Visual Basic for 

Application (VBA) [1]. The categories are Excel User, Excel 

Power User, VBA Developer, Excel Developer, and 

Professional Excel Developer. A typical 

off as a simple consumer of data and progress through simple 

charts, formulas, pivot tables, VBA development

further to automate other applications, use 

and XML for sharing data over the Internet. 

from [1] summarizes the categories of the users. It explains the 

categories together with a description and the level of 

knowledge (Usage) required for every category.

The MultiAgent Classification System (MACS) will consist 

of a number of software agents. These agents will monitor the 

 

The features of Prometheus distinguish it from these 

s, but none of them have all of the Prometheus 

 

he phases of Prometheus methodology 

Prometheus methodology and its accompanying 

Prometheus Design Tool (PDT) have been chosen for 

specifying and designing the agents needed to construct the 

However, above is a 

how Prometheus through its three phases 

), system specification, architectural design and detailed 

discusses the artifacts and processes required in 

the system specification phase, the initial phase of the 

Brief Statement of the Problem Scenario  

The system will automatically and continuously monitor 

s developing application in the spreadsheet domain 

network and gather their development activities. The 

data gathered from multiple resources will be collected in an 

Oracle Server Database for further processing. The processing 

sification of the users based on well-

defined classification criteria explained in Table I. The 

knowledge and experience 

of both excel and the excel macro language Visual Basic for 

The categories are Excel User, Excel 

Power User, VBA Developer, Excel Developer, and 

 excel user may start 

off as a simple consumer of data and progress through simple 

VBA development, and progress 

use Windows API calls 

and XML for sharing data over the Internet. Table I adapted 

from [1] summarizes the categories of the users. It explains the 

categories together with a description and the level of 

knowledge (Usage) required for every category. 

The MultiAgent Classification System (MACS) will consist 

of a number of software agents. These agents will monitor the 

usage of software applications on end

any new usage patterns being re

will be installed manually on the users’ computers and when 

Excel spreadsheets are executed, the agents will listen and 

gather the contents of these applications. 

The monitoring agent will also detect when a macro/Visual 

Basic Application (VBA) code has been recorded and report

when features are being used, such features in the program 

environment include the number and type of: selections, 

sequences, iterations, procedures, functions, inclusion of 

ActiveX controls and referen

agents of MACS will be distributed on the user’s computers 

over the network and run autonomously in the backgrounds 

collecting the data as long as these computers are being used 

by the end users.  

TABLE

EXCEL DEVELOPER 
 

CATEGORY 
 

DESCRIPTION  

Excel User 
 

- Store lists, Simple repetitive calculations

- Some worksheet functions
- Pivot tables 

- Charts  

Excel Power 

User 

- Wide understanding of excel Functionality 
- Create complex spreadsheets for own use and 

and debug colleague’s spreadsheets.

- Occasional use of VBA code from macro recorder or the 
Internet. 

VBA 

Developer  

- Extensive use of VBA

- Typically they are Power Users who started to learn VBA or 
Visual Basic developers who switched to 

- Often lack sufficient knowledge of Excel to make the best 

use of its features. 

Excel 

Developer  

- Constructs efficient and maintainable applications by 

making the best use of excels’ built

augmented by VBA when appropri
- Confident at developing excel based applications for both 

their colleagues and as part of a development team.

- Constrained by their reluctance to use other programming 
languages and applications to augment their excel solutions. 

Professional 

Excel 

Developer 

- Design and develops excel based applications and utilities 

that are robust, fast, easy to use, maintainable and secure.
- Excel forms the core use of their applications, but they 

include any other applications and languages that are 

appropriate  
For Example:  

- They might use third party ActiveX controls

- Automate other applications. 
- Use Windows API calls.

- Use ADO to connect to external Databases.

- Use C/C++ for fast custom worksheet functions (DLL/XLL 
add-ins in XLM macro sheets).

- Use VB6 or VB.net for creating object 
securing their code.
- Use XML for sharing data over the Internet. 

b. Identifying Initial Goals 

The system is intended to be developed as

based that can automatically monitor

Excel users’ development activities on an individual basis and 

categorize the usage obtained into different categories using 

well-defined classification criteria from the literature (Table 

I). The activity together with the categorization can then be 

used to recommend training and mentoring in order to make 

the user more productive with respect to the end

application development. The system must be able to identify 

usage of software applications on end-users’ machines with 

any new usage patterns being recorded. The monitoring agents 

will be installed manually on the users’ computers and when 

Excel spreadsheets are executed, the agents will listen and 

gather the contents of these applications.  

The monitoring agent will also detect when a macro/Visual 

c Application (VBA) code has been recorded and report 

when features are being used, such features in the program 

environment include the number and type of: selections, 

sequences, iterations, procedures, functions, inclusion of 

ActiveX controls and references to COM object libraries. The 

agents of MACS will be distributed on the user’s computers 

over the network and run autonomously in the backgrounds 

collecting the data as long as these computers are being used 

 
TABLE I 

EVELOPER CATEGORIES 

 

Store lists, Simple repetitive calculations 

Some worksheet functions 

Wide understanding of excel Functionality  
Create complex spreadsheets for own use and helps develop 

and debug colleague’s spreadsheets. 

