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Some new 1nequalities

for eigenvalues of the

Hadamard product and the Fan product of matrices

Jing Li and Guang Zhou

Abstract—Let A and B be nonnegative matrices. A new upper
bound on the spectral radius p(Ao B) is obtained. Meanwhile, a new
lower bound on the smallest eigenvalue g(A* B) for the Fan product,
and a new lower bound on the minimum eigenvalue (B o A™") for
the Hadamard product of B and A™! of two nonsingular M -matrices
A and B are given. Some results of comparison are also given in
theory. To illustrate our results, numerical examples are considered.

Keywords—Hadamard product, Fan product; nonnegative matrix,
M -matrix, Spectral radius, Minimum eigenvalue, 1-path cover.

I. INTRODUCTION

NXM and N denote the set of all n x m real matrices and
Rthe {1,2,--- ,n}, respectively. If A = (a;;) € R™™"™,
B = (bi;) € R™*™ and a;; —b;; > 0, we say that A > B, and
if a;; > 0, we say that A is nonnegative. If A € R"*" is a
nonnegative matrix, the Perron-Frobenius theorem guarantees
that p(A) € o(A), where the set o(A) denotes the spectrum
of A, p(A) denotes the spectral radius of A. () denotes the
empty set.

A matrix A is irreducible if there does not exist a permu-
tation matrix P such that

A An

0 A22 ’

where A;; and Ass are square matrices, then A is called
irreducible. The set Z,, C R™*"™ is defined by

PAPT = (

Zn:{A:(a,L])eRnxna/l] SO,if Z#]7 Z,]:l,

Let A = (a;;) € Z,, and suppose A = sI — B with s € R
and B > 0. Then s — p(B) is an eigenvalue of A, every
eigenvalue of A lies in the disc {z € C :| z—s |< p(B)}, and
hence every eigenvalue A of A satisfies Re\ > s — p(B). In
particular, a matrix A € Z,, is called an M-matrix if s > p(B).
If s > p(B) we call A is nonsingular M-matrix, and denote
the class of nonsingular M -matrices by M,,.

Let A = (ai;) € Z,, we denote min{Re()) : A € o(A4)}
by ¢(A), g(A) is called the minimum eigenvalue