
An Empirical Survey of GitHub Repositories at
U.S. Research Universities

Samuel D. Schwartz
Department of Computer Science

University of Oregon
Eugene, Oregon, USA
sam@cs.uoregon.edu

Boyana Norris
Department of Computer Science

University of Oregon
Eugene, Oregon, USA
norris@cs.uoregon.edu

Stephen F. Fickas
Department of Computer Science

University of Oregon
Eugene, Oregon, USA

stephenfickas@gmail.com

Abstract—In this work we aim to partially answer the question,
“Just how many research software projects are out there?”
by searching for open source GitHub projects affiliated with
research universities in the United States. We explore this through
keyword searches on GitHub itself and by scraping university
websites for links to GitHub repositories. We then filter these
results by using a large language model to classify GitHub
repositories as research software engineering projects or not,
finding over 35,000 RSE repositories. We report our results by
university. We then analyze these repositories against metrics of
popularity, such as stars and repository forks, and find just under
14,000 RSE repositories meet our minimum criteria for projects
which have a community. Based on the time since a developer
last pushed a change to a RSE repository with a community, we
further posit that 3,300 RSE repositories with communities and
a link to a research university are at risk of dying, and thus
may benefit from sustainability support. Finally, across all RSE
projects linked to a research university, we empirically find the
top repository languages are Python, C++, and Jupyter Notebook.

Index Terms—Empirical survey, universities, research software
engineering, GitHub, repositories

I. INTRODUCTION

Research software engineering (RSE), as a formal academic
field of study, is relatively new. Broad questions like, “Just how
many research software projects are out there? Empirically
speaking, what do they look like?” continue to be ripe for
answering. In this paper we expand on our earlier work [1],
which explored and inventoried open source software projects
hosted on GitHub with some nexus to a US Department of
Energy national laboratory. In this work we apply similar
methodology to uncover RSE repositories, but point to a
comparatively larger ecosystem: all major research universities
in the United States.

Specifically, the overarching research questions which guide
this work are:

RQ1 What are all of the public software projects / repositories
on GitHub with some nexus, even a weak one, to the
major research universities in the United States?

RQ2 Of these software projects with some sort of nexus to a
research university, which ones are RSE projects? More
generally, if given a large set of repositories how can we
determine which ones are RSE and which are non-RSE?

RQ3 Of the RSE projects / repositories found through
answering RQ2, which ones are likely to be popular
outside of the project’s core developers? That is,
which projects are used by the community – either a
university-internal community, or external/world-at-large
community?

RQ4 Of the RSE projects / repositories used by the community,
which are still actively developed or maintained? Are
there unmaintained projects with community use? If so,
do we have any sense of what skills are needed to
maintain them?

In answering these questions through previously established
exploratory approaches, we also contribute new findings
around the use and efficacy of a modern large language
model as an aid to automatically identify Research Software
Engineering projects at an empirical scale.

Finally, in order to cover as much ground as possible within
existing time constraints, we did limit ourselves to GitHub
repositories associated with US research universities for this
work. We look forward to examining non US universities,
industry research labs, repository sources other than GitHub –
and within GitHub non-repository pages (e.g., institute owner
pages), and so forth in future papers.

II. RELATED WORK

In examining the literature, there is relatively little directly
comparable work in this space [2]. That said, there is some
work done that helps orient this paper within the literature.
For example, [3] and [4], both of which explore ways to link
research papers and their associated software repositories.

However, we can compare to [1], on RSE GitHub
repositories in US Department of Energy national laboratories.
We rely heavily on the approach used in [1] in this work but
reapply it to the research university context. In [1] the authors
scraped GitHub and national laboratory websites, among other
approaches, to develop an inventory of lab-linked software
repositories. Novel to this work, which also incorporates a
large language model (ChatGPT) to classify repositories as
RSE or not RSE, we compare our findings the results in [5]
and [6] which also used ChatGPT to classify highly specialized
topics in medicine and GitHub repositories, respectively.



Once we had identified RSE projects, we did analysis of
their characteristics. To help ground our work, we can look
to papers like [7] and [8] which discusses the relationship
between stars and forks in open source GitHub repositories.
This is augmented by work like [9] which, among other
findings, illustrates that stars and forks are challenged as useful
metrics for community existence when projects are distributed
across multiple repositories.