Occasional use of VBA code from macro recorder or the 

Extensive use of VBA 

Typically they are Power Users who started to learn VBA or 
Visual Basic developers who switched to VBA development 

Often lack sufficient knowledge of Excel to make the best 

 
Constructs efficient and maintainable applications by 

making the best use of excels’ built-in functionality, 

augmented by VBA when appropriate. 
Confident at developing excel based applications for both 

their colleagues and as part of a development team. 

Constrained by their reluctance to use other programming 
languages and applications to augment their excel solutions.  

Design and develops excel based applications and utilities 

that are robust, fast, easy to use, maintainable and secure. 
Excel forms the core use of their applications, but they 

include any other applications and languages that are 

They might use third party ActiveX controls 

Automate other applications.  
Use Windows API calls. 

Use ADO to connect to external Databases. 

Use C/C++ for fast custom worksheet functions (DLL/XLL 
ins in XLM macro sheets). 

e VB6 or VB.net for creating object -modules and 
securing their code. 
Use XML for sharing data over the Internet.  

 

The system is intended to be developed as a multi-agent 

can automatically monitor the software usage of 

Excel users’ development activities on an individual basis and 

categorize the usage obtained into different categories using 

defined classification criteria from the literature (Table 

I). The activity together with the categorization can then be 

ed to recommend training and mentoring in order to make 

the user more productive with respect to the end-user 

application development. The system must be able to identify 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:8, No:4, 2014 

632International Scholarly and Scientific Research & Innovation 8(4) 2014 scholar.waset.org/1307-6892/9998109

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r 

an
d 

Sy
st

em
s 

E
ng

in
ee

ri
ng

 V
ol

:8
, N

o:
4,

 2
01

4 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

99
98

10
9

http://waset.org/publication/The-Design-of-the-Multi-Agent-Classification-System-(MACS)/9998109
http://scholar.waset.org/1307-6892/9998109


 

any new application development patterns have occurred and 

distinguish them from pre-existing patterns; this includes the 

detection of any Macro/Visual Basic Application (VBA) codes 

generated by the user. The system must be reliable and gather 

data from both spreadsheets under development and 

developed applications and produce the data min

categorization results either on demand or at regular 

intervals, i.e. monthly or three monthly. This step requires:

� Identify System Goals 

- Monitor software usage of end-users 

- Identify application development 

- Identify new usage patterns  

- Create users Data Mining mapping 

- Identify end-users categories 

� Goal Refinement  

Goal refinement leads to the question ‘how might each goal 

be achieved’? Answering the question normally requires 

identifying the sub-goals of the goal under consideration. As 

the initial goals are refined, similar sub

under different parent goals. Grouping these sub

provides the basis of what is called ‘functionalities’ or ‘roles’ 

– chunks of behavior of the system. Below shows the 

expanded list of the initial goals and associated sub

the initial arrangement of these into groupings. 

- Monitor software usage of end-users  

o Identify users 

o Identify packages used 

o When packages used 

o Obtain usage level  

- Identify application development 

o Track creation of programme code 

� Track automatic code generation 

� Track generation of hand coding 

- Identify new usage patterns  

o Obtain new object usage 

o Obtain code structures  

� Determine new code structures 

� Determine existing code structures 

- Create users data mining analysis  

o Get users development efforts  

o Calculate development plane  

- Identify users categories  

o Get skills profile of end users  

o Produce categorization results 

After refining of goals takes place; these goals have then 

been rearranged, moving similar goals together, and adding 

some extra goals to some particular groupings t

some aspect. As this task is achieved, the original set of goals 

and sub-goals form a network of connected goals. Goals are 

represented by ovals and arrows join goals to sub

shows the goal overview diagram for the MultiAgent 

Classification System.  

 

 

any new application development patterns have occurred and 

existing patterns; this includes the 

detection of any Macro/Visual Basic Application (VBA) codes 

generated by the user. The system must be reliable and gather 

data from both spreadsheets under development and 

developed applications and produce the data mining based 

categorization results either on demand or at regular 

This step requires: 

 

Goal refinement leads to the question ‘how might each goal 

be achieved’? Answering the question normally requires 

goals of the goal under consideration. As 

the initial goals are refined, similar sub-goals may appear 

nt goals. Grouping these sub-goals 

provides the basis of what is called ‘functionalities’ or ‘roles’ 

of the system. Below shows the 

expanded list of the initial goals and associated sub-goals, and 

groupings.  

 

 

After refining of goals takes place; these goals have then 

been rearranged, moving similar goals together, and adding 

some extra goals to some particular groupings that are lacking 

some aspect. As this task is achieved, the original set of goals 

goals form a network of connected goals. Goals are 

n goals to sub-goals. Fig. 2 

shows the goal overview diagram for the MultiAgent 

Fig. 2 Goal Overview Diagram

2. Roles  

Roles can be described as a block of 

includes a grouping of goals, as well as percepts, actions and 

data related to the behavior [

percept and the output as an action. However, grouping of 

related roles can eventually lead to determining the agent 

types and their responsibilities. Roles are described by 

rectangles, goals with ovals, and actions with a 

extended with a triangle pointed to the right. 

