Reference,DOI,Year,Country,State or Province,Landscape,Topic,Sociality: Data Type,Nesting (location): Data Type,Nesting (ability): Data Type,Reproductive Strategy: Data Type,Body size: Data Type,Diet Breadth: Data Type,Voltinism: Data Type,Seasonality: Data Type,Tongue Length: Data Type,Other Functional Traits,Other traits: Data type,Total Functional Traits Measured,Source of traits: literature?,Source of traits: own measurement/observations?,Source of traits: calculation from proxy?,Number of bee species analyzed,Trait data available?,NOTES,EFFECT? "Bommarco, R., Biesmeijer, J. C., Meyer, B., Potts, S. G., Pöyry, J., Roberts, S. P. M., Steffan-Dewenter, I., & Öckinger, E. (2010). Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proceedings of the Royal Society B: Biological Sciences, 277(1690), 2075–2082. https://doi.org/10.1098/rspb.2009.2221",https://doi.org/10.1098/rspb.2009.2221,2010,"Finland, Germany, Sweden",NA,Agroecosystem,Habitat fragmentation,categorical,NA,NA,NA,categorical,categorical,NA,NA,NA,NA,NA,3,yes,yes,no,138,no,, "Cabral Borges, R., Padovani, K., Imperatriz-Fonseca, V. L., & Giannini, T. C. (2020). A dataset of multi-functional ecological traits of Brazilian bees. Scientific Data, 7(1), 120. https://doi.org/10.1038/s41597-020-0461-3",https://doi.org/10.1038/s51597-020-0461-3,2020,Brazil,NA,Natural,Diversity,categorical,categorical,NA,NA,categorical,NA,NA,NA,NA,foraging range,both,4,yes,yes,no,334,yes,, "Cane, J. H., Minckley, R. L., Kervin, L. J., Roulston, T. H., & Williams, N. M. (2006). Complex Responses Within A Desert Bee Guild (Hymenoptera: Apiformes) To Urban Habitat Fragmentation. Ecological Applications, 16(2), 632–644. https://doi.org/10.1890/1051-0761(2006)016[0632:CRWADB]2.0.CO;2",https://doi.org/10.1890/1051-0761(2006)016[0632:CRWADB]2.0.CO;2,2006,USA,Arizona,Urban,Habitat fragmentation,NA,categorical,NA,NA,categorical,categorical,NA,NA,NA,NA,NA,3,yes,yes,no,62,no,, "Carper, A. L., Adler, L. S., Warren, P. S., & Irwin, R. E. (2014). Effects of Suburbanization on Forest Bee Communities. Environmental Entomology, 43(2), 253–262. https://doi.org/10.1603/EN13078",https://doi.org/10.1603/EN13078,2014,USA,North Carolina,Urban; Natural,Urbanization,categorical,categorical,NA,NA,categorical,categorical,NA,NA,NA,NA,NA,4,yes,no,no,71,no,, "Davis, T. S., & Comai, N. (2022). Canopy cover and seasonality are associated with variation in native bee assemblages across a mixed pine‐juniper woodland. Agricultural and Forest Entomology, 24(4), 497–505. https://doi.org/10.1111/afe.12511",https://doi.org/10.1111/afe.12511,2022,USA,Colorado,Natural,Diversity,categorical,categorical,NA,NA,categorical,categorical,NA,NA,NA,NA,NA,4,yes,no,no,unspecified,yes,, "Ekroos, J., Rundlöf, M., & Smith, H. G. (2013). Trait-dependent responses of flower-visiting insects to distance to semi-natural grasslands and landscape heterogeneity. Landscape Ecology, 28(7), 1283–1292. https://doi.org/10.1007/s10980-013-9864-2",https://doi.org/10.1007/s10980-013-9864-2,2013,Sweden,NA,Agroecosystem,Diversity,NA,categorical,NA,NA,categorical,NA,NA,categorical,categorical,colony size,both,5,unspecified,unspecified,unspecified,14,no,, "Fortuin, C. C., & Gandhi, K. J. K. (2021). Functional traits and nesting habitats distinguish the structure of bee communities in clearcut and managed hardwood & pine forests in Southeastern USA. Forest Ecology and Management, 496, 119351. https://doi.org/10.1016/j.foreco.2021.119351",https://doi.org/10.1016/j.foreco.2021.119351,2021,USA,Georgia,Natural,Land use and management,categorical,categorical,NA,NA,categorical,categorical,NA,categorical,NA,NA,NA,5,unspecified,unspecified,no,103,no,, "Garibaldi, L. A., Bartomeus, I., Bommarco, R., Klein, A. M., Cunningham, S. A., Aizen, M. A., Boreux, V., Garratt, M. P. D., Carvalheiro, L. G., Kremen, C., Morales, C. L., Schüepp, C., Chacoff, N. P., Freitas, B. M., Gagic, V., Holzschuh, A., Klatt, B. K., Krewenka, K. M., Krishnan, S., … Woyciechowski, M. (2015). Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 52(6), 1436–1444. https://doi.org/10.1111/1365-2664.12530",https://doi.org/10.1111/1365-2664.12530,2015,Meta-analysis: multiple countries,NA,Agroecosystem,Pollination,categorical,NA,NA,categorical,categorical,categorical,NA,categorical,categorical,"buzz pollination, centralplace foraging",categorical,8,yes,no,no,unspecified,no,, "Geppert, C., Cappellari, A., Corcos, D., Caruso, V., Cerretti, P., Mei, M., & Marini, L. (2023). Temperature and not landscape composition shapes wild bee communities in an urban environment. Insect Conservation and Diversity, 16(1), 65–76. https://doi.org/10.1111/icad.12602",https://doi.org/10.1111/icad.12602,2023,Italy,NA,Urban,Urbanization,categorical,categorical,NA,NA,categorical,categorical,NA,NA,NA,NA,NA,4,yes,yes,no,96,yes,, "Giannini, T. C., Costa, W. F., Borges, R. C., Miranda, L., da Costa, C. P. W., Saraiva, A. M., & Imperatriz Fonseca, V. L. (2020). Climate change in the Eastern Amazon: Crop-pollinator and occurrence-restricted bees are potentially more affected. Regional Environmental Change, 20, 9. https://doi.org/10.1007/s10113-020-01611-y",https://doi.org/10.1007/s10113-020-01611-y,2020,Brazil,NA,Natural,Climate change,categorical,categorical,NA,NA,categorical,NA,NA,NA,NA,crop pollination,categorical,4,yes,yes,no,216,yes,, "Hall, M. A., Nimmo, D. G., Cunningham, S. A., Walker, K., & Bennett, A. F. (2019). The response of wild bees to tree cover and rural land use is mediated by species’ traits. Biological Conservation, 231, 1–12. https://doi.org/10.1016/j.biocon.2018.12.032",https://doi.org/10.1016/j.biocon.2018.12.032,2019,Australia,NA,Agroecosystem,Land use and management,categorical,categorical,NA,NA,categorical,categorical,NA,numeric,NA,NA,NA,5,yes,yes,no,59,no,, "Hopfenmüller, S., Steffan-Dewenter, I., & Holzschuh, A. (2014). Trait-Specific Responses of Wild Bee Communities to Landscape Composition, Configuration and Local Factors. PLoS ONE, 9(8), e104439. https://doi.org/10.1371/journal.pone.0104439",https://doi.org/10.1016/j.agee.2021.107544,2014,Germany,NA,Natural,Diversity,categorical,NA,categorical,NA,categorical,NA,NA,NA,NA,habitat specialization,categorical,4,yes,no,no,189,yes,, "Lazarina, M., Sgardelis, S. P., Tscheulin, T., Kallimanis, A. S., Devalez, J., & Petanidou, T. (2016). Bee response to fire regimes in Mediterranean pine forests: The role of nesting preference, trophic specialization, and body size. Basic and Applied Ecology, 17(4), 308–320. https://doi.org/10.1016/j.baae.2016.02.001",http://dx.doi.org/10.1016/j.baae.2016.02.001,2016,Greece,NA,Natural,Disturbance,NA,categorical,NA,NA,categorical,categorical,NA,NA,NA,NA,NA,3,yes,yes,no,99,no,, "Le Féon, V., Poggio, S. L., Torretta, J. P., Bertrand, C., Molina, G. A. R., Burel, F., Baudry, J., & Ghersa, C. M. (2016). Diversity and life-history traits of wild bees (Insecta: Hymenoptera) in intensive agricultural landscapes in the Rolling Pampa, Argentina. Journal of Natural History, 50(19–20), 1175–1196. https://doi.org/10.1080/00222933.2015.1113315",http://dx.doi.org/10.1080/00222933.2015.1113315,2016,Argentina,NA,Agroecosystem,Agricultural intensification,categorical,categorical,categorical,NA,categorical,categorical,NA,NA,NA,NA,NA,5,yes,yes,no,28,no,, "McCravy, K., Geroff, R., & Gibbs, J. (2019). Bee (Hymenoptera: Apoidea: Anthophila) Functional Traits in Relation to Sampling Methodology in a Restored Tallgrass Prairie. Florida Entomologist, 102(1), 134. https://doi.org/10.1653/024.102.0122",https://doi.org/10.1653/024.102.0122,2019,USA,Illinois,Natural,Other,categorical,categorical,NA,NA,categorical,categorical,NA,NA,NA,NA,NA,4,yes,no,no,58,yes,, "Montoya‐Pfeiffer, P. M., Rodrigues, R. R., & Alves dos Santos, I. (2020). Bee pollinator functional responses and functional effects in restored tropical forests. Ecological Applications, 30(3), e02054. https://doi.org/10.1002/eap.2054",https://doi.org/10.1002/eap.2054,2020,Brazil,NA,Agroecosystem,Land use and management,categorical,categorical,NA,NA,categorical,categorical,NA,NA,NA,NA,NA,4,yes,no,no,85,yes,, "Munyuli, T. (2014). Influence of functional traits on foraging behaviour and pollination efficiency of wild social and solitary bees visiting coffee ( Coffea canephora ) flowers in Uganda. Grana, 53(1), 69–89. https://doi.org/10.1080/00173134.2013.853831",http://dx.doi.org/10.1080/00173134.2013.853831,2014,Uganda,NA,Agroecosystem,Pollination,categorical,categorical,NA,NA,categorical,NA,NA,NA,categorical,NA,NA,4,unspecified,unspecified,unspecified,47,no,, "Pei, C. K., Hovick, T. J., Duquette, C. A., Limb, R. F., Harmon, J. P., & Geaumont, B. A. (2022). Two common bee-sampling methods reflect different assemblages of the bee (Hymenoptera: Apoidea) community in mixed-grass prairie systems and are