III. RQ1: PROJECTS WITH A NEXUS TO A MAJOR US
RESEARCH UNIVERSITIES

A. Definitions, Initial Scope, Overarching Approach:

Our goal is to cast a wide net when answering our formal
research question, “RQ1: What are all of the public software
projects / repositories with some nexus, even a weak one, to the
major research universities in the United States?” That said,
we do define some scoping parameters. First, we will limit
our search to projects ultimately hosted on GitHub. We also
define “major research university” as “R1” universities under
the Carnegie Classification of Institutions of Higher Education.

We identify universities meeting the R1 classification by
relying on the data reported by the universities themselves to
the federal government’s Integrated Postsecondary Education
Data System (IPEDS) run by the National Center for
Education Statistics. All institutions of higher education are
required to submit information to this system on an annual
basis. We used the IPEDS data from the 2022 reporting cycle,
the most recent available, to identify 146 R1 universities to
evaluate. This data set also contained information about a
university’s institutional characteristics, such as the website of
each university, and self-reported aliases and nicknames (e.g.,
“MIT” for the Massachusetts Institute of Technology).

To identify software projects associated with these research
universities we deployed two approaches. (1) We first scraped
the websites of each of the universities, looking for links to
GitHub repositories. (2) We then searched GitHub itself for
repositories by using keywords associated with each of the
universities.

B. Approach 1: Scraping university websites

On December 27, 2023 we deployed a webcrawling spider
on all of the 147 R1 universities, using the root domain
extracted by the self-reported URL from the 2022 IPEDS data
as a starting point. This spider, which obeyed the robots.txt
file from each university, scoured the institutional websites
using a breadth-first search traversal of links on HTML
pages. The spider ran until all linkable HTML pages had
been traversed or 200 hours had passed. On each page, the
spider scraped any link to a GitHub repository. These links
were subsequently cleaned and filtered for repository links of
the form github.com/owner/repository. Duplicates
were consolidated into a set of unique repositories.

1) Results: Of the 146 R1 universities, 116 (70%) allowed
scraping of their website. The rest of this analysis focuses on
these 116 universities.

TABLE I
COMPARISON OF REPOSITORIES FOUND IN THE US DEPARTMENT OF

ENERGY NATIONAL LABORATORY FROM THE DATA OBTAINED IN WRITING
[1] AND US R1 UNIVERSITIES THAT PERMITTED WEBSITE SCRAPING.

Comparison Group: National
Labs

R1
Universities

Number of institutions in group 17 116
Mean number of URLs scraped per
institutional website

306k 384k

Minimum number of unique repositories
found on a institutional website. Note:
A 0 means there was at least one
institution.gov/institution.edu domain which
had no links to GitHub repositories at all.

0 0

Mean number of unique repositories found
on institutional websites

94 58

Median number of unique repositories found
on institutional websites

35 16

Maximum number of unique repositories
found on a institutional website

482 951

Overall, 44,566,662 distinct URLs were traversed, and
average of 384,195 per site. A total of 10,056 unique GitHub
repositories were pointed to by one or more links across all
of the 116 universities that permitted website scraping.

We compare these raw findings with the national laboratory
study [1] in Table I.

C. Approach 2: Searching on GitHub

We also used GitHub itself to search for keywords
associated with each university to find affiliated repositories,
similar to the approach used in [1].

The keywords used were lowercase versions of (1) the
official name of the university (e.g., “University of Oregon”);
(2) aliases drawn from self-reported IPEDS data (e.g., “UO,”)
or derived from the domain name (e.g., “UOregon”) – which
was feasible since GitHub searches are not case sensitive; and
(3) the domain name itself (e.g., “uoregon.edu”). To provide
consistency, we examined only the 116 universities which
allowed web scraping.

GitHub helpfully provides a command line interface
which provides the same search results (up to 1000
results) as its website’s search function, which sorts
the results by GitHub’s self-described “best match.” We
applied the command $ gh search repos keyword
--limit 1000 --json url to each of the keywords
identified for each institution, which resulted in a list of up to
1,000 repositories for each keyword search.

1) Results: Across all 116 universities, 187,728 unique
repositories were identified through keyword searches.
However, unlike in [1], we were unable to manually examine
each repository and make a human determination if the project
was a university-affiliated RSE repository or not. There were
just too many results given time constraints.