At this stage goals are grouped into cohesive

assigned to roles which are intended as relatively small and 

easily specified chunks of agent functionality. The percepts 

and actions are then also assigned to the roles appropriately to 

allow the roles to achieve their goals. This is done using the 

‘System Roles Diagram’. 

Fig. 3 System Roles Diagram

 

Goal Overview Diagram 

Roles can be described as a block of behavior, which 

includes a grouping of goals, as well as percepts, actions and 

[9]. The input is represented as a 

percept and the output as an action. However, grouping of 

related roles can eventually lead to determining the agent 

types and their responsibilities. Roles are described by 

rectangles, goals with ovals, and actions with a rectangle 

extended with a triangle pointed to the right.  

At this stage goals are grouped into cohesive units and 

assigned to roles which are intended as relatively small and 

easily specified chunks of agent functionality. The percepts 

also assigned to the roles appropriately to 

allow the roles to achieve their goals. This is done using the 

 

System Roles Diagram 

 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:8, No:4, 2014 

633International Scholarly and Scientific Research & Innovation 8(4) 2014 scholar.waset.org/1307-6892/9998109

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r 

an
d 

Sy
st

em
s 

E
ng

in
ee

ri
ng

 V
ol

:8
, N

o:
4,

 2
01

4 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

99
98

10
9

http://waset.org/publication/The-Design-of-the-Multi-Agent-Classification-System-(MACS)/9998109
http://scholar.waset.org/1307-6892/9998109


 

 

Fig. 3 above shows the “Software Usage Role” is 

responsible for the goals to Identify Users, Packages Used 

and, When Packages Used (i.e. File Properties) of any files 

used by end users. To achieve this goal the role needs the 

inputs User logs on, User Creates File, or User Updates File 

and should perform the action Write Software Usage to a local 

store. Once roles have been identified, role descriptors can be 

developed. The below shows the role descriptors have been 

developed on the basis of the goals grouped under each role. 

The percepts User logs on, User creates file and User 

updates file all trigger two roles: “Software Usage Role” and 

“Object & Coding Patterns Role”. They carry out the actions: 

Write software usage to a local store and Write Object and 

Coding patterns to local store respectively, and depending on 

the percept the appropriate goals will be satisfied.  

Software Usage Role Descriptor: 

Name Software Usage 

Description The role monitors the software being used on a daily 

basis by end users 

Percepts User logs on, User creates file, User updates file 

Actions Write software usage to a local store 

Data used Software used 

Data produced Software used local store 

Goals Identify users, Package used, When packages used 

Object and Coding Patterns Role Descriptor:  

Name Object and Coding Patterns 

Description The role monitors the Object and Code patterns of a 

software being used on a daily basis by end users  

Percepts User logs on, User creates file, User updates file 

Actions Write Object and Coding patterns to a local store 

Data used Object and coding patterns used 

Data produced Object and coding patterns used local store 

Goals Obtain object usage, obtain code structures 

The percept Analysis Request is performed in an ad-hoc 

manner to trigger the roles “Analysing Object Usage” and 

“Analysing Code Usage patterns”. They carry out associated 

actions of Writing analysed object usage with reference to 

software usage to a database and Writing analysed code usage 

with reference to software usage to a database respectively to 

meet the roles’ assigned goals.  

Analysing Object Usage Role Descriptor: 

Name Analysing Object Usage 

Description For each user build up a history of the object usage 

and determine new object usage patterns 

Percepts Analysis request (ad-hoc request) 

Actions Write analysed object usage with reference to software 

usage to a database 

Data used Object usage patterns used 

Data produced Object usage patterns used database  

Goals Obtain object usage history, determine new object usage 

patterns  

Analysing Code Usage Role Descriptor:  

Name Analysing Code Usage 

Description For each user build up a history of the code usage 

and determine new code usage patterns 

Percepts Analysis request (ad-hoc request) 

Actions Write analysed code usage with reference to software 

usage to a database 

Data used Code usage patterns used  

Data produced Code usage patterns used database  

Goals Obtain code usage history, determine new code usage 

patterns  

The ad-hoc Data Mining Request percept triggers the role 

“Data Mining Analysis”. The action Write data mining results 

to database is to be taken to satisfy the goals assigned to this 

role. 

Data Mining Analysis Role Descriptor: 

Name Data Mining Results 

Description Get object and code usage patterns of users and 

calculate development plane  

Percepts Data Mining request (Ad-hoc request) 

Actions Write data mining results to a database  

Data used Analysed object and code usage patterns 

Data produced Data mining results database 

Goals Get object usage, Get code usage, calculate development 

plane, create new data mining mapping  

The percept Categorization Event triggers the role 

“Categorization Results” that is performed after the “Data 

Mining Analysis Role” has been achieved. The end users skills 

profile is retrieved and examined. Resulting in, a 

categorization results are to be produced that shows the users’ 

categories have been developed over a period of time.  