dependent on surrounding floral resource availability. Journal of Insect Conservation, 26(1), 69–83. https://doi.org/10.1007/s10841-021-00362-3",https://doi.org/10.1007/s10841-021-00362-3,2022,USA,North Dakota,Natural; Agroecosystem,Other,categorical,NA,NA,NA,categorical,categorical,NA,NA,NA,NA,NA,3,yes,yes,no,131,no,, "Poulsen, N. R., & Rasmussen, C. (2020). Island bees: Do wood nesting bees have better island dispersal abilities? Apidologie, 51(6), 1006–1017. https://doi.org/10.1007/s13592-020-00778-x",https://doi.org/10.1007/s13592-020-00778-x,2020,Meta-analysis: multiple countries,NA,Natural; Agroecosystem; Urban,Other,NA,categorical,NA,NA,categorical,NA,NA,NA,NA,NA,NA,2,yes,no,no,638,no,, "Samnegård, U., Hambäck, P. A., Eardley, C., Nemomissa, S., & Hylander, K. (2015). Turnover in bee species composition and functional trait distributions between seasons in a tropical agricultural landscape. Agriculture, Ecosystems & Environment, 211, 185–194. https://doi.org/10.1016/j.agee.2015.06.010",https://doi.org/10.1016/j.agee.2015.06.010,2015,Ethiopia,NA,Agroecosystem,Agricultural intensification,NA,categorical,NA,NA,categorical,NA,NA,NA,NA,NA,NA,2,yes,yes,no,93,yes,, "Sobieraj‐Betlińska, A., Szefer, P., & Twerd, L. (2022). Linear woodlots increase wild bee abundance by providing additional food sources in an agricultural landscape. Agricultural and Forest Entomology, afe.12529. https://doi.org/10.1111/afe.12529",https://doi.org/10.1111/afe.12529,2022,Poland,NA,Agroecosystem,Land use and management,categorical,categorical,NA,NA,categorical,categorical,NA,categorical,NA,NA,NA,5,yes,yes,no,134,yes,, "Woodcock, B. A., Harrower, C., Redhead, J., Edwards, M., Vanbergen, A. J., Heard, M. S., Roy, D. B., & Pywell, R. F. (2014). National patterns of functional diversity and redundancy in predatory ground beetles and bees associated with key UK arable crops. Journal of Applied Ecology, 51(1), 142–151. https://doi.org/10.1111/1365-2664.12171",https://doi.org/10.1111/1365-2664.12171,2014,United Kingdom,NA,Agroecosystem,Diversity,categorical,NA,categorical,NA,categorical,categorical,categorical,both,NA,NA,NA,6,yes,no,no,45,no,, "Coutinho, J. G. D. E., Garibaldi, L. A., & Viana, B. F. (2018). The influence of local and landscape scale on single response traits in bees: A meta-analysis. Agriculture, Ecosystems & Environment, 256, 6173. https://doi.org/10.1016/j.agee.2017.12.025",https://doi.org/10.1016/j.agee.2017.12.025,2018,Meta-analysis: multiple countries,NA,Agroecosystem; Natural,Land use and management,categorical,categorical,NA,NA,categorical,categorical,NA,NA,NA,NA,NA,4,yes,no,no,unspecified,no,, "Dalmazzo, M., Zumoffen, L., Ghiglione, C., Roig-Alsina, A., & Chacoff, N. (2024). Diversity and biological traits of bees visiting flowers of Cucurbita maxima var. Zapallito differ between biodiversity-based and conventional management practices. Environmental Monitoring and Assessment, 196(1), 6. https://doi.org/10.1007/s10661-023-12161-1",https://doi.org/10.1007/s10661-023-12161-1,2024,Argentina,Santa Fe,Agroecosystem,Land use and management,categorical,categorical,NA,NA,categorical,NA,NA,NA,NA,NA,NA,3,yes,no,no,16,yes,, "Ferrari, A., & Polidori, C. (2022). How city traits affect taxonomic and functional diversity of urban wild bee communities: Insights from a worldwide analysis. Apidologie, 53(4), 46. https://doi.org/10.1007/s13592-022-00950-5",https://doi.org/10.1007/s13592-022-00950-5,2022,Meta-analysis: multiple countries,NA,Urban,Urbanization,categorical,categorical,NA,NA,categorical,categorical,NA,NA,NA,NA,NA,4,yes,no,no,1460,yes,,yes "Pei, C. K., Hovick, T. J., Limb, R. F., Harmon, J. P., & Geaumont, B. A. (2023). Invasive grass and litter accumulation constrain bee and plant diversity in altered grasslands. Global Ecology and Conservation, 41, e02352. https://doi.org/10.1016/j.gecco.2022.e02352",https://doi.org/10.1016/j.gecco.2022.e02352,2023,USA,North Dakota,Natural,Land use and management,categorical,categorical,NA,NA,categorical,categorical,NA,NA,NA,NA,NA,4,yes,no,no,201,yes,,yes "Villalobos, S., & Vamosi, J. C. (2018). Climate and habitat influences on bee community structure in Western Canada. Canadian Journal of Zoology, 96(9), 10021009. https://doi.org/10.1139/cjz-2017-0226",https://doi.org/10.1139/cjz-2017-0226,2018,Canada,NA,Natural,Climate change; Diversity,categorical,categorical,NA,categorical,categorical,NA,NA,categorical,NA,NA,NA,5,yes,no,no,66,yes,,yes "Weber, M., Diektter, T., Dietzsch, A. C., Erler, S., Greil, H., Jtte, T., Krahner, A., & Pistorius, J. (2023). Urban wild bees benefit from flower-rich anthropogenic land use depending on bee trait and scale. Landscape Ecology, 38(11), 29812999. https://doi.org/10.1007/s10980-023-01755-2",https://doi.org/10.1007/s10980-023-01755-2,2023,Germany,Saxony,Urban,Urbanization,NA,categorical,NA,NA,categorical,categorical,NA,NA,NA,NA,NA,3,yes,no,no,102,yes,,yes "Wu, P., Axmacher, J. C., Song, X., Zhang, X., Xu, H., Chen, C., Yu, Z., & Liu, Y. (2018). Effects of Plant Diversity, Vegetation Composition, and Habitat Type on Different Functional Trait Groups of Wild Bees in Rural Beijing. Journal of Insect Science, 18(4). https://doi.org/10.1093/jisesa/iey065",https://doi.org/10.1093/jisesa/iey065,2018,China,NA,Agroecosystem,Agricultural intensification,categorical,categorical,NA,NA,categorical,NA,NA,NA,NA,NA,NA,3,yes,yes,no,76,no,,yes "Querejeta, M., Marchal, L., Pfeiffer, P., Roncoroni, M., Bretagnolle, V., Gaba, S., & Boyer, S. (2023). Environmental variables and species traits as drivers of wild bee pollination in intensive agroecosystemsA metabarcoding approach. Environmental DNA, 5(5), 10781091. https://doi.org/10.1002/edn3.421",https://doi.org/10.1002/edn3.421,2023,France,NA,Agroecosystem,Pollination,categorical,NA,NA,NA,categorical,NA,NA,NA,NA,NA,NA,2,unspecified,unspecified,no,33,no,,yes "Davies, C. B., & Davis, T. S. (2023). Social but not solitary bee abundance tracks pollen protein accumulation in forest canopy gaps. Ecological Entomology, 48(6), 738754. https://doi.org/10.1111/een.13269",https://doi.org/10.1111/een.13269,2023,USA,Colorado,Natural,Land use and management,categorical,categorical,NA,NA,categorical,NA,NA,NA,NA,NA,NA,3,yes,no,no,42,yes,,yes "Braman, C. A., McCarty, E., Ulyshen, M. D., Janvier, A. J., Traylor, C., Edelkind-Vealey, M., & Braman, S. K. (2023). Urban bee functional groups response to landscape context in the Southeastern US. Frontiers in Sustainable Cities, 5, 1192588. https://doi.org/10.3389/frsc.2023.1192588",https://doi.org/10.3389/frsc.2023.1192588,2023,USA,Georgia,Urban; Natural,Land use and management,categorical,categorical,NA,NA,categorical,categorical,NA,categorical,NA,native vs. exotic status,categorical,6,yes,no,no,122,yes,,yes "Harmon-Threatt, A. N., & Anderson, N. L. (2023). Bee movement between natural fragments is rare despite differences in species, patch, and matrix variables. Landscape Ecology, 38(10), 25192531. https://doi.org/10.1007/s10980-023-01719-6",https://doi.org/10.1007/s10980-023-01719-6,2023,USA,Missouri,Natural,Habitat fragmentation,NA,categorical,NA,NA,categorical,NA,NA,NA,NA,NA,NA,2,yes,yes,no,54,yes,,yes "Edelkind-Vealey, M., Ulyshen, M. D., & Braman, S. K. (2024). Local factors influence the wild bee functional community at the urban-forest interface. Frontiers in Ecology and Evolution, 12, 1389619. https://doi.org/10.3389/fevo.2024.1389619",https://doi.org/10.3389/fevo.2024.1389619,2024,USA,Georgia,Natural,Urbanization,categorical,categorical,NA,NA,categorical,categorical,NA,categorical,NA,native vs. exotic status,NA,6,yes,no,no,122,yes,,yes "Brasil, S. N. R., George, M., & Rehan, S. M. (2024). Functional traits of wild bees in response to urbanization. Journal of Insect Conservation, 28(1), 127139. https://doi.org/10.1007/s10841-023-00528-1",https://doi.org/10.1007/s10841-023-00528-1,2024,Canada,NA,Urban,Urbanization,categorical,categorical,NA,NA,categorical,categorical,categorical,NA,NA,wing wear,numeric,6,yes,yes,no,5,no,, "Hamblin, A. L., Youngsteadt, E., & Frank, S. D. (2018). Wild bee abundance declines with urban warming, regardless of floral density. Urban Ecosystems, 21(3), 419428. https://doi.org/10.1007/s11252-018-0731-4",https://doi.org/10.1007/s11252-018-0731-4,2018,USA,North Carolina,Urban,Climate change,categorical,categorical,NA,NA,categorical,categorical,NA,NA,NA,NA,NA,4,yes,yes,no,113,yes,,yes "MacInnis, G., Normandin, E., & Ziter, C. D. (2023). Decline in wild bee species richness associated with honey bee (Apis mellifera L.) abundance in an urban ecosystem. PeerJ, 11, e14699. https://doi.org/10.7717/peerj.14699",https://doi.org/10.7717/peerj.14699,2023,Canada,NA,Urban,Urbanization,NA,NA,NA,NA,categorical,NA,NA,NA,NA,native vs. exotic status,categorical,2,yes,no,no,120,yes,,yes "Hahs, A. K., Fournier, B., Aronson, M. F. J., Nilon, C. H., Herrera-Montes, A., Salisbury, A. B., Threlfall, C. G., Rega-Brodsky, C. C., Lepczyk, C. A., La Sorte, F. A., MacGregor-Fors, I., Scott MacIvor, J., Jung, K., Piana, M. R., Williams, N. S. G., Knapp, S., Vergnes, A., Acevedo, A. A., Gainsbury, A. M., Moretti, M. (2023). Urbanisation generates multiple trait syndromes for terrestrial animal taxa worldwide. Nature Communications, 14(1), 4751. https://doi.org/10.1038/s41467-023-39746-1",https://doi.org/10.1038/s41467-023-39746-1,2023,Multiple,NA,Urban,Urbanization,categorical,categorical,NA,NA,categorical,NA,NA,NA,categorical,NA,NA,4,yes,no,no,486,yes,,yes "Dalmazzo, M. (2010). Diversidad y aspectos biológicos de abejas silvestres de un ambiente urbano y otro natural de la región central de Santa Fe, Argentina.",NA,2010,Argentina,NA,Urban; Natural,Land use and management,categorical,categorical,NA,NA,NA,categorical,NA,NA,NA,NA,NA,3,unspecified,unspecified,no,62,no,, "Dorian, N. N., McCarthy, M. W., & Crone, E. E. (2022). Ecological traits explain long‐term phenological trends in solitary bees. Journal of Animal Ecology, 1365-2656.13778. https://doi.org/10.1111/1365-2656.13778",https://doi.org/10.1111/1365-2656.13778,2022,United States,multiple,Agroecosystem; Urban; Natural,Climate change,NA,categorical,NA,NA,NA,categorical,NA,numeric,NA,NA,NA,3,yes,no,no,70,yes,, "Evans, E., Smart, M., Cariveau, D., & Spivak, M. (2018). Wild, native bees and managed honey bees benefit from similar agricultural land uses. Agriculture, Ecosystems & Environment, 268, 162–170. https://doi.org/10.1016/j.agee.2018.09.014",https://doi.org/10.1016/j.agee.2018.09.014,2018,USA,North Dakota,Agroecosystem; Natural,Land use and management,NA,categorical,NA,NA,NA,categorical,NA,numeric,numeric,NA,NA,4,yes,no,yes,149,no,, "Graf, L. V., Schneiberg, I., & Gonçalves, R. B. (2022). Bee functional groups respond to vegetation cover and landscape diversity in a Brazilian metropolis. Landscape Ecology, 37(4), 1075–1089. https://doi.org/10.1007/s10980-022-01430-y",https://doi.org/10.1007/s10980-022-01430-y,2022,Brazil,Parana,Urban,Urbanization,categorical,categorical,NA,NA,NA,categorical,NA,NA,NA,NA,NA,3,yes,no,no,288,yes,, "Main, A. R., Webb, E. B., Goyne, K. W., & Mengel, D. (2019). Field-level characteristics influence wild bee functional guilds on public lands managed for conservation. Global Ecology and Conservation, 17, e00598. https://doi.org/10.1016/j.gecco.2019.e00598",https://doi.org/10.1016/j.gecco.2019.e00598,2019,USA,Missouri,Agroecosystem,Agricultural intensification,NA,NA,categorical,NA,NA,categorical,NA,NA,NA,NA,NA,2,yes,no,no,97,no,, "Mazzeo, N. M., & Torretta, J. P. (2015). Wild bees (Hymenoptera: Apoidea) in an urban botanical garden in Buenos Aires, Argentina. Studies on Neotropical Fauna and Environment, 50(3), 182–193. https://doi.org/10.1080/01650521.2015.1093764",http://dx.doi.org/10.1080/01650521.2015.1093764,2015,Argentina,Buenos Aires,Urban,Urbanization,categorical,categorical,NA,NA,NA,categorical,NA,NA,NA,native/exotic status,categorical,4,yes,no,no,66,yes,, "Nooten, S. S., Odanaka, K., & Rehan, S. M. (2020). Characterization of wild bee communities in apple and blueberry orchards. Agricultural and Forest Entomology, 22(2), 157–168. https://doi.org/10.1111/afe.12370",https://doi.org/10.1111/afe.12370,2020,USA,New Hemisphere,Agroecosystem,Pollination,categorical,categorical,NA,NA,NA,NA,NA,NA,NA,NA,NA,2,yes,no,no,76,yes,, "O’Brien, C., & Arathi, H. S. (2019). Bee diversity and abundance on flowers of industrial hemp (Cannabis sativa L.). Biomass and Bioenergy, 122, 331–335. https://doi.org/10.1016/j.biombioe.2019.01.015",https://doi.org/10.1016/j.biombioe.2019.01.015,2019,USA,Colorado,Agroecosystem,Pollination,categorical,categorical,NA,NA,NA,NA,NA,NA,NA,NA,NA,2,yes,no,no,24,yes,, "Odanaka, K. A., & Rehan, S. M. (2019). Impact indicators: Effects of land use management on functional trait and phylogenetic diversity of wild bees. Agriculture, Ecosystems & Environment, 286, 106663. https://doi.org/10.1016/j.agee.2019.106663",https://doi.org/10.1016/j.agee.2019.106663,2019,USA,New Hampshire,Agroecosystem,Land use and management,categorical,categorical,NA,NA,NA,categorical,NA,NA,NA,NA,NA,3,unspecified,unspecified,no,239,yes,, "Passaseo, A., Pétremand, G., Rochefort, S., & Castella, E. (2020). Pollinator emerging from extensive green roofs: Wild bees (Hymenoptera, Antophila) and hoverflies (Diptera, Syrphidae) in Geneva (Switzerland). Urban Ecosystems, 23(5), 1079–1086. https://doi.org/10.1007/s11252-020-00973-9",https://doi.org/10.1007/s11252-020-00973-9,2020,Switzerland,NA,Urban,Diversity,categorical,categorical,NA,NA,NA,categorical,categorical,NA,NA,habitat specialization,categorical,5,yes,no,no,5,yes,, "Rollin, O., Bretagnolle, V., Fortel, L., Guilbaud, L., & Henry, M. (2015). Habitat, spatial and temporal drivers of diversity patterns in a wild bee assemblage. Biodiversity and Conservation, 24(5), 1195–1214. https://doi.org/10.1007/s10531-014-0852-x",https://doi.org/10.1016/j.agee.2020.107188,2015,France,NA,Agroecosystem,Diversity,categorical,categorical,NA,NA,NA,categorical,NA,NA,NA,NA,NA,3,yes,no,no,191,yes,, "Wilson, C. J., & Jamieson, M. A. (2019). The effects of urbanization on bee communities depends on floral resource availability and bee functional traits. PLOS ONE, 14(12), e0225852. https://doi.org/10.1371/journal.pone.0225852",https://doi.org/10.1371/journal.pone.0225852,2019,USA,Michigan,Urban; Agroecosystem,Urbanization,categorical,categorical,NA,NA,NA,categorical,NA,NA,NA,native/exotic status,categorical,4,yes,no,no,106,yes,, "Cecala, J. M., & Wilson Rankin, E. E. (2021). Wild bee functional diversity and plant associations in native and conventional plant nurseries. Ecological Entomology, 46(6), 12831292. https://doi.org/10.1111/een.13074",https://doi.org/10.1111/een.13074,2021,USA,California,Other,Diversity,categorical,categorical,NA,NA,NA,categorical,NA,NA,NA,NA,NA,3,yes,no,no,153,yes,, "Fauviau, A., Baude, M., Bazin, N., Fiordaliso, W., Fisogni, A., Fortel, L., Garrigue, J., Geslin, B., Goulnik, J., Guilbaud, L., Hautekete, N., Heiniger, C., Kuhlmann, M., Lambert, O., Langlois, D., Le Fon, V., Lopez Vaamonde, C., Maillet, G., Massol, F., Henry, M. (2022). A large-scale dataset reveals taxonomic and functional specificities of wild bee communities in urban habitats of Western Europe. Scientific Reports, 12(1), 18866. https://doi.org/10.1038/s41598-022-21512-w",https://doi.org/10.1038/s41598-022-21512-w,2022,France; Belgium; Switzerland,NA,Urban,Urbanization,categorical,categorical,NA,NA,NA,categorical,NA,NA,NA,NA,NA,4,yes,no,no,580,no,, "Felderhoff, J., Gathof, A. K., Buchholz, S., & Egerer, M. (2023). Vegetation complexity and nesting resource availability predict bee diversity and functional traits in community gardens. Ecological Applications, 33(2), e2759. https://doi.org/10.1002/eap.2759",https://doi.org/10.1002/eap.2759,2023,Germany,NA,Urban,Urbanization,categorical,categorical,categorical,NA,NA,categorical,categorical,NA,NA,pollen transport; hibernation stage,categorical,6,yes,no,no,102,yes,, "Graf, L. V., Schneiberg, I., & Gonalves, R. B. (2022). Bee functional groups respond to vegetation cover and landscape diversity in a Brazilian metropolis. Landscape Ecology, 37(4), 10751089. https://doi.org/10.1007/s10980-022-01430-y",https://doi.org/10.1007/s10980-022-01430-y,2022,Brazil,Paran,Urban,Urbanization,categorical,categorical,NA,categorical,NA,categorical,NA,NA,NA,NA,NA,4,yes,no,no,288,yes,,yes "Morales-Alba, A., Carvajal-Cogollo, J., & Morales, I. (2021). Abejas en sistemas agrcolas: Revisin de la diversidad taxonmica y funcional, y perspectivas de investigacin. Acta Biolgica Colombiana, 27(2), 282291. https://doi.org/10.15446/abc.v27n2.92192",https://doi.org/10.15446/abc.v27n2.92192,2021,Colombia,NA,Agroecosystem,Diversity,categorical,categorical,NA,NA,NA,NA,NA,NA,NA,pollen transport,categorical,3,yes,no,no,116,no,,yes "Wyver, C., Potts, S. G., Edwards, M., Edwards, R., Roberts, S., & Senapathi, D. (2023). Climate-driven phenological shifts in emergence dates of British bees. Ecology and Evolution, 13(7), e10284. https://doi.org/10.1002/ece3.10284",https://doi.org/10.1002/ece3.10284 ,2023,United Kingdom,NA,Unspecified,Climate change,NA,NA,NA,NA,NA,categorical,categorical,categorical,NA,overwintering stage,categorical,4,yes,no,no,88,yes,,no "Schmolke, A., Galic, N., & Hinarejos, S. (2023). SolBeePop: A model of solitary bee populations in agricultural landscapes. Journal of Applied Ecology, 60(12), 25732585. https://doi.org/10.1111/1365-2664.14541",https://doi.org/10.1111/1365-2664.14541,2023,Unspecified,NA,Agroecosystem,Agricultural intensification,NA,categorical,NA,NA,NA,NA,categorical,numeric,NA,NA,NA,3,yes,no,no,7,no,,yes "Aguirre-Gutiérrez, J., Kissling, W. D., Carvalheiro, L. G., WallisDeVries, M. F., Franzén, M., & Biesmeijer, J. C. (2016). Functional traits help to explain half-century long shifts in pollinator distributions. Scientific Reports, 6(1), 24451. https://doi.org/10.1038/srep24451",https://doi.org/10.1038/srep24451,2016,Netherlands,NA,Agroecosystem; Natural; Urban,Climate change; Land use and management,NA,NA,NA,NA,numeric,categorical,categorical,numeric,NA,habitat specialization,categorical,5,yes,no,no,207,no,, "Banaszak-Cibicka, W., & Żmihorski, M. (2012). Wild bees along an urban gradient: Winners and losers. Journal of Insect Conservation, 16(3), 331–343. https://doi.org/10.1007/s10841-011-9419-2",https://doi.org/10.1007/s10841-011-9419-2,2012,Poland,NA,Urban,Urbanization,categorical,categorical,NA,NA,numeric,categorical,NA,categorical,NA,NA,NA,5,yes,no,no,104,yes,, "Bartomeus, I., Ascher, J. S., Gibbs, J., Danforth, B. N., Wagner, D. L., Hedtke, S. M., & Winfree, R. (2013). Historical changes in northeastern US bee pollinators related to shared ecological traits. Proceedings of the National Academy of Sciences, 110(12), 4656–4660. https://doi.org/10.1073/pnas.1218503110",https://doi.org/10.1073/pnas.1218503110,2013,USA,NA,Natural; Agroecosystem; Urban,Climate change,categorical,categorical,NA,NA,numeric,categorical,categorical,categorical,NA,NA,NA,6,yes,no,no,187,yes,, "Bartomeus, I., Cariveau, D. P., Harrison, T., & Winfree, R. (2018). On the inconsistency of pollinator species traits for predicting either response to land-use change or functional contribution. Oikos, 127(2), 306–315. https://doi.org/10.1111/oik.04507",https://doi.org/10.1111/oik.04507,2018,USA,"Pennsylvania, New Jersey",Agroecosystem,Agricultural intensification,categorical,categorical,NA,categorical,numeric,numeric,NA,NA,numeric,NA,NA,6,yes,yes,no,127,no,, "Beyer, N., Gabriel, D., Kirsch, F., Schulz‐Kesting, K., Dauber, J., & Westphal, C. (2020). Functional groups of wild bees respond differently to faba bean Vicia faba L. cultivation at landscape scale. Journal of Applied Ecology, 57(12), 2499–2508. https://doi.org/10.1111/1365-2664.13745",https://doi.org/10.1111/1365-2664.13745,2020,Germany,NA,Agroecosystem,Pollination,NA,NA,NA,NA,numeric,NA,NA,NA,numeric,NA,NA,2,no,yes,yes,80,yes,, "Beyer, N., Kirsch, F., Gabriel, D., & Westphal, C. (2021). Identity of mass-flowering crops moderates functional trait composition of pollinator communities. Landscape Ecology, 36, 2657–2671. https://doi.org/10.1007/s10980-021-01261-3",https://doi.org/10.1007/s10980-021-01261-3,2021,Germany,NA,Agroecosystem,Pollination,categorical,NA,NA,NA,numeric,NA,NA,NA,categorical,NA,NA,3,yes,yes,no,66,yes,, "Buchholz, S., Gathof, A. K., Grossmann, A. J., Kowarik, I., & Fischer, L. K. (2020). Wild bees in urban grasslands: Urbanisation, functional diversity and species traits. Landscape and Urban Planning, 196, 103731. https://doi.org/10.1016/j.landurbplan.2019.103731",https://doi.org/10.1016/j.landurbplan.2019.103731,2020,Germany,NA,Urban,Urbanization,categorical,categorical,categorical,NA,numeric,categorical,categorical,numeric,NA,NA,NA,7,yes,no,no,61,yes,, "Campbell, A. J., Lichtenberg, E. M., Carvalheiro, L. G., Menezes, C., Borges, R. C., Coelho, B. W. T., Freitas, M. A. B., Giannini, T. C., Leão, K. L., de Oliveira, F. F., Silva, T. S. F., & Maués, M. M. (2022). High bee functional diversity buffers crop pollination services against Amazon deforestation. Agriculture, Ecosystems & Environment, 326, 107777. https://doi.org/10.1016/j.agee.2021.107777",https://doi.org/10.1016/j.agee.2021.107777,2022,Brazil,Parana,Agroecosystem,Pollination,NA,NA,categorical,NA,numeric,numeric,NA,NA,NA,"foraging behavior, colony size, tegument color",both,6,yes,yes,no,33,yes,, "Carrié, R., Andrieu, E., Cunningham, S. A., Lentini, P. E., Loreau, M., & Ouin, A. (2017). Relationships among ecological traits of wild bee communities along gradients of habitat amount and fragmentation. Ecography, 40(1), 85–97. https://doi.org/10.1111/ecog.02632",https://doi.org/10.1111/ecog.02632,2017,"France, Australia",NA,Agroecosystem,Habitat fragmentation,categorical,categorical,NA,NA,numeric,categorical,NA,numeric,NA,NA,NA,5,yes,yes,no,89,yes,, "Cohen, H., Egerer, M., Thomas, S.-S., & Philpott, S. M. (2022). Local and landscape features constrain the trait and taxonomic diversity of urban bees. Landscape Ecology, 37(2), 583–599. https://doi.org/10.1007/s10980-021-01370-z","https://doi.org/10.1007/s10980-021-01370-z(0123456789().,-volV)(0123456789().,-volV)",2022,USA,California,Urban,Urbanization,categorical,categorical,categorical,NA,numeric,categorical,NA,NA,NA,pollen transport,categorical,5,yes,yes,no,46,no,, "Coutinho, J. G. E., Hipólito, J., Santos, R. L. S., Moreira, E. F., Boscolo, D., & Viana, B. F. (2021). Landscape Structure Is a Major Driver of Bee Functional Diversity in Crops. Frontiers in Ecology and Evolution, 9, 624835. https://doi.org/10.3389/fevo.2021.624835",https://doi.org/10.1016/j.agee.2017.12.025,2021,Brazil,Bahia,Agroecosystem,Diversity,categorical,categorical,categorical,NA,numeric,categorical,NA,NA,categorical,"pilosity, pollen transport, resource specialization",categorical,10,yes,yes,no,125,no,, "Cunningham‐Minnick, M. J., Peters, V. E., & Crist, T. O. (2020). Bee communities and pollination services in adjacent crop fields following flower removal in an invasive forest shrub. Ecological Applications, 30(4), e02078. https://doi.org/10.1002/eap.2078",https://doi.org/10.1002/eap.2078,2020,USA,"Indiana, Ohio",Agroecosystem,Habitat fragmentation,categorical,categorical,NA,NA,numeric,categorical,NA,NA,NA,"pollen transport, pilosity, foraging range",both,8,yes,yes,yes,107,yes,, "De Palma, A., Kuhlmann, M., Roberts, S. P. M., Potts, S. G., Börger, L., Hudson, L. N., Lysenko, I., Newbold, T., & Purvis, A. (2015). Ecological traits affect the sensitivity of bees to land‐use pressures in E uropean agricultural landscapes. Journal of Applied Ecology, 52(6), 1567–1577. https://doi.org/10.1111/1365-2664.12524",https://doi.org/10.1111/1365-2664.12524,2015,Meta-analysis: multiple countries,NA,Agroecosystem,Agricultural intensification,categorical,NA,categorical,NA,numeric,categorical,categorical,categorical,categorical,NA,NA,7,yes,no,no,257,yes,, "Figueroa, L. L., Compton, S., Grab, H., & McArt, S. H. (2021). Functional traits linked to pathogen prevalence in wild bee communities. Scientific Reports, 11, 7529. https://doi.org/10.1038/s41598-021-87103-3",https://doi.org/10.1038/s41598-021-87103-3,2021,USA,New York,Agroecosystem,Other,categorical,categorical,NA,NA,numeric,NA,NA,numeric,NA,NA,NA,4,yes,yes,no,57,yes,, "Forrest, J. R. K., Thorp, R. W., Kremen, C., & Williams, N. M. (2015). Contrasting patterns in species and functional-trait diversity of bees in an agricultural landscape. Journal of Applied Ecology, 52(3), 706–715. https://doi.org/10.1111/1365-2664.12433",https://doi.org/10.1111/1365-2664.12433,2015,USA,California,Agroecosystem,Agricultural intensification,categorical,categorical,categorical,NA,numeric,categorical,NA,numeric,NA,NA,NA,6,yes,yes,no,140,yes,, "Fortel, L., Henry, M., Guilbaud, L., Guirao, A. L., Kuhlmann, M., Mouret, H., Rollin, O., & Vaissière, B. E. (2014). Decreasing Abundance, Increasing Diversity and Changing Structure of the Wild Bee Community (Hymenoptera: Anthophila) along an Urbanization Gradient. PLoS ONE, 9(8), e104679. https://doi.org/10.1371/journal.pone.0104679",https://doi.org/10.1371/journal.pone.0104679.g002,2014,France,NA,Urban,Urbanization,categorical,categorical,NA,categorical,numeric,NA,NA,NA,categorical,NA,NA,5,yes,yes,yes,291,yes,, "Graham, K. K., Gibbs, J., Wilson, J., May, E., & Isaacs, R. (2021). Resampling of wild bees across fifteen years reveals variable species declines and recoveries after extreme weather. Agriculture, Ecosystems & Environment, 317, 107470. https://doi.org/10.1016/j.agee.2021.107470",https://doi.org/10.1016/j.agee.2021.107470,2021,USA,Michigan,Agroecosystem,Climate change,categorical,categorical,NA,NA,numeric,categorical,categorical,numeric,NA,NA,NA,6,unspecified,unspecified,no,50,yes,, "Gruver, A., & CaraDonna, P. (2021). Chicago Bees: Urban Areas Support Diverse Bee Communities but With More Non-Native Bee Species Compared to Suburban Areas. Environmental Entomology, 50(4), 982–994. https://doi.org/10.1093/ee/nvab048",https://doi.org/10.1093/ee/nvab048,2021,USA,Illinois,Urban,Urbanization,categorical,categorical,NA,NA,numeric,categorical,NA,NA,NA,native/exotic status,categorical,5,yes,no,no,83,no,, "Guenat, S., Kunin, W. E., Dougill, A. J., & Dallimer, M. (2019). Effects of urbanisation and management practices on pollinators in tropical Africa. Journal of Applied Ecology, 56(1), 214–224. https://doi.org/10.1111/1365-2664.13270",https://doi.org/10.1111/1365-2664.13270,2019,Ghana,NA,Urban,Urbanization,categorical,categorical,NA,NA,numeric,categorical,NA,NA,categorical,habitat specialization,categorical,5,yes,yes,no,167,yes,, "Gutiérrez-Chacón, C., Valderrama-A, C., & Klein, A.