However, we did carry out a cursory examination of
several keyword search results. We found that some keywords
resulted in many repositories which had little connection to
either research or universities. This was particularly true for
keywords associated with state or flagship public universities,



whose keywords often were identical to the name of the state
in which they were located. For example, when we examined
the keyword “Arizona,” we found the query produced several
search results which were clearly linked to research software
projects at either the Arizona State University and the
University of Arizona. These results also included repositories
related to tourism in Arizona, a gaming engine framework
happened to be called Arizona, and other non-RSE projects.
That said, we observed that the overwhelming majority
RSE projects found by searching with broad keywords like
“Arizona” were, indeed, associated with one of the universities
in Arizona.

Our next question then, became, “How do we identify which
of these 187,728 repositories are RSE projects? For that matter,
which of the 10,056 links to GitHub repositories found in
Approach 1 are RSE projects? How can we do this in an
automated fashion?”

IV. RQ2: IS A GIVEN REPOSITORY AN RSE REPOSITORY?

To determine whether a repository is an RSE repository
at scale, we turned to OpenAI’s GPT 3.5 Large Language
Model (ChatGPT). After exploring several different prompt
templates, we settled on a format similar to the approach used
by [6]. Namely, we asked ChatGPT to determine whether a
repository was an RSE repository by providing a definition
for RSE, providing a description of the repository, and, in
breaking with [6]’s requested binary yes-no output, we asked
here for a probability from 0 to 1 that the repository was
RSE. We did this because exploratory work with a handful of
repositories suggested that relaxing to a continuous case led
to more consistent and easily parsable responses than prompts
which asked for a binary yes-no answer.

The definition for “RSE” came from
https://us-rse.org/about/what-is-an-rse/. We created a
description of each repository by piping the text obtained
from the GitHub CLI command gh repo view
owner/repository , which includes the repository’s
name, brief description, and the contents of the README
document if available. Putting it all together, the prompt
followed this template:

Consider the following definition of a Research
Software Engineer:

“We like an inclusive definition of Research
Software Engineers to encompass those who
regularly use expertise in programming to advance
research. This includes researchers who spend a
significant amount of time programming, full-time
software engineers writing code to solve research
problems, and those somewhere in-between. We
aspire to apply the skills and practices of software
development to research to create more robust,
manageable, and sustainable research software.”

Consider the following information about a Github
repository:

===
"View Repo" Data Inserted Here
===

Given the above definition and GitHub repository
information, is this GitHub repository a research
software engineering project? Report your answer
as a probability between 0 and 1. Place this number
at the end of the message.

To validate this approach, we randomly selected two sets of
385 repositories, which gives a margin of error of ±5% on a
95% confidence interval. One set of 385 randomly selected
repositories came from the pool of repositories found by
scraping university websites (“scrape set”) and one set of 385
from the pool of repositories found by searching GitHub for
keywords (“search set”). The first author manually identified
each repository in both of these sets as an RSE or non-RSE
repository in light of the description above.

In the case of the scrape set, 227 of 385 (59%) were
manually identified as RSE repositories. In the case of the
search set, only 50 of 385 (13%) were manually identified as
RSE repositories.

In both of the sample sets, the last number of each outputted
message given the above prompt to ChatGPT was, indeed, a
figure between 0 and 1 which corresponded to the likelihood
of the repository being an RSE project or not. This number
was extracted and paired with each repository.

Consequently, we had rows data, where each row
was of the form [repo-name, human-assigned-boolean-value,
chat-gpt-assigned-probability].

To convert the ChatGPT assigned probability to a Boolean
value, we needed to apply a threshold. E.g., [repo-name,
human-assigned-boolean-value, chat-gpt-assigned-probability
> threshold].

To determine this threshold, we looked for values which
would maximize a sense of agreement across the distribution
between the human-labeled data and the ChatGPT labeled
data. Specifically, we looked at Cohen’s Kappa, a common
measure of inter-rater reliability. We also looked at F1 score,
as a different measure to balance precision and recall. Across
both data sets, Cohen’s Kappa and F1 score was maximized
(or nearly maximized) when the threshold was set at 0.75.
Results summarizing this agreement are in Table II.