Categorization Results Role Descriptor: 

Name Categorization Results  

Description Obtain skills profile of users for categorization 

purposes  

Percepts Categorization event (Ad-hoc request) 

Actions Write categorization results to a database 

Data used End-users skills profile database  

Data produced Categorization results database 

Goals Get end-users skills profile, produce categorization results 

3. Interface Description  

Agents are often situated in an environment that is dynamic 

and change rapidly. Thus, agents need to respond to these 

changes while trying to achieve a goal. Interface description 

deals with how agents interact with and affect the changing of 

the environment in which they are situated.  

a. Percepts and Actions 

Percepts can be defined as the expected incoming 

information that will be available while the agent is running, 

the agents in this case are required to react to this change in 

the environment and action is to be taken to fulfill the task 

under consideration. Two types of incoming information have 

been considered. The first one happens via some form of event 

(user logs on a computer), in the second the agent is required 

to seek the data via monitoring the environment and listening 

to any files accessed by the users.  

The list below illustrates the percepts and actions identified 

for the MACS system. 

 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:8, No:4, 2014 

634International Scholarly and Scientific Research & Innovation 8(4) 2014 scholar.waset.org/1307-6892/9998109

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r 

an
d 

Sy
st

em
s 

E
ng

in
ee

ri
ng

 V
ol

:8
, N

o:
4,

 2
01

4 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

99
98

10
9

http://waset.org/publication/The-Design-of-the-Multi-Agent-Classification-System-(MACS)/9998109
http://scholar.waset.org/1307-6892/9998109


 

 

Percepts: 

- User logs on 

- User creates file 

- User updates file 

Actions: 

- Store software usage  

- Store object & code usage patterns  

- Store data mining results  

- Store categorization results 

b. Data 

As roles are developed, it is also important to consider both 

the data is to be created or consumed. Data produced and used 

by MACS system are: 

Software Used Database - contains data relating to the 

software applications being used by each end user, e.g. 

Author, Date Created, Date Last Saved, Last Saved By,.. etc. it 

also contains information on the object patterns and code 

structure present in end users code, e.g. selection statements, 

iterations, procedures, functions (Table II shows the software 

usage and object & code patterns). This database keeps track 

of the users’ development activities. Software Usage Analysis 

Database - contains the total analyzed usage of the users’ 

object and code patterns of developed applications. This usage 

will be used for mining the users’ development activities.  

Data Mining Results Database - contains records of end 

users skills profile. Categorization Results Database - 

contains information relating to end users categorization 

results.  
 

TABLE II 
SOFTWARE USAGE AND OBJECT & CODE PATTERNS 

Number Of Functions Number Of Iterations 

Database 

Lookup & Reference 

Date & Time 
Math & Triggers  

Financial 

Information 
Logical 

Text 

Cube functions 
Engineering functions  

Add-ins and automaton  

Functions 

Do … Loop Until 

Do … Until Loop 

Do… Loop While 
Do …While Loop 

For … Next 

For … Each 

Number of Selections 

If … Then … End If 

If … Then … Else … End If 

Select … Case 

File Properties 

Calculate number of variables 

and constants 

Author 
Company 

Version 

Date Last Saved 
Date Created 

Comments 

Document Name 
Path Name 

Application 

Last Saved By 
Title  

Subject 

Constants 

Variables 

Calculate number of Procedures 

Function 
Sub 

Applications & Languages 

Automated applications 

Windows API calls 
ADO 

C/C++, XML 

VB6 or VB.net 

B. Architectural Design 

In the System Specification phase, the system scenarios, 

goals, roles and role descriptors are developed. In the 

architectural design phase these artifacts will be used for 

developing the high-level design of the agent system. In 

Prometheus, all phases of the design interact with each other. 

Therefore, the architectural design aspects in this phase 

interact with each other as well as with the system 

specifications phase features.  

The three aspects that are developed during architectural 

design are: 

1. Deciding on the agent types used in the application. 

2. Describing the interaction between agents.  

3. Designing the overall system structure using the System 

Overview Diagram.  

1. Deciding on the Agent Types 

A major decision is to be made during the architectural 

design is deciding the agent types the system will contain. 

Agent types are formed by combining roles, taking into 

consideration the standard software engineering criteria of 

coupling and cohesion. The relationships between roles and 

data stores they interact with are also considered in 

determining the agent types.  

a. Grouping Roles 

After roles have been identified, there are many possible 

solutions in which these roles can be grouped into agents. A 

good proposed grouping is the one that offers lower degree of 

dependency or coupling and higher degree of cohesion. [9] 

Stated two reasons for deciding to group roles into a single 

agent: 

1. The roles seem related – it ‘makes sense’ to group them. 

For example, the Software Usage and Object & Coding 

Usage roles are clearly related. 

2. The roles require a lot of the same information. If grouped 

into a single agent. This can then be represented in 

internal agent data structure.  