-M. (2020). Biological corridors as important habitat structures for maintaining bees in a tropical fragmented landscape. Journal of Insect Conservation, 24(1), 187–197. https://doi.org/10.1007/s10841-019-00205-2",https://doi.org/10.1007/s10841-019-00205-2,2020,Colombia,Quindio,Agroecosystem,Land use and management,categorical,categorical,categorical,NA,numeric,NA,NA,NA,NA,NA,NA,4,yes,yes,no,41,yes,, "Hamblin, A. L., Youngsteadt, E., Lopez-Uribe, M. M., & Frank, S. D. (2017). Physiological thermal limits predict differential responses of bees to urban heat-island effects. Biology Letters, 13, 0125.",https://doi.org/10.1098/rsbl.2017.0125,2017,USA,North Carolina,Urban,Urbanization,categorical,categorical,NA,NA,numeric,NA,NA,NA,NA,NA,NA,3,yes,yes,no,15,yes,, "Harrison, T., Gibbs, J., & Winfree, R. (2018). Forest bees are replaced in agricultural and urban landscapes by native species with different phenologies and life-history traits. Global Change Biology, 24(1), 287–296. https://doi.org/10.1111/gcb.13921",https://doi.org/10.1111/gcb.13921,2018,USA,New Jersey,Natural; Agroecosystem; Urban,Urbanization,categorical,categorical,NA,categorical,numeric,categorical,NA,numeric,NA,NA,NA,6,yes,yes,no,245,no,, "Hass, A. L., Liese, B., Heong, K. L., Settele, J., Tscharntke, T., & Westphal, C. (2018). Plant-pollinator interactions and bee functional diversity are driven by agroforests in rice-dominated landscapes. Agriculture, Ecosystems & Environment, 253, 140–147. https://doi.org/10.1016/j.agee.2017.10.019",https://doi.org/10.1016/j.agee.2017.10.019,2018,Philippines,NA,Agroecosystem,Habitat fragmentation,NA,categorical,NA,NA,numeric,NA,NA,NA,numeric,NA,NA,3,yes,yes,yes,31,yes,, "Hevia, V., Carmona, C. P., Azcárate, F. M., Heredia, R., & González, J. A. (2021). Role of floral strips and semi-natural habitats as enhancers of wild bee functional diversity in intensive agricultural landscapes. Agriculture, Ecosystems & Environment, 319, 107544. https://doi.org/10.1016/j.agee.2021.107544",https://doi.org/10.1016/j.agee.2021.107544,2021,Spain,NA,Agroecosystem,Habitat fragmentation,NA,NA,NA,NA,numeric,categorical,NA,NA,NA,pilosity,numeric,4,unspecified,yes,no,46,no,, "Hoiss, B., Krauss, J., Potts, S. G., Roberts, S., & Steffan-Dewenter, I. (2012). Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proceedings of the Royal Society B: Biological Sciences, 279(1746), 4447–4456. https://doi.org/10.1098/rspb.2012.1581",https://doi.org/10.1098/rspb.2012.1581,2012,Germany,NA,Natural,Diversity,categorical,categorical,NA,categorical,numeric,categorical,categorical,NA,NA,NA,NA,6,yes,no,no,87,yes,, "Hung, K. J., Ascher, J. S., Davids, J. A., & Holway, D. A. (2019). Ecological filtering in scrub fragments restructures the taxonomic and functional composition of native bee assemblages. Ecology, 100(5). https://doi.org/10.1002/ecy.2654",https://doi.org/10.1002/ecy.2654,2019,USA,California,Natural,Habitat fragmentation,categorical,categorical,categorical,NA,numeric,categorical,NA,categorical,numeric,NA,NA,7,yes,yes,yes,160,yes,, "Hung, K.-L. J., Sandoval, S. S., Ascher, J. S., & Holway, D. A. (2021). Joint Impacts of Drought and Habitat Fragmentation on Native Bee Assemblages in a California Biodiversity Hotspot. Insects, 12(2), 135. https://doi.org/10.3390/insects12020135",https://doi.org/10.3390/insects12020135,2021,USA,California,Natural; Urban,Habitat fragmentation,categorical,NA,NA,NA,numeric,categorical,NA,NA,NA,NA,NA,3,yes,no,no,172,yes,, "Ibanez, S. (2012). Optimizing size thresholds in a plant–pollinator interaction web: Towards a mechanistic understanding of ecological networks. Oecologia, 170(1), 233–242. https://doi.org/10.1007/s00442-012-2290-3",https://doi.org/10.1007/s00442-012-2290-3,2012,France,NA,Agroecosystem,Pollination,NA,NA,NA,NA,numeric,NA,NA,NA,numeric,NA,NA,2,no,yes,no,20,yes,, "Jacquemin, F., Violle, C., Munoz, F., Mahy, G., Rasmont, P., Roberts, S. P. M., Vray, S., & Dufrêne, M. (2020). Loss of pollinator specialization revealed by historical opportunistic data: Insights from network-based analysis. PLOS ONE, 15(7), e0235890. https://doi.org/10.1371/journal.pone.0235890",https://doi.org/10.1371/journal.pone.0235890,2020,Belgium,NA,Natural; Agroecosystem; Urban,Climate change; Land use and management,categorical,NA,categorical,NA,numeric,categorical,NA,,categorical,NA,NA,6,yes,no,no,191,yes,, "Jauker, B., Krauss, J., Jauker, F., & Steffan-Dewenter, I. (2013). Linking life history traits to pollinator loss in fragmented calcareous grasslands. Landscape Ecology, 28(1), 107–120. https://doi.org/10.1007/s10980-012-9820-6",https://doi.org/10.1007/s10980-012-9820-6,2013,Germany,NA,Agroecosystem,Habitat fragmentation,categorical,NA,categorical,NA,numeric,NA,NA,NA,NA,NA,NA,3,yes,yes,no,109,yes,, "Kammerer, M., Goslee, S. C., Douglas, M. R., Tooker, J. F., & Grozinger, C. M. (2021). Wild bees as winners and losers: Relative impacts of landscape composition, quality, and climate. Global Change Biology, 27(6), 1250–1265. https://doi.org/10.1111/gcb.15485",https://doi.org/10.1111/gcb.15485,2021,USA,"Maryland, Delaware, Washington",Natural; Agroecosystem; Urban,Land use and management,categorical,categorical,NA,categorical,numeric,NA,NA,NA,NA,"native/exotic status, foraging range",both,5,yes,no,yes,134,yes,, "Kratschmer, S., Pachinger, B., Gaigher, R., Pryke, J. S., van Schalkwyk, J., Samways, M. J., Melin, A., Kehinde, T., Zaller, J. G., & Winter, S. (2021). Enhancing flowering plant functional richness improves wild bee diversity in vineyard inter‐rows in different floral kingdoms. Ecology and Evolution, 11(12), 7927–7945. https://doi.org/10.1002/ece3.7623",https://doi.org/10.1002/ece3.7623,2021,"Austria, South Africa",NA,Agroecosystem,Land use and management,categorical,categorical,NA,NA,numeric,categorical,NA,categorical,numeric,pollen transport,categorical,7,yes,yes,yes,122,yes,, "Kratschmer, S., Pachinger, B., Schwantzer, M., Paredes, D., Guzmán, G., Goméz, J. A., Entrenas, J. A., Guernion, M., Burel, F., Nicolai, A., Fertil, A., Popescu, D., Macavei, L., Hoble, A., Bunea, C., Kriechbaum, M., Zaller, J. G., & Winter, S. (2019). Response of wild bee diversity, abundance, and functional traits to vineyard inter‐row management intensity and landscape diversity across Europe. Ecology and Evolution, 9(7), 4103–4115. https://doi.org/10.1002/ece3.5039",https://doi.org/10.1002/ece3.5039,2019,"Spain, France, Austria, Romania",NA,Agroecosystem,Land use and management,categorical,categorical,NA,NA,numeric,categorical,NA,NA,NA,NA,NA,4,yes,yes,yes,113,yes,, "Laha, S., Chatterjee, S., Das, A., Smith, B., & Basu, P. (2020). Exploring the importance of floral resources and functional trait compatibility for maintaining bee fauna in tropical agricultural landscapes. Journal of Insect Conservation, 24(3), 431–443. https://doi.org/10.1007/s10841-020-00225-3",https://doi.org/10.1007/s10841-020-00225-3,2020,India,NA,Agroecosystem,Habitat fragmentation,NA,NA,NA,NA,numeric,NA,NA,NA,numeric,NA,NA,2,no,yes,no,20,yes,, "Lane, I. G., Portman, Z. M., Herron‐Sweet, C. H., Pardee, G. L., & Cariveau, D. P. (2021). Differences in bee community composition between restored and remnant prairies are more strongly linked to forb community differences than landscape differences. Journal of Applied Ecology, 59(1), 129–140. https://doi.org/10.1111/1365-2664.14035",https://doi.org/10.1111/1365-2664.14035,2021,USA,Minnesota,Natural,Land use and management,NA,NA,NA,NA,numeric,categorical,NA,NA,numeric,NA,NA,3,yes,yes,yes,164,yes,, "Lichtenberg, E. M., Mendenhall, C. D., & Brosi, B. (2017). Foraging traits modulate stingless bee community disassembly under forest loss. Journal of Animal Ecology, 86(6), 1404–1416. https://doi.org/10.1111/1365-2656.12747",https://doi.org/10.1111/1365-2656.12747,2017,Costa Rica,NA,Agroecosystem,Habitat fragmentation,NA,categorical,NA,NA,numeric,numeric,NA,NA,NA,"colony size, foraging behavior, inquilinism",both,7,yes,no,no,18,yes,, "Maas, B., Brandl, M., Hussain, R. I., Frank, T., Zulka, K. P., Rabl, D., Walcher, R., & Moser, D. (2021). Functional traits driving pollinator and predator responses to newly established grassland strips in agricultural landscapes. Journal of Applied Ecology, 58(8), 1728–1737. https://doi.org/10.1111/1365-2664.13892",https://doi.org/10.1111/1365-2664.13892,2021,Austria,NA,Agroecosystem,Land use and management,NA,NA,NA,NA,numeric,categorical,NA,NA,NA,NA,NA,2,yes,yes,no,91,yes,, "Martins, K. T., Gonzalez, A., & Lechowicz, M. J. (2015). Pollination services are mediated by bee functional