These results are not perfect, but they seem to align with the
results in the very little existing work around the classification
of niche and technical topics using ChatGPT, such as in [6].
In this work the authors explored the empirical identification
of malicious repositories that are nominally educational. They
found that in “gray cases” ChatGPT couldn’t even agree
with itself more than 90% of the time. In [5] the authors
examined whether ChatGPT gave accurate yes-no answers to
niche medical questions and found simple percentage accuracy
of around 80%. Given this context, the agreement results we

https://us-rse.org/about/what-is-an-rse/


TABLE II
SUMMARY OF HUMAN AND CHATGPT AGREEMENT WHEN LABELING

REPOSITORIES IN TWO DIFFERENT SETS AS RSE OR NON-RSE

Data Set: Scrape Search
Simple percentage agreement
between human and ChatGPT
RSE determination.

77% 90%

Cohen’s Kappa (Agreement
levels of None, Minimal, Weak,
Moderate, Strong, Almost Perfect
[10])

0.5 (Weak) 0.6 (Moderate)

F1 Score 0.82 0.66

report here seem within the realm of state-of-the-art when
using ChatGPT for classifying concepts which largely revolve
around niche technical information and fuzzy definitions,
although it is also clear there is ample room for improvement.

A. Results

We applied the above prompt to the combined 193,921
repositories from the union of the “scrape” and “search” data
sets.

There were a few errors. In 615 cases (0.317%), GitHub
could not find the repository. This was due to the repository
being deleted or an error in the repository’s name from a link
that was scraped. In 19 cases (0.010%), ChatGPT could not
assign a probability. This was due to a lack of description
or README about the repository. In 579 cases (0.299%),
ChatGPT errored out, saying the prompt had an issue. This was
always due to the project’s README having a non-standard
character encoding, a binary file uploaded as the README,
or an excessively long length.

In total, there were errors in 1,213 cases (0.626%). All of
these repositories which encountered errors during processing
were set aside. In the case of 192,708 repositories (99.374%)
we were able to assign an RSE probability between 0 and
1. Applying our threshold of 0.75 to be considered RSE,
we and ChatGPT ultimately identified 35,361 repositories
(18.2%) as RSE repositories under the US-RSE definition.
These results are disaggregated by university and shown in
Table IV. We also provide summary statistics about the number
of repositories and RSE repositories found in Table III

TABLE III
SUMMARY STATISTICS (MINIMUM, 25%, MEDIAN/50%, MEAN, 75%, AND

MAXIMUM) OF THE NUMBER OF REPOSITORIES WITH A NEXUS TO A
UNIVERSITY, AND THE NUMBER OF RSE REPOSITORIES, FOUND ACROSS

ALL UNIVERSITIES.

All Repositories RSE Repositories
Min. 131 14

1st Qu. 1093 127
Median 1495 261

Mean 1796 334
3rd Qu. 2353 417

Max. 11856 2117

We also did overlap analysis. That is, which universities had
repositories in common? Given our set of 116 universities, this
resulted in

(116
2

)
= 6,670 pairs of universities to examine. Of

these 6,670 pairs, 5,142 (77%) had no repositories in common
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Fig. 1. Histograms of the number of stars and forks per RSE repo. The red
line, six in both cases, is a threshold used in [1] to indicate an RSE repository
has a community. These histograms seem to follow that same trend.

at all, RSE or otherwise. 6,101 of the 6,670 (91%) had no RSE
repositories in common. In the vast majority of these 9% of
pairs with some RSE repositories in common, most institutions
had just one or two. Understanding why overlap is so sparse,
and the relationships among those universities which do have
overlap, remain as future work.

V. RQ3: POPULARITY OF RSE PROJECTS

Of the RSE projects / repositories found through answering
RQ2, which ones are likely to be popular outside of the
project’s core developers? That is, which projects are used
by the community – either a university-internal community, or
external/world-at-large community? We tackle this question
by first engaging in a histogram analysis of the stars and
forks of the 35,361 RSE projects identified in § IV. These
visualizations can be found in Figures 2 and 1.

To do this analysis we obtained additional meta
information about these projects. We obtained
meta-data on each of them by using the command-line
GitHub API tool with the command gh api -H
"Accept: application/vnd.github+json"
-H "X-GitHub-Api-Version: 2022-11-28"
/repos/OWNER/REPO where OWNER/REPO is replaced
with each name of the repository listed in the supplemental
material. This metadata includes the number of stars and
forks for a repository, as well as the timestamp of the last
push to the repository.