They also stated the below reasons for not grouping roles: 

1. The roles are clearly unrelated. 

2. The roles exist on different hardware platforms. 

3. Different numbers of roles are required at run time. 

The Data Coupling Diagram is the tool used to develop and 

assess the proposed groupings. These groupings are then 

evaluated and refined using the Agent Acquaintance Diagram.  

1) Data Coupling Diagram 

One technique that is used to assess coupling and help in 

finding groupings which are relatively loosely data coupled is 

the Data Coupling Diagram. A data coupling diagram consists 

of all roles formed in the previous phase linked to data that has 

been identified as necessary for performing the role (not only 

persistent data, but also data the roles require to fulfill their 

mission). 

Rectangles are used to depict roles, and cylinders are to 

depict data. Direct links are then inserted between roles and 

data, an arrow from role linked to data indicates the data is 

produced or written by the role, whereas an arrow from data 

linked to role indicates that data is used or read by that role. A 

double-headed arrow indicates that the role both produces and 

uses the data.  

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:8, No:4, 2014 

635International Scholarly and Scientific Research & Innovation 8(4) 2014 scholar.waset.org/1307-6892/9998109

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r 

an
d 

Sy
st

em
s 

E
ng

in
ee

ri
ng

 V
ol

:8
, N

o:
4,

 2
01

4 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

99
98

10
9

http://waset.org/publication/The-Design-of-the-Multi-Agent-Classification-System-(MACS)/9998109
http://scholar.waset.org/1307-6892/9998109


 

Various design decisions can be made to group roles into 

agents. A robust rationale for grouping roles is to examine the 

data sharing, and in particular if roles write to the same 

database store, it is an indication for grouping them, thus these 

roles should be in the same agent. Fig. 4

Coupling Diagram with two possible groupings. 

The roles Software Usage and Object & Coding Usage 

Patterns are both used to populate the Software Usage Local 

Data Store, thus they make up the first agent namely the 

Monitoring Agent. The roles Analysing Object Usage

Analysing Code Usage Patterns read data from the 

Usage Local Data Store, analyse the data and, then populate 

the Software Used Database and Software Usage Analysis 

Database data stores. These roles make up the second agent 

named Database Updater Agent.  

The Data Mining Analysis and Categorization Results

Roles are not to be grouped. These roles will be performed 

manually and separately by the User Agent (i.e. Administrator 

of the system) in an Ad-hoc manner. 
 

Fig. 4 Data Coupling Diagram

 

2) Agent-Role Grouping Diagram  

In this diagram the roles are grouped into agents. The 

Agent-Role Grouping Diagram shows the group of roles that 

come under each agent. Fig. 5 illustrates that the roles of 

Software Usage and Object & Coding Usage

the Monitoring Agent, whereas the roles of 

Usage and Analysing Code Usage as being part of the 

Database Updater Agent.  

 

Fig. 5 Agent-Role Grouping Diagram

3) Agent Acquaintance Diagram  

The Agent Acquaintance Diagram eval

for coupling and places a link where there is a communication 

between the agents. These links are automatically created 

 

Various design decisions can be made to group roles into 

rationale for grouping roles is to examine the 

data sharing, and in particular if roles write to the same 

database store, it is an indication for grouping them, thus these 

be in the same agent. Fig. 4 shows the Data 

Diagram with two possible groupings.  

Object & Coding Usage 

Software Usage Local 

, thus they make up the first agent namely the 

Analysing Object Usage and 

Patterns read data from the Software 

analyse the data and, then populate 

Software Usage Analysis 

data stores. These roles make up the second agent 

Categorization Results 

Roles are not to be grouped. These roles will be performed 

manually and separately by the User Agent (i.e. Administrator 

 

Data Coupling Diagram 

In this diagram the roles are grouped into agents. The 

Role Grouping Diagram shows the group of roles that 

illustrates that the roles of 

Object & Coding Usage as being part of 

the Monitoring Agent, whereas the roles of Analysing Object 

as being part of the 

 

Role Grouping Diagram 

The Agent Acquaintance Diagram evaluates the groupings 

for coupling and places a link where there is a communication 

between the agents. These links are automatically created 

when a message (call) is sent from 

shows that a message is sent from the Database Updat

to the Monitoring Agent requesting the collected data the local 

store contains. 

One of the design aims is to produce a system that is as 

loosely coupled as possible. The 

the design has a low level of coupling

between the agents and therefore preferable. 

 

Fig. 6 Agent Acquaintance Diagram

2. Developing Agent Descriptors 

Once the agents of the system have been decided, Agent 

descriptors are to be produced. This would provide higher 

level information contains answ

- How many agents of each type will there be?

- What is the lifetime of the agent?

- Agent initialization – what needs to be done?

- Agent demise – what clean up needs to be done?

- What percepts will this agent react to?

- What actions will it take?

- What are the goals of the agent?

- What data does this agent uses or produces?

In addition, each agent should have an extra information 

includes the name of the agent, a natural language description 

of what this agent does within 

that have constructed the agent. Tables 

descriptors for the Monitoring Agent and the Database 

Updater Agent respectively.  