diversity and landscape context. Agriculture, Ecosystems & Environment, 200, 12–20. https://doi.org/10.1016/j.agee.2014.10.018",http://dx.doi.org/10.1016/j.agee.2014.10.018,2015,Canada,Quebec,Agroecosystem,Pollination,categorical,NA,NA,NA,numeric,NA,NA,categorical,NA,foraging range,both,4,yes,yes,yes,36,yes,, "Moretti, M., de Bello, F., Roberts, S. P. M., & Potts, S. G. (2009). Taxonomical vs. Functional responses of bee communities to fire in two contrasting climatic regions. Journal of Animal Ecology, 78(1), 98–108. https://doi.org/10.1111/j.1365-2656.2008.01462.x",https://doi.org/10.1111/j.1365-2656.2008.01462.x,2009,"Israel, Switzerland",NA,Natural,Disturbance,categorical,NA,categorical,categorical,numeric,categorical,categorical,numeric,categorical,habitat specialization,categorical,8,yes,no,no,221,no,, "Normandin, É., Vereecken, N. J., Buddle, C. M., & Fournier, V. (2017). Taxonomic and functional trait diversity of wild bees in different urban settings. PeerJ, 5, e3051. https://doi.org/10.7717/peerj.3051",https://doi.org/10.7717/peerj.3051,2017,Canada,NA,Urban,Urbanization,categorical,categorical,NA,NA,numeric,categorical,NA,categorical,categorical,pollen transport,categorical,7,yes,yes,no,200,yes,, "Papanikolaou, A. D., Kühn, I., Frenzel, M., Kuhlmann, M., Poschlod, P., Potts, S. G., Roberts, S. P. M., & Schweiger, O. (2017). Wild bee and floral diversity co-vary in response to the direct and indirect impacts of land use. Ecosphere, 8(11), e02008. https://doi.org/10.1002/ecs2.2008",https://doi.org/10.1002/ecs2.2008,2017,Meta-analysis: multiple countries,NA,Agroecosystem,Agricultural intensification,categorical,NA,NA,NA,numeric,categorical,NA,categorical,NA,NA,NA,4,yes,yes,no,180,no,, "Persson, A. S., Rundlöf, M., Clough, Y., & Smith, H. G. (2015). Bumble bees show trait-dependent vulnerability to landscape simplification. Biodiversity and Conservation, 24(14), 3469–3489. https://doi.org/10.1007/s10531-015-1008-3",https://doi.org/10.1007/s10531-015-1008-3,2015,Sweden,NA,Agroecosystem,Agricultural intensification,NA,categorical,NA,NA,numeric,NA,NA,categorical,numeric,"colony size, pollen transport",categorical,6,yes,yes,no,13,yes,, "Peters, M. K., Peisker, J., Steffan-Dewenter, I., & Hoiss, B. (2016). Morphological traits are linked to the cold performance and distribution of bees along elevational gradients. Journal of Biogeography, 43(10), 2040–2049. https://doi.org/10.1111/jbi.12768",https://doi.org/10.1111/jbi.12768,2016,Germany,NA,Natural; Agroecosystem; Urban,Climate change,NA,NA,NA,NA,numeric,NA,NA,NA,NA,NA,NA,4,no,yes,no,84,yes,, "Phillips, B. B., Williams, A., Osborne, J. L., & Shaw, R. F. (2018). Shared traits make flies and bees effective pollinators of oilseed rape (Brassica napus L.). Basic and Applied Ecology, 32, 66–76. https://doi.org/10.1016/j.baae.2018.06.004",https://doi.org/10.1016/j.baae.2018.06.004,2018,United Kingdom,NA,Agroecosystem,Pollination,NA,NA,NA,NA,numeric,NA,NA,NA,NA,pilosity,numeric,2,no,yes,no,20,yes,, "Pisanty, G., & Mandelik, Y. (2015). Profiling crop pollinators: Life history traits predict habitat use and crop visitation by Mediterranean wild bees. Ecological Applications, 25(3), 742–752. https://doi.org/10.1890/14-0910.1",https://doi.org/10.1890/14-0910.1,2015,Israel,NA,Agroecosystem,Pollination,categorical,categorical,NA,NA,numeric,categorical,NA,NA,NA,NA,NA,4,yes,yes,no,254,yes,, "Ponisio, L. C., de Valpine, P., M’Gonigle, L. K., & Kremen, C. (2019). Proximity of restored hedgerows interacts with local floral diversity and species’ traits to shape long‐term pollinator metacommunity dynamics. Ecology Letters, 22(7), 1048–1060. https://doi.org/10.1111/ele.13257",https://doi.org/10.1111/ele.13257,2019,USA,California,Agroecosystem,Habitat fragmentation; Land use and management,NA,NA,NA,NA,numeric,numeric,NA,NA,NA,NA,NA,2,yes,yes,no,120,no,, "Rader, R., Bartomeus, I., Tylianakis, J. M., & Laliberté, E. (2014). The winners and losers of land use intensification: Pollinator community disassembly is non-random and alters functional diversity. Diversity and Distributions, 20(8), 908–917. https://doi.org/10.1111/ddi.12221",https://doi.org/10.1111/ddi.12221,2014,New Zealand,NA,Agroecosystem,Agricultural intensification,categorical,NA,NA,NA,numeric,numeric,NA,NA,NA,pollen transport,categorical,4,yes,yes,no,5,no,, "Raiol, R. L., Gastauer, M., Campbell, A. J., Borges, R. C., Awade, M., & Giannini, T. C. (2021). Specialist Bee Species Are Larger and Less Phylogenetically Distinct Than Generalists in Tropical Plant–Bee Interaction Networks. Frontiers in Ecology and Evolution, 9, 699649. https://doi.org/10.3389/fevo.2021.699649",https://doi.org/10.3389/fevo.2021.699649,2021,Brazil,NA,Agroecosystem; Urban; Natural,Other,NA,NA,NA,NA,numeric,numeric,NA,NA,NA,NA,NA,2,yes,no,no,386,yes,, "Ramírez, S. R., Hernández, C., Link, A., & López-Uribe, M. M. (2015). Seasonal cycles, phylogenetic assembly, and functional diversity of orchid bee communities. Ecology and Evolution, 5(9), 1896–1907. https://doi.org/10.1002/ece3.1466",https://doi.org/10.1002/ece3.1466,2015,Colombia,NA,Natural,Other,NA,NA,NA,NA,numeric,NA,NA,NA,numeric,NA,NA,2,no,yes,no,50,no,, "Rhoades, P., Griswold, T., Waits, L., Bosque-Pérez, N. A., Kennedy, C. M., & Eigenbrode, S. D. (2017). Sampling technique affects detection of habitat factors influencing wild bee communities. Journal of Insect Conservation, 21(4), 703–714. https://doi.org/10.1007/s10841-017-0013-0",https://doi.org/10.1007/s10841-017-0013-0,2017,USA,NA,Natural,Other,NA,NA,NA,categorical,numeric,categorical,NA,NA,NA,NA,NA,3,yes,yes,no,210,no,, "Ricotta, C., & Moretti, M. (2011). CWM and Rao’s quadratic diversity: A unified framework for functional ecology. Oecologia, 167(1), 181–188. https://doi.org/10.1007/s00442-011-1965-5",https://doi.org/10.1007/s00442-011-1965-5,2011,Switzerland,NA,Natural,Disturbance,categorical,NA,NA,NA,numeric,categorical,categorical,numeric,categorical,habitat specialization,categorical,8,unspecified,unspecified,unspecified,145,no,, "Rodríguez S, S., Pérez-Giraldo, L. C., Vergara, P. M., Carvajal, M. A., & Alaniz, A. J. (2021). Native bees in Mediterranean semi-arid agroecosystems: Unravelling the effects of biophysical habitat, floral resource, and honeybees. Agriculture, Ecosystems & Environment, 307, 107188. https://doi.org/10.1016/j.agee.2020.107188",https://doi.org/10.1016/j.agee.2020.107188,2021,Chile,NA,Agroecosystem,Diversity,NA,NA,NA,NA,numeric,categorical,NA,NA,numeric,pollen transport,categorical,4,unspecified,unspecified,no,21,no,, "Roquer‐Beni, L., Alins, G., Arnan, X., Boreux, V., García, D., Hambäck, P. A., Happe, A., Klein, A., Miñarro, M., Mody, K., Porcel, M., Rodrigo, A., Samnegård, U., Tasin, M., & Bosch, J. (2021). Management‐dependent effects of pollinator functional diversity on apple pollination services: A response–effect trait approach. Journal of Applied Ecology, 58(12), 2843–2853. https://doi.org/10.1111/1365-2664.14022",https://doi.org/10.1111/1365-2664.14022,2021,"Sweden, Germany, Spain",NA,Agroecosystem,Pollination,categorical,categorical,NA,NA,numeric,NA,categorical,NA,numeric,"pilosity, forewing aspect ratio, pollen transport",both,8,yes,yes,no,45,yes,, "Shi, X., Axmacher, J. C., Chong, H., Xiao, H., Luo, S., Xu, H., Li, W., & Zou, Y. (2022). Effects of farmland consolidation in southern China on wild bee species composition, nesting location and body size variations. Agricultural and Forest Entomology, 24(3), 371–379. https://doi.org/10.1111/afe.12500",https://doi.org/10.1111/afe.12500,2022,China,NA,Agroecosystem,Agricultural intensification,NA,categorical,NA,NA,numeric,NA,NA,NA,NA,NA,NA,2,yes,yes,no,34,yes,, "Staton, T., Walters, R. J., Breeze, T. D., Smith, J., & Girling, R. D. (2022). Niche complementarity drives increases in pollinator functional diversity in diversified agroforestry systems. Agriculture, Ecosystems & Environment, 336, 108035. https://doi.org/10.1016/j.agee.2022.108035",https://doi.org/10.1016/j.agee.2022.108035,2022,United Kingdom,NA,Agroecosystem,Land use and management,categorical,NA,NA,NA,numeric,NA,categorical,categorical,numeric,NA,NA,5,yes,no,yes,39,yes,, "Steinert, M., Sydenham, M. A. K., Eldegard, K., & Moe, S. R. (2020). Conservation of solitary bees in power-line clearings: Sustained increase in habitat quality through woody debris removal. Global Ecology and Conservation, 21, e00823. https://doi.org/10.1016/j.gecco.2019.e00823",https://doi.org/10.1016/j.gecco.2019.e00823,2020,Norway,NA,Natural,Land use and management,NA,categorical,NA,NA,numeric,NA,NA,NA,numeric,NA,NA,3,yes,yes,yes,91,yes,, "Stemkovski, M., Pearse, W. D., Griffin, S. R., Pardee, G. L., Gibbs, J., Griswold, T., Neff, J. L., Oram, R., Rightmyer, M. G., Sheffield, C. S., Wright, K., Inouye, B. D., Inouye, D. W., & Irwin, R. E. (2020). Bee