In light of the threshold values of six stars or six forks or
more as reasonable choices for defining an RSE project as one
with community, and in line with previous work [1], we filter
the 35,361 RSE projects accordingly. This resulted in 13,940
RSE repositories, or 39.4%, as being considered as having a
community – a notably higher percentage than the national
laboratory case, which had only 25% of it’s RSE repositories
found to have had a community. Understanding the “why” is
important future work, and will likely involve individual case
studies or analysis of the number of contributers, as projects in
universities may have more student volunteers over time than
projects in national laboratories, thus artificially increasing
the number of repositories with community sizes in the 6-16
people range. This, however, is speculation.



TABLE IV: All GitHub repositories found by university, through both
scraping .edu websites for links to GitHub and by searching for
keywords related to the university on GitHub itself. The number of RSE
repositories, as determined by ChatGPT provided probabilities with a
threshold of at least a 75% likelihood, is also shown.

Scraping .edu websites Searching on GitHub Scraping ∪ Searching
University(.edu) Total RSE (%) Total RSE (%) Total RSE (%)
All 6346 4453 70.2% 187728 30971 16.5% 193921 35361 18.2%
arizona 81 42 51.9% 4146 1116 26.9% 4222 1158 27.4%
asu 10 7 70.0% 1371 130 9.5% 1381 137 9.9%
auburn 25 1 4.0% 1036 101 9.8% 1061 102 9.6%
bc 0 0 0.0% 1268 313 24.7% 1268 313 24.7%
binghamton 29 12 41.4% 434 45 10.4% 463 57 12.3%
brandeis 10 2 20.0% 490 103 21.0% 499 105 21.0%
brown 57 48 84.2% 1511 373 24.7% 1568 421 26.9%
bu 63 33 52.4% 3078 518 16.8% 3141 551 17.5%
buffalo 45 34 75.6% 2363 329 13.9% 2408 363 15.1%
case 17 15 88.2% 2391 488 20.4% 2408 503 20.9%
clemson 30 21 70.0% 782 147 18.8% 812 168 20.7%
cmu 132 113 85.6% 2361 746 31.6% 2492 858 34.4%
colorado 6 3 50.0% 11850 2114 17.8% 11856 2117 17.9%
columbia 49 27 55.1% 1871 404 21.6% 1919 431 22.5%
cornell 773 489 63.3% 1595 389 24.4% 2357 876 37.2%
dartmouth 75 45 60.0% 1165 213 18.3% 1239 258 20.8%
drexel 37 22 59.5% 1019 151 14.8% 1056 173 16.4%
du 0 0 0.0% 1616 269 16.7% 1616 269 16.7%
duke 23 18 78.3% 1909 246 12.9% 1932 264 13.7%
emory 28 20 71.4% 847 145 17.1% 874 165 18.9%
fiu 1 1 100.0% 1056 66 6.3% 1057 67 6.3%
fsu 25 19 76.0% 2498 213 8.5% 2523 232 9.2%
gatech 67 59 88.1% 2025 347 17.1% 2092 406 19.4%
georgetown 75 44 58.7% 1643 243 14.8% 1717 286 16.7%
harvard 110 69 62.7% 2470 397 16.1% 2578 466 18.1%
iastate 71 40 56.3% 1558 120 7.7% 1627 160 9.8%
illinois 16 12 75.0% 4333 581 13.4% 4348 592 13.6%
indiana 2 1 50.0% 2335 204 8.7% 2337 205 8.8%
jhu 6 1 16.7% 2747 311 11.3% 2752 312 11.3%
k-state 5 4 80.0% 1138 155 13.6% 1143 159 13.9%
ku 23 13 56.5% 1593 229 14.4% 1616 242 15.0%
louisiana 0 0 0.0% 1889 331 17.5% 1889 331 17.5%
louisville 0 0 0.0% 1259 60 4.8% 1259 60 4.8%
lsu 15 5 33.3% 1031 111 10.8% 1046 116 11.1%
memphis 4 1 25.0% 744 61 8.2% 748 62 8.3%
miami 3 1 33.3% 3312 713 21.5% 3315 714 21.5%
missouri 0 0 0.0% 2542 447 17.6% 2542 447 17.6%
mit 547 436 79.7% 2088 500 24.0% 2628 933 35.5%
msu 27 10 37.0% 3547 584 16.5% 3573 593 16.6%
ncsu 67 31 46.3% 2504 405 16.2% 2571 436 17.0%
nd 46 31 67.4% 1741 459 26.4% 1785 490 27.5%
ndsu 0 0 0.0% 243 42 17.3% 243 42 17.3%
njit 1 1 100.0% 1042 74 7.1% 1043 75 7.2%
northeastern 0 0 0.0% 1505 220 14.6% 1505 220 14.6%
northwestern 200 94 47.0% 1657 272 16.4% 1856 365 19.7%