TABLE
THE MONITORING 

Name  Monitoring Agent 

Description  Monitor software packages used by an end user 

Cardinality 

minimum  

One per networked computer 

Cardinality 

maximum  

One per networked computer

Lifetime  Instantiated when user logs on. Demise when 

user logs out
and restarted manually by the user

Initialization  Listen for packages that are being launched, data 
collection 

Demise  Close open communications 

Percepts  User logs on, user creates file, user updates file 

Actions  Write software usage to local store, write object 
& Coding patterns usage to local store 

Uses data  None  

Produces data  Software usage local store 

Goals  Identify users, packages used, when packages 
used, obtain object usage, obtain code usage 

Roles  Software usage, object & code usage patterns 

 

 

 

 

 

 

 

 

when a message (call) is sent from one agent to another. Fig. 6 

shows that a message is sent from the Database Updater Agent 

to the Monitoring Agent requesting the collected data the local 

One of the design aims is to produce a system that is as 

loosely coupled as possible. The figure below indicates that 

the design has a low level of coupling with one linkage 

between the agents and therefore preferable.  

 

Agent Acquaintance Diagram 

Developing Agent Descriptors  

Once the agents of the system have been decided, Agent 

descriptors are to be produced. This would provide higher 

contains answers to the following questions  

How many agents of each type will there be? 

What is the lifetime of the agent? 

what needs to be done? 

what clean up needs to be done? 

What percepts will this agent react to? 

What actions will it take? 

What are the goals of the agent? 

What data does this agent uses or produces? 

In addition, each agent should have an extra information 

includes the name of the agent, a natural language description 

of what this agent does within the system and a list of the roles 

that have constructed the agent. Tables III and IV show 

descriptors for the Monitoring Agent and the Database 

 
 

TABLE III 
ONITORING AGENT DESCRIPTOR  

Monitoring Agent  

Monitor software packages used by an end user  

One per networked computer  

One per networked computer 

Instantiated when user logs on. Demise when 

user logs out, Can be started, paused, stopped 
restarted manually by the user 

Listen for packages that are being launched, data 
collection  

Close open communications  

User logs on, user creates file, user updates file  

Write software usage to local store, write object 
& Coding patterns usage to local store  

Software usage local store  

Identify users, packages used, when packages 
used, obtain object usage, obtain code usage  

Software usage, object & code usage patterns  

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:8, No:4, 2014 

636International Scholarly and Scientific Research & Innovation 8(4) 2014 scholar.waset.org/1307-6892/9998109

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r 

an
d 

Sy
st

em
s 

E
ng

in
ee

ri
ng

 V
ol

:8
, N

o:
4,

 2
01

4 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

99
98

10
9

http://waset.org/publication/The-Design-of-the-Multi-Agent-Classification-System-(MACS)/9998109
http://scholar.waset.org/1307-6892/9998109


 

 TABLE IV 

THE DATABASE UPDATER AGENT DESCRIPTOR 

Name  Database Updater Agent 

Description  Collects data gathered by the Monitoring Agents, 

filters the data, and then connects to Oracle 

server database for data upload. 

Cardinality 

minimum  

One per networked master computer

Cardinality 

maximum  

One per networked master computer 

Lifetime  Instantiate manually by the user agent. Demise 

when user logs out 

Initialization  Obtains data gathered by the Monitoring Agents

Demise  Closes open database connections 

Percepts  Analysis request  

Actions  Write analysed data with reference to softwa

usage to Oracle Database 

Uses data  Software usage local store 

Produces data  Software used database, software usage analysis 
database  

Goals  Obtain object usage history, determine new 

object usage patterns, Obtain code usage history, 
determine new code usage patterns

Roles  Analysing object usage, analysing code usage 

3. System Overview  

Having identified the agents the system will include. The 

top level structure of the system can be produced using the 

System Overview Diagram (Fig. 7). This diagram brings 

together the agents, percepts, actions, and data stores and 

shows how they will interact to achieve the system goals. It 

shows which percepts and actions are associated with which 

agent. It shows also which data stores are used, whic

produced and, which are both used and produced by which 

agent. Messages that can be sent between agents can also be 

shown in this diagram.  

 

Fig. 7 System Overview Diagram

 

It is arguably the single most important artifact of the entire 

design process, although of course it cannot be really 

understood fully in isolation [9]. The System Overview 

Diagram assists to obtain a general understanding of how the 

system will function, including the interactions between 

agents.  