phenology is predicted by climatic variation and functional traits. Ecology Letters, 23(11), 1589–1598. https://doi.org/10.1111/ele.13583",https://doi.org/10.1111/ele.13583,2020,USA,Colorado,Natural,Other,NA,categorical,NA,NA,numeric,NA,NA,NA,NA,NA,NA,3,unspecified,no,no,67,yes,, "Sydenham, M. A. K., Moe, S. R., Stanescu‐Yadav, D. N., Totland, Ø., & Eldegard, K. (2016). The effects of habitat management on the species, phylogenetic and functional diversity of bees are modified by the environmental context. Ecology and Evolution, 6(4), 961–973. https://doi.org/10.1002/ece3.1963",https://doi.org/10.1002/ece3.1963,2016,Norway,NA,Natural,Land use and management,NA,categorical,NA,categorical,numeric,categorical,NA,categorical,NA,NA,NA,5,yes,no,no,63,yes,, "Tonietto, R. K., Ascher, J. S., & Larkin, D. J. (2017). Bee communities along a prairie restoration chronosequence: Similar abundance and diversity, distinct composition. Ecological Applications, 27(3), 705–717. https://doi.org/10.1002/eap.1481",https://doi.org/10.1002/eap.1481,2017,USA,Illinois,Agroecosystem; Natural,Land use and management,categorical,categorical,NA,NA,numeric,categorical,NA,categorical,NA,native/exotic status,categorical,6,yes,no,no,115,yes,, "Turo, K. J., Spring, M. R., Sivakoff, F. S., Delgado de la flor, Y. A., & Gardiner, M. M. (2021). Conservation in post‐industrial cities: How does vacant land management and landscape configuration influence urban bees? Journal of Applied Ecology, 58(1), 58–69. https://doi.org/10.1111/1365-2664.13773",https://doi.org/10.1111/1365-2664.13773,2021,USA,Ohio,Urban,Land use and management,NA,categorical,NA,NA,numeric,categorical,NA,NA,NA,native/exotic status,categorical,4,unspecified,unspecified,no,107,yes,, "Williams, N. M., Crone, E. E., Roulston, T. H., Minckley, R. L., Packer, L., & Potts, S. G. (2010). Ecological and life-history traits predict bee species responses to environmental disturbances. Biological Conservation, 143(10), 2280–2291. https://doi.org/10.1016/j.biocon.2010.03.024",https://doi.org/10.1016/j.biocon.2010.03.024,2010,Meta-analysis: multiple countries,NA,Agroecosystem; Urban; Natural,Disturbance,categorical,categorical,categorical,NA,numeric,categorical,NA,NA,NA,NA,NA,5,yes,yes,no,613,no,, "Woodcock, B. A., Garratt, M. P. D., Powney, G. D., Shaw, R. F., Osborne, J. L., Soroka, J., Lindström, S. A. M., Stanley, D., Ouvrard, P., Edwards, M. E., Jauker, F., McCracken, M. E., Zou, Y., Potts, S. G., Rundlöf, M., Noriega, J. A., Greenop, A., Smith, H. G., Bommarco, R., … Pywell, R. F. (2019). Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nature Communications, 10(1), 1481. https://doi.org/10.1038/s41467-019-09393-6",https://doi.org/10.1038/s41467-019-09393-6,2019,Meta-analysis: multiple countries,NA,Agroecosystem,Pollination,NA,NA,NA,NA,numeric,NA,NA,NA,categorical,"pilosity, pollen transport",categorical,4,yes,no,no,36,no,, "Wray, J. C., Neame, L. A., & Elle, E. (2014). Floral resources, body size, and surrounding landscape influence bee community assemblages in oak-savannah fragments: Bee communities in oak-savannah fragments. Ecological Entomology, 39(1), 83–93. https://doi.org/10.1111/een.12070",https://doi.org/10.1111/een.12070,2014,Canada,NA,Natural,Habitat fragmentation,NA,NA,categorical,NA,numeric,categorical,NA,NA,NA,NA,NA,3,yes,yes,no,75,no,, "Arajo, E. D., Costa, M., Chaud-Netto, J., & Fowler, H. G. (2004). Body size and flight distance in stingless bees (Hymenoptera: Meliponini): inference of flight range and possible ecological implications. Brazilian Journal of Biology, 64(3b), 563568. https://doi.org/10.1590/S1519-69842004000400003",https://doi.org/10.1371/journal.pone.0225852,2004,Unspecified,NA,Unspecified,Other,NA,NA,NA,NA,numeric,NA,NA,NA,NA,foraging range,numeric,2,yes,yes,yes,18,no,body length AND ITD, "Banaszak-Cibicka, W., & Dylewski, _. (2021). Species and functional diversityA better understanding of the impact of urbanization on bee communities. Science of The Total Environment, 774, 145729. https://doi.org/10.1016/j.scitotenv.2021.145729",https://doi.org/10.1016/j.scitotenv.2021.145729,2021,Poland,NA,Urban; Natural,Urbanization,categorical,categorical,NA,NA,numeric,categorical,NA,categorical,NA,pollen transport,categorical,5,yes,no,no,176,yes,body length, "McCravy, K., Geroff, R., & Gibbs, J. (2019). Bee (Hymenoptera: Apoidea: Anthophila) Functional Traits in Relation to Sampling Methodology in a Restored Tallgrass Prairie. Florida Entomologist, 102(1), 134. https://doi.org/10.1653/024.102.0122",https://doi.org/10.1653/024.102.0122,2019,USA,Illinois,Natural,Other,categorical,categorical,NA,NA,numeric,categorical,NA,NA,NA,NA,NA,4,yes,no,no,11,yes,body length, "Casanelles-Abella, J., Fontana, S., Meier, E., Moretti, M., & Fournier, B. (2023). Spatial mismatch between wild bee diversity hotspots and protected areas. Conservation Biology, 37(4), e14082. https://doi.org/10.1111/cobi.14082",https://doi.org/10.1111/cobi.14082,2023,Switzerland,NA,Unspecified,Diversity,categorical,categorical,NA,categorical,numeric,categorical,NA,numeric,categorical,NA,NA,7,yes,no,no,547,no,, "Chase, M. H., Charles, B., Harmon_Threatt, A., & Fraterrigo, J. M. (2023). Diverse forest management strategies support functionally and temporally distinct bee communities. Journal of Applied Ecology, 60(11), 23752388. https://doi.org/10.1111/1365-2664.14513",https://doi.org/10.1111/1365-2664.14513,2023,USA,Illinois,Natural,Land use and management,categorical,categorical,NA,categorical,numeric,categorical,NA,numeric,numeric,scopa number,categorical,8,yes,yes,yes,32,yes,, "Corts-Gmez, A. M., Gonzlez-Chaves, A., Urbina-Cardona, N., & Garibaldi, L. A. (2023). Functional Traits in Bees: The Role of Body Size and Hairs in the Pollination of a Passiflora Crop. Neotropical Entomology, 52(4), 642651. https://doi.org/10.1007/s13744-023-01058-w",https://doi.org/10.1007/s13744-023-01058-w,2023,Colombia,NA,Agroecosystem,Pollination,categorical,categorical,NA,NA,numeric,categorical,NA,NA,NA,pollen transport; pilosity,numeric; categorical,10,yes,yes,no,24,no,, "de Bello, F., Lep_, J., Lavorel, S., & Moretti, M. (2007). Importance of species abundance for assessment of trait composition: An example based on pollinator communities. Community Ecology, 8(2), 163170. https://doi.org/10.1556/ComEc.8.2007.2.3",https://doi.org/10.1556/ComEc.8.2007.2.3,2007,Switzerland,NA,Natural,Disturbance,categorical,NA,NA,NA,numeric,NA,categorical,categorical,categorical,NA,NA,5,yes,yes,no,unspecified,no,, "Everaars, J., Settele, J., & Dormann, C. F. (2018). Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model. PLOS ONE, 13(2), e0188269. https://doi.org/10.1371/journal.pone.0188269",https://doi.org/10.1371/journal.pone.0188269,2018,Unspecified,NA,Unspecified,Habitat fragmentation,NA,categorical,NA,NA,numeric,NA,NA,NA,NA,NA,NA,2,yes,no,no,unspecified,no,,yes "Grab, H., Branstetter, M. G., Amon, N., Urban-Mead, K. R., Park, M. G., Gibbs, J., Blitzer, E. J., Poveda, K., Loeb, G., & Danforth, B. N. (2019). Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science, 363(6424), 282284. https://doi.org/10.1126/science.aat6016",https://doi.org/10.1126/science.aat6016,2019,USA,New York,Agroecosystem,Land use and management,NA,NA,NA,NA,numeric,NA,NA,NA,NA,foraging behaviors,numeric; categorical,2,no,yes,no,43,yes,,yes "Greenleaf, S. S., Williams, N. M., Winfree, R., & Kremen, C. (2007). Bee foraging ranges and their relationship to body size. Oecologia, 153(3), 589596. https://doi.org/10.1007/s00442-007-0752-9",https://doi.org/10.1007/s00442-007-0752-9,2007,Meta-analysis: multiple countries,NA,Unspecified,Other,NA,NA,NA,NA,numeric,NA,NA,NA,NA,maximum foraging distance,numeric,2,yes,yes,no,unspecified,no,,yes "Hoiss, B., Krauss, J., Potts, S. G., Roberts, S., & Steffan-Dewenter, I. (2012). Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proceedings of the Royal Society B: Biological Sciences, 279(1746), 44474456. https://doi.org/10.1098/rspb.2012.1581",https://doi.org/10.1098/rspb.2012.1581,2012,Germany,NA,Natural,Diversity,categorical,categorical,NA,categorical,numeric,categorical,categorical,NA,NA,NA,NA,6,yes,yes,no,87,no,, "Kazenel, M. R., Wright, K. W., Griswold, T., Whitney, K. D., & Rudgers, J. A. (2024). Heat and desiccation tolerances predict bee abundance under climate change. Nature, 628(8007), 342348. https://doi.org/10.1038/s41586-024-07241-2",https://doi.org/10.1038/s41586-024-07241-2,2024,USA,New Mexico,Natural,Climate change,NA,NA,NA,NA,numeric,categorical,NA,NA,NA,heat tolerance; desiccation resistance; overwintering stage,,6,yes,yes,yes,variable,yes,,yes "Kendall, L. K., Mola, J. M., Portman, Z. M., Cariveau, D. P., Smith, H. G., & Bartomeus, I. (2022). The potential and realized foraging movements of bees are differentially determined by body size and sociality. Ecology, 103(11), e3809. https://doi.org/10.1002/ecy.3809",https://doi.org/10.1002/ecy.3809,2022,Meta-analysis: multiple countries,NA,Unspecified,Other,categorical,NA,NA,NA,numeric,NA,NA,NA,NA,foraging range,numer,3,yes,no,yes,81,yes,,yes "Kratschmer, S., Kriechbaum, M., & Pachinger, B. (2018). Buzzing on top: Linking wild bee diversity, abundance and traits with green roof qualities. Urban Ecosystems, 21(3), 429446. https://doi.org/10.1007/s11252-017-0726-6",https://doi.org/10.1007/s11252-017-0726-6,2018,Austria,NA,Urban,Urbanization,categorical,categorical,NA,NA,numeric,categorical,NA,NA,NA,NA,NA,4,yes,no,no,90,yes,,yes "Kratschmer, S., Pachinger, B., Schwantzer, M., Paredes, D., Guernion, M., Burel, F., Nicolai, A., Strauss, P., Bauer, T., Kriechbaum, M., Zaller, J. G., & Winter, S. (2018). Tillage intensity or landscape features: What matters most for wild bee diversity in vineyards? Agriculture, Ecosystems & Environment, 266, 142152. https://doi.org/10.1016/j.agee.2018.07.018",https://doi.org/10.1016/j.agee.2018.07.018,2018,Austria,NA,Agroecosystem,Pollination,categorical,categorical,NA,NA,numeric,categorical,NA,NA,NA,NA,NA,4,yes,yes,no,84,yes,,yes "Marcacci, G., Grass, I., Rao, V. S., Kumar S, S., Tharini, K. B., Belavadi, V. V., Nlke, N., Tscharntke, T., & Westphal, C. (2022). Functional diversity of farmland bees across ruralurban landscapes in a tropical megacity. Ecological Applications, 32(8), e2699. https://doi.org/10.1002/eap.2699",https://doi.org/10.1002/eap.2699,2022,India,Karnataka,Urban,Urbanization,categorical,categorical,NA,NA,numeric,numeric,NA,NA,NA,NA,NA,4,yes,yes,no,40,yes,,yes "Ockermller, E., Kratschmer, S., Hainz-Renetzeder, C., Sauberer, N., Meimberg, H., Frank, T., Pascher, K., & Pachinger, B. (2023). Agricultural land-use and landscape composition: Response of wild bee species in relation to their characteristic traits. Agriculture, Ecosystems & Environment, 353, 108540. `",https://doi.org/10.1016/j.agee.2023.108540,2023,Austria,NA,Agroecosystem,Agricultural intensification,categorical,categorical,NA,NA,numeric,categorical,categorical,numeric,categorical,NA,NA,7,yes,no,no,214,yes,body length,yes "Ramrez, S. R., Hernndez, C., Link, A., & Lpez-Uribe, M. M. (2015). Seasonal cycles, phylogenetic assembly, and functional diversity of orchid bee communities. Ecology and Evolution, 5(9), 18961907. https://doi.org/10.1002/ece3.1466",https://doi.org/10.1002/ece3.1466,2015,Colombia,NA,Natural; Agroecosystem,Diversity,NA,NA,NA,NA,numeric,NA,NA,NA,numeric,NA,NA,2,no,yes,no,50,no,body length AND ITD, "Ramos-Fabiel, M. A., Prez-Garca, E. A., Gonzlez, E. J., Yez-Ordoez, O., & Meave, J. A. (2019). Successional dynamics of the bee community in a tropical dry forest: Insights from taxonomy and functional ecology. Biotropica, 51(1), 6274. https://doi.org/10.1111/btp.12619",https://doi.org/10.1111/btp.12619,2019,Mexico,Oaxaca,Natural; Agroecosystem,Land use and management,categorical,categorical,NA,NA,numeric,NA,NA,NA,NA,NA,NA,3,yes,yes,no,68,yes,, "Ribeiro, C., Varassin, I. G., Pagioro, T. A., & Souza, J. M. T. D. (2024). Bee and plant traits drive temporal similarity of pollination interactions in areas under distinct restoration strategies. Arthropod-Plant Interactions. https://doi.org/10.1007/s11829-024-10064-7",https://doi.org/10.1007/s11829-024-10064-7,2024,Brazil,Paran,Natural,Land use and management,categorical,categorical,NA,NA,numeric,NA,NA,NA,numeric,NA,NA,4,yes,yes,yes,98,yes,,yes "Smith, C., Weinman, L., Gibbs, J., & Winfree, R. (2019). Specialist foragers in forest bee communities are small, social or emerge early. Journal of Animal Ecology, 88(8), 11581167. https://doi.org/10.1111/1365-2656.13003",https://doi.org/10.1111/1365-2656.13003,2019,USA,New Jersey; Pennsylvania,Natural,Pollination,categorical,NA,NA,NA,numeric,categorical,NA,NA,NA,NA,NA,3,yes,yes,yes,56,yes,,yes "Steffan-Dewenter, I., & Tscharntke, T. (2001). Succession of bee communities on fallows. Ecography, 24(1), 8393. https://doi.org/10.1034/j.1600-0587.2001.240110.x",https://doi.org/10.1034/j.1600-0587.2001.240110.x,2001,Germany,Baden-Wrttemberg,Agroecosystem,Land use and management,categorical,categorical,NA,NA,numeric,categorical,numeric,NA,NA,NA,NA,5,yes,no,no,129,no,,yes "Trk, E., Gall, R., & Batry, P. (2022). Fragmentation of forest-steppe predicts functional community composition of wild bee and wasp communities. Global Ecology and Conservation, 33, e01988. https://doi.org/10.1016/j.gecco.2021.e01988",https://doi.org/10.1016/j.gecco.2021.e01988,2022,Hungary,NA,Natural,Habitat fragmentation,categorical,categorical,NA,NA,numeric,categorical,NA,NA,NA,NA,NA,4,yes,no,no,45,yes,body length,yes "Villalta, I., Bouget, C., Lopez-Vaamonde, C., & Baude, M. (2022). Phylogenetic, functional and taxonomic responses of wild bee communities along urbanisation gradients. Science of The Total Environment, 832, 154926. https://doi.org/10.1016/j.scitotenv.2022.154926",https://doi.org/10.1016/j.scitotenv.2022.154926,2022,France,NA,Urban,Urbanization,categorical,categorical,NA,NA,numeric,categorical,categorical,numeric,NA,NA,NA,6,yes,no,no,159,yes,body length,yes "Wray, J. C., Neame, L. A., & Elle, E. (2014). Floral resources, body size, and surrounding landscape influence bee community assemblages in oak-savannah fragments. Ecological Entomology, 39(1), 8393. https://doi.org/10.1111/een.12070",https://doi.org/10.1111/een.12070,2014,Canada,British Columbia,Natural; Urban,Urbanization,NA,NA,categorical,NA,numeric,categorical,NA,NA,NA,NA,NA,3,yes,yes,no,75,no,,yes "Sydenham, M. A. K., Moe, S. R., Totland, ., & Eldegard, K. (2015). Does multi_level environmental filtering determine the functional and phylogenetic composition of wild bee species assemblages? Ecography, 38, 140153. https://doi.org/10.1111/ecog.00938",https://doi.org/10.1111/ecog.00938,2015,Norway,NA,Unspecified,Diversity,categorical,categorical,NA,NA,numeric,categorical,NA,categorical; numeric,NA,NA,NA,5,yes,yes,no,52,yes,data available just difficult,yes "Eggenberger, H., Frey, D., Pellissier, L., Ghazoul, J., Fontana, S., & Moretti, M. (2019). Urban bumblebees are smaller and more phenotypically diverse than their rural counterparts. Journal of Animal Ecology, 88(10), 15221533. https://doi.org/10.1111/1365-2656.13051",https://doi.org/10.1111/1365-2656.13051,2019,Switzerland,NA,Urban,Urbanization,NA,NA,NA,NA,numeric,NA,NA,NA,numeric,NA,NA,2,no,yes,no,2,yes,,yes "Casanelles-Abella, J., Fontana, S., Fournier, B., Frey, D., & Moretti, M. (2023). Low resource availability drives feeding niche partitioning between wild bees and honeybees in a European city. Ecological Applications, 33(1), e2727. https://doi.org/10.1002/eap.2727",https://doi.org/10.1002/eap.2727,2023,Switzerland,NA,Urban,Urbanization,NA,NA,NA,NA,numeric,categorical,NA,numeric,numeric,daytime activity,numeric,5,yes,yes,no,63,no,,yes "Xie, T., Orr, M. C., Zhang, D., Ferrari, R. R., Li, Y., Liu, X., Niu, Z., Wang, M., Zhou, Q., Hao, J., Zhu, C., & Chesters, D. (2023). Phylogeny-based assignment of functional traits to DNA barcodes outperforms distance-based, in a comparison of approaches. Molecular Ecology Resources, 23(7), 15261539. https://doi.org/10.1111/1755-0998.13813",https://doi.org/10.1111/1755-0998.13813,2023,China,NA,Unspecified,Diversity,categorical,categorical,NA,NA,numeric,categorical,NA,NA,numeric,parasitism status,categorical,7,yes,yes,no,unspecified,yes,body length AND ITD,yes "Jacobs, J., Beenaerts, N., & Artois, T. (2023). Green roofs and pollinators, useful green spots for some wild bee species (Hymenoptera: Anthophila), but not so much for hoverflies (Diptera: Syrphidae). Scientific Reports, 13(1), 1449. https://doi.org/10.1038/s41598-023-28698-7",https://doi.org/10.1038/s41598-023-28698-7,2023,Belgium,NA,Urban,Urbanization,categorical,categorical,NA,NA,numeric,categorical,NA,NA,NA,NA,NA,4,yes,no,no,40,yes,body length,yes "Kueneman, J. G., Bonadies, E., Thomas, D., Roubik, D. W., & Wcislo, W. T. (2023). Neotropical bee microbiomes point to a fragmented social core and strong species-level effects. Microbiome, 11(1), 150. https://doi.org/10.1186/s40168-023-01593-z",https://doi.org/10.1186/s40168-023-01593-z,2023,Panama,NA,Natural,Diversity,categorical,NA,NA,NA,numeric,NA,NA,NA,numeric,NA,NA,3,yes,yes,no,16,no,body length,no "Glenny, W., Runyon, J. B., & Burkle, L. A. (2023). Habitat characteristics structuring bee communities in a forest-shrubland ecotone. Forest Ecology and Management, 534, 120883. https://doi.org/10.1016/j.foreco.2023.120883",https://doi.org/10.1016/j.foreco.2023.120883,2023,USA,Montana,Natural,Land use and management,categorical,categorical,NA,NA,numeric,categorical,NA,NA,NA,NA,NA,4,yes,yes,no,149,yes,,yes ,,,,,,,,,,,,,,,,,,,,,,13.25627742,,,