TABLE IV: All GitHub repositories found by university, through both
scraping .edu websites for links to GitHub and by searching for
keywords related to the university on GitHub itself. The number of RSE
repositories, as determined by ChatGPT provided probabilities with a
threshold of at least a 75% likelihood, is also shown.

Scraping .edu websites Searching on GitHub Scraping ∪ Searching
University(.edu) Total RSE (%) Total RSE (%) Total RSE (%)
odu 0 0 0.0% 1095 70 6.4% 1095 70 6.4%
ohio 5 3 60.0% 2382 340 14.3% 2387 343 14.4%
okstate 3 1 33.3% 1350 153 11.3% 1353 154 11.4%
olemiss 2 0 0.0% 129 14 10.9% 131 14 10.7%
oregonstate 158 108 68.4% 2084 202 9.7% 2242 310 13.8%
osu 13 7 53.9% 1299 174 13.4% 1312 181 13.8%
ou 2 1 50.0% 2101 349 16.6% 2103 350 16.6%
pitt 67 39 58.2% 1481 188 12.7% 1547 227 14.7%
psu 19 13 68.4% 1982 291 14.7% 2000 303 15.2%
purdue 14 5 35.7% 2554 439 17.2% 2568 444 17.3%
rice 90 76 84.4% 1914 274 14.3% 2003 349 17.4%
rochester 5 3 60.0% 832 132 15.9% 837 135 16.1%
rpi 74 56 75.7% 1209 294 24.3% 1283 350 27.3%
rutgers 61 44 72.1% 2597 339 13.1% 2657 382 14.4%
sc 3 0 0.0% 2159 355 16.4% 2162 355 16.4%
stanford 234 184 78.6% 3819 982 25.7% 4050 1164 28.7%
syracuse 1 1 100.0% 2461 394 16.0% 2462 395 16.0%
tamu 11 8 72.7% 1077 97 9.0% 1088 105 9.7%
tufts 33 18 54.6% 1208 198 16.4% 1241 216 17.4%
tulane 28 17 60.7% 231 26 11.3% 259 43 16.6%
ua 19 16 84.2% 1776 553 31.1% 1793 567 31.6%
uab 1 0 0.0% 1015 59 5.8% 1016 59 5.8%
uah 0 0 0.0% 1015 90 8.9% 1015 90 8.9%
uark 1 1 100.0% 715 88 12.3% 716 89 12.4%
ucdenver 9 5 55.6% 1099 150 13.7% 1108 155 14.0%
uci 16 13 81.3% 2743 1150 41.9% 2758 1163 42.2%
ucla 80 65 81.3% 1132 217 19.2% 1210 281 23.2%
uconn 4 3 75.0% 949 103 10.9% 952 106 11.1%
ucr 10 4 40.0% 1282 174 13.6% 1291 178 13.8%
ucsb 91 57 62.6% 1143 230 20.1% 1230 286 23.3%
ucsd 64 49 76.6% 2278 383 16.8% 2338 430 18.4%
udel 2 1 50.0% 1483 279 18.8% 1485 280 18.9%
ufl 951 870 91.5% 2946 586 19.9% 3897 1456 37.4%
uh 59 45 76.3% 1275 209 16.4% 1334 254 19.0%
uic 8 1 12.5% 1290 137 10.6% 1297 138 10.6%
uiowa 16 8 50.0% 1611 295 18.3% 1626 303 18.6%
umaine 14 8 57.1% 187 32 17.1% 200 40 20.0%
umass 49 29 59.2% 1306 225 17.2% 1354 254 18.8%
umbc 20 1 5.0% 1030 96 9.3% 1043 97 9.3%
umd 582 336 57.7% 1256 229 18.2% 1837 565 30.8%
umich 35 16 45.7% 2567 694 27.0% 2602 710 27.3%
umn 9 1 11.1% 2120 311 14.7% 2129 312 14.7%
umt 1 0 0.0% 1114 108 9.7% 1115 108 9.7%
unc 3 1 33.3% 1085 415 38.3% 1088 416 38.2%
unh 138 120 87.0% 1050 114 10.9% 1188 234 19.7%
unlv 10 7 70.0% 511 50 9.8% 521 57 10.9%



TABLE IV: All GitHub repositories found by university, through both
scraping .edu websites for links to GitHub and by searching for
keywords related to the university on GitHub itself. The number of RSE
repositories, as determined by ChatGPT provided probabilities with a
threshold of at least a 75% likelihood, is also shown.