 

ESCRIPTOR  

Database Updater Agent  

Collects data gathered by the Monitoring Agents, 

filters the data, and then connects to Oracle 

server database for data upload.  
One per networked master computer 

One per networked master computer  

Instantiate manually by the user agent. Demise 

Obtains data gathered by the Monitoring Agents 

Closes open database connections  

Write analysed data with reference to software 

 
Software usage local store  

Software used database, software usage analysis 

Obtain object usage history, determine new 

object usage patterns, Obtain code usage history, 
code usage patterns 

Analysing object usage, analysing code usage  

Having identified the agents the system will include. The 

top level structure of the system can be produced using the 

). This diagram brings 

together the agents, percepts, actions, and data stores and 

shows how they will interact to achieve the system goals. It 

shows which percepts and actions are associated with which 

agent. It shows also which data stores are used, which are 

produced and, which are both used and produced by which 

agent. Messages that can be sent between agents can also be 

 

System Overview Diagram 

It is arguably the single most important artifact of the entire 

process, although of course it cannot be really 

understood fully in isolation [9]. The System Overview 

Diagram assists to obtain a general understanding of how the 

system will function, including the interactions between 

C. Detailed Design 

The detailed design phase 

of each agent individually. It takes the artifacts have been 

developed in the architectural design phase and for every 

agent develops the capabilities necessary to achieve its goals. 

The roles of the agents that have been defined in the 

specification phase can be used to suggest an initial set of 

capabilities, which can then be refined as desired. The detailed 

design describes agents in terms of capabilities and the 

interactions between them. These capabiliti

to the implementation platform more than the preceding steps. 

The detailed design phase consists of two Agent Overview 

Diagrams, one for each agent as shown below. 

1. Agent Overview Diagram 

The Agent Overview Diagram provides a top level

the internal structure and behavior

In this stage, an Agent Overview Diagram is produced for 

every single agent appeared in the System Overview Diagram. 

The Agent Overview Diagram is very similar to the System 

Overview Diagram, but instead of showing the interactions 

between agents within the system, it shows the interactions 

between the capabilities within an agent. This diagram brings 

together the capabilities, and all the percepts, actions and data 

stores linked to an agent within the system. The Agent 

Overview Diagram also includes the messages required 

between capabilities in order to 

agent. Figs. 8 and 9 illustrate graphically the detailed design of 

the Monitoring Agent and the Database U

respectively. By looking at these diagrams, it is possible to 

gain a high level view of how the capabilities of the system 

will interact to achieve the overall tasks of the agents. 

 

Fig. 8 Agent Overview Diagram for the Monitoring Agent

 deals with the internal behavior 

of each agent individually. It takes the artifacts have been 

developed in the architectural design phase and for every 

agent develops the capabilities necessary to achieve its goals. 

that have been defined in the 

specification phase can be used to suggest an initial set of 

capabilities, which can then be refined as desired. The detailed 

design describes agents in terms of capabilities and the 

interactions between them. These capabilities are of necessity 

to the implementation platform more than the preceding steps. 

The detailed design phase consists of two Agent Overview 

Diagrams, one for each agent as shown below.  

Agent Overview Diagram  

The Agent Overview Diagram provides a top level view of 

behavior of the agents of the system. 

In this stage, an Agent Overview Diagram is produced for 

every single agent appeared in the System Overview Diagram. 

The Agent Overview Diagram is very similar to the System 

Diagram, but instead of showing the interactions 

between agents within the system, it shows the interactions 

between the capabilities within an agent. This diagram brings 

together the capabilities, and all the percepts, actions and data 

n agent within the system. The Agent 

Overview Diagram also includes the messages required 

between capabilities in order to realize the behavior of an 

illustrate graphically the detailed design of 

the Monitoring Agent and the Database Updater Agent 

respectively. By looking at these diagrams, it is possible to 

gain a high level view of how the capabilities of the system 

will interact to achieve the overall tasks of the agents.  

 

Agent Overview Diagram for the Monitoring Agent 

 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:8, No:4, 2014 

637International Scholarly and Scientific Research & Innovation 8(4) 2014 scholar.waset.org/1307-6892/9998109

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r 

an
d 

Sy
st

em
s 

E
ng

in
ee

ri
ng

 V
ol

:8
, N

o:
4,

 2
01

4 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

99
98

10
9

http://waset.org/publication/The-Design-of-the-Multi-Agent-Classification-System-(MACS)/9998109
http://scholar.waset.org/1307-6892/9998109


 

Fig. 9 Agent Overview Diagram for the Database Updater Agent

III. CONCLUSIONS 

The Prometheus agent oriented methodology and its 

accompanying Design Tool (PDT) have been utilized 

effectively for the design of both the Monitoring

Updater agents of MACS. The PDT provided an instrument 

for cross checking the artifacts to ensure a consistent agent 

specification. Thus, the MA agents were

capability to automatically and autonomously monitor 

spreadsheet development activities by content fr

resources over a network, while the DUA agents

designed with the capability to retrieve and filter the data 

collected by the MA agents. As such Prometheus has proved

to be practical and complete providing everything needed to 

specify and design the agents. Using Prometheus allowed the 

coverage of a range of activities from requirements 

specification through to detailed design.

Prometheus and it is tool (PDT) specified also the 

communication needed between the agents when a me

sent/received from one agent to another in order to coordinate 

to achieve their delegated tasks. 