Scraping .edu websites Searching on GitHub Scraping ∪ Searching
University(.edu) Total RSE (%) Total RSE (%) Total RSE (%)
unm 11 2 18.2% 1107 207 18.7% 1118 209 18.7%
uoregon 1 0 0.0% 1763 243 13.8% 1764 243 13.8%
upenn 68 45 66.2% 5730 1308 22.8% 5796 1351 23.3%
usc 10 7 70.0% 1299 260 20.0% 1309 267 20.4%
usf 9 8 88.9% 1140 163 14.3% 1149 171 14.9%
usm 0 0 0.0% 1016 55 5.4% 1016 55 5.4%
usu 11 8 72.7% 1107 66 6.0% 1118 74 6.6%
uta 2 0 0.0% 1141 131 11.5% 1143 131 11.5%
utah 1 0 0.0% 2695 526 19.5% 2695 526 19.5%
utdallas 76 60 79.0% 515 101 19.6% 590 161 27.3%
utep 0 0 0.0% 305 36 11.8% 305 36 11.8%
utexas 36 23 63.9% 1570 310 19.8% 1605 333 20.8%
utsa 2 0 0.0% 1027 30 2.9% 1029 30 2.9%
uwm 286 161 56.3% 876 90 10.3% 1161 251 21.6%
vanderbilt 24 18 75.0% 2717 320 11.8% 2740 338 12.3%
vcu 16 5 31.3% 1029 101 9.8% 1045 106 10.1%
virginia 4 1 25.0% 2350 300 12.8% 2354 301 12.8%
vt 8 7 87.5% 1626 486 29.9% 1634 493 30.2%
washington 91 63 69.2% 2262 413 18.3% 2353 476 20.2%
wayne 3 2 66.7% 2088 92 4.4% 2091 94 4.5%
wisc 25 12 48.0% 2392 578 24.2% 2416 590 24.4%
wsu 4 0 0.0% 1334 79 5.9% 1338 79 5.9%
wustl 6 1 16.7% 1197 223 18.6% 1203 224 18.6%
wvu 0 0 0.0% 684 70 10.2% 684 70 10.2%
yale 161 101 62.7% 1225 163 13.3% 1384 264 19.1%



10

1000

100000

10 1000 100000
Number of Forks

N
um

be
r 

of
 S

ta
rs

1

8

64

512

4096

Number of
Repositories

Fig. 2. Matrix view of the number of repositories per star-fork pair. The
Pearson correlation coefficent of Stars and Forks is 0.865, which is in line
with previous research. [11]
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Fig. 3. Histogram of the last time an RSE project with community received
a push. The red line indicates the six month mark. The blue line indicates
the two year mark. These lines form the arbitrary threshold boundaries we
selected for “healthy,” “dying,” and, “dead” repositories, which also match
prior work [1].

VI. RQ4: WHICH RSE PROJECTS ARE ACTIVE? WHICH
ARE ON LIFE SUPPORT? HOW DO THEY DIFFER?

The metadata pulled from the GitHub command line API
in the previous section also contains data on when the last
push to a repository occurred. We examined this “last push”
timestamp on the 13,940 RSE projects we classify as having a
community. We found that 3,805 (27%) repositories had a push
in the last six months, 3,346 (24%) repositories had their last
push more than six months ago but less than two years ago,
and 6,784 (49%) of repositories had their last push more than
two years ago. Using the broad buckets from [1], we classify
these repositories as healthy (push in last six months), dying
(push more than six months ago, less than two years ago),
and dead (push more than two years ago). This is visualized
in Figure 3.