REFERENCES 

[1]. S. Bullen, R. Bovey, & J. Green, (2009)

Development: The Definitive Guide to Developing Applications Using 

Microsoft Excel and VBA, Upper Saddle River, Addison
[2]. G. Fausto, M. john, and A. Perini, (2002)

development methodology: Processes, models and diagrams. 

International Workshop on Agent-Oriented Software Engineering.
[3]. H. D. Khanh, and W. Michael, (2003), Comparing agent

methodologies. IN PAOLO, G. & MICHAEL, W. (Eds.) 

the Fifth International Bi-Conference Workshop on Agent
Information Systems. Melbourne, Australia. 

[4]. H. D. Khanh, (2003), Evaluating agent-oriented software engineering 

methodologies, Master’s thesis, School of Computer Science and 
Information Technology. Melbourne, Australia, RMIT University, 

(supervisors: Michael Winikoff and Lin Padgham).

[5]. P. Lin, and W. Michael, (2002), Prometheus: A methodology for 
developing intelligent agents. Third International Workshop on Agent

Oriented Software Engineering. 

 

 

Agent Overview Diagram for the Database Updater Agent 

 

The Prometheus agent oriented methodology and its 

accompanying Design Tool (PDT) have been utilized 

Monitoring and Database 

The PDT provided an instrument 

for cross checking the artifacts to ensure a consistent agent 

were designed with the 

capability to automatically and autonomously monitor 

spreadsheet development activities by content from different 

resources over a network, while the DUA agents were 

with the capability to retrieve and filter the data 

collected by the MA agents. As such Prometheus has proved 

practical and complete providing everything needed to 

design the agents. Using Prometheus allowed the 

coverage of a range of activities from requirements 

specification through to detailed design. Additionally, 

Prometheus and it is tool (PDT) specified also the 

communication needed between the agents when a message is 

sent/received from one agent to another in order to coordinate 

, (2009), Professional Excel 

Development: The Definitive Guide to Developing Applications Using 

Upper Saddle River, Addison-Wesley. 
, (2002), The Tropos software 

development methodology: Processes, models and diagrams. In Third 

Oriented Software Engineering. 
Comparing agent-oriented 

methodologies. IN PAOLO, G. & MICHAEL, W. (Eds.) Proceedings of 

Conference Workshop on Agent-Oriented 

oriented software engineering 

School of Computer Science and 
Melbourne, Australia, RMIT University, 

(supervisors: Michael Winikoff and Lin Padgham). 

Prometheus: A methodology for 
Third International Workshop on Agent-

[6]. P. Lin, and W. Michael, (2002)

for engineering intelligent agents. 

Workshop on Agent-Oriented Methodologies.
[7]. P. Lin, and W. Michael, (2004)

[8]. L. Michael, M. Peter, and P. Chris

next generation computing: A roadmap for agent
AgentLink report, available from www.agentlink.org/roadmap, ISBN 

0854 327886. 

[9]. L. Padgham, and M. Winikoff
Systems: A Practical Guide, Chichester, Great Britain, Wiley.

[10]. B. Paolo, G. Paolo, G. Fausto

Tropos: An agent-oriented software development methodology, 
Technical Report DIT-02-0015. University of T

Information and Communication Technology.

[11]. A. Scott, and Deloach (2001)
agent Tool. In Proceedings of the 12th Midwest Articial Intelligence and 

Cognitive Science Conference (MAICS 2001).

[12]. D. Scott, W. Mark, and S. 
engineering, International Journal of Software Engineering and 

Knowledge Engineering, 11(3),

[13]. M. Wooldridge, N. R. Jennings
methodology for agent-oriented analysis an

and Multi-Agent Systems, 3(3). 

 

, (2002), Prometheus: A pragmatic methodology 

for engineering intelligent agents. In Proceedings of the OOPSLA 2002 

Oriented Methodologies. 
, (2004), The Prometheus Methodology. 

Chris, (2003), Agent technology: Enabling 

next generation computing: A roadmap for agent-based computing. 
from www.agentlink.org/roadmap, ISBN 

Winikoff, (2004), Developing Intelligent Agent 
Chichester, Great Britain, Wiley. 

Fausto, J. Mylopoulos, and A. Perini, (2002), 

oriented software development methodology, 
0015. University of Trento, Department of 

Information and Communication Technology. 

(2001), Analysis and design using MaSE and 
In Proceedings of the 12th Midwest Articial Intelligence and 

Cognitive Science Conference (MAICS 2001). 

S. Clint, (2001), MultiAgent systems 
International Journal of Software Engineering and 

, 231-258. 

Jennings, and D. Kinny, (2000), The Gaia 
oriented analysis and design. Autonomous Agents 

 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:8, No:4, 2014 

638International Scholarly and Scientific Research & Innovation 8(4) 2014 scholar.waset.org/1307-6892/9998109

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r 

an
d 

Sy
st

em
s 

E
ng

in
ee

ri
ng

 V
ol

:8
, N

o:
4,

 2
01

4 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

99
98

10
9

http://waset.org/publication/The-Design-of-the-Multi-Agent-Classification-System-(MACS)/9998109
http://scholar.waset.org/1307-6892/9998109