Of increasing interest to the community is the importance
of sustainability support for RSE projects [12]. To determine
the crudest sense of what technical skills are needed for
sustainability support for these projects, particularly “dying”
projects, we examined the most common language used in
each project according to the GitHub metadata. We examined

TABLE V
TOP LANGUAGES OF HEALTHY RSE REPOS:

Language RSE Repositories Percentage
1 Python 1211 33%
2 C++ 472 13%
3 Jupyter Notebook 261 7%
4 C 229 6%
5 JavaScript 158 4%
6 Java 142 4%
7 Go 136 4%
8 Rust 121 3%
9 R 99 3%

10 TypeScript 95 3%
11 HTML 84 2%
12 C# 76 2%
13 Shell 72 2%
14 MATLAB 45 1%
15 Julia 43 1%
16 Ruby 43 1%

TABLE VI
TOP LANGUAGES OF DYING RSE REPOS:

Language RSE Repositories Percentage
1 Python 1285 40%
2 Jupyter Notebook 351 11%
3 C++ 318 10%
4 JavaScript 165 5%
5 C 163 5%
6 Java 120 4%
7 HTML 100 3%
8 MATLAB 73 2%
9 R 70 2%

10 C# 65 2%
11 Shell 53 2%
12 Rust 50 2%
13 TypeScript 48 1%
14 Go 39 1%

all languages which had at least 1% prevalence in a partition.
The three most common top languages in RSE repositories,
across all categories of “healthy,” “dying,” and “dead” included
Python, Jupyter Notebook, and C++. We show these full
rankings in Tables V, VI, and VII.

These findings suggest that the skills needed for
sustainability support for the vast majority of vulnerable RSE
projects is reflective of the skills used in the development of
RSE projects generally. Better understanding the attributes of
these projects from a code/repository analysis perspective, and
how it compares with reports from RSE developers such as in
[12] is important future work.

VII. FUTURE WORK

There remains ample future work in this area. In §III,
for example, different approaches to identifying university
affiliated RSE projects can certainly be explored. For example,
first identifying GitHub users working at research universities
via self-defined indicta of institutional affiliation (e.g., email
address), and subsequently attempting to identify if any of
these users’ repositories are RSE projects. Even in this
work, we note that of the 147 R1 universities identified in
the IPEDS data only 116 were examined due to website
scraping policies. These remaining unexplored 31 universities



TABLE VII
TOP LANGUAGES OF DEAD RSE REPOS:

Language RSE Repositories Percentage
1 Python 2084 32%
2 C++ 780 12%
3 Jupyter Notebook 741 11%
4 C 479 7%
5 Java 316 5%
6 JavaScript 305 5%
7 MATLAB 181 3%
8 Matlab 163 3%
9 R 160 2%

10 HTML 156 2%
11 C# 125 2%
12 Shell 118 2%
13 Go 71 1%

certainly warrant further investigation. Better understanding of
the interactions between repositories with homes at multiple
different universities is also an area of interesting work. Better
identification of RSE projects using large language models
is certainly needed and a major threat to the validity of
our work. Lastly, there are many further analyses of the
projects identified as RSE that can be done to help identify
characteristics of these repositories compared to other types
of open source software projects.

VIII. CONCLUSION

In this paper we applied two different approaches to obtain
a set of open source GitHub repositories at all R1 US research
universities which allowed website scraping. We then used a
GitHub repository’s description and README file in a prompt
to ChatGPT to identify 35,361 research software engineering
repositories of the 193,921 repositories identified as having
some possible nexus to a research university. ChatGPT agreed
77%-90% of the time with a human’s determination of whether
a GitHub repository was an RSE software repository.

Identifying and benchmarking the number of RSE
repositories out there associated with US research universities
is of key relevance to this community, as it permits
comparative work going forward and a pool of specific,
identifiable repositories on which other empirical analyses can
be carried out.

As an example of one such analysis we found that, of these
35,361 RSE projects, it’s plausible that at least 13,940 (39.4%)
have some community use outside the core development team.
Of these repositories with community, only 3,805 (27%) had
received a push in the last six months, suggesting many
RSE projects could use sustainability support. Across all RSE
projects linked to a research university, we also found the top
languages were Python, C++, and Jupyter Notebook.

There are certainly additional analyses we could explore
going forward, such as examining productivity metrics (e.g.,
issues) of RSE repositories. Bottom line, by inventorying RSE
repositories at US research universities we have unlocked a
rich new horizon for future exploratory work in the empirical
analysis of these repositories. We look forward to reporting
our exploratory findings in subsequent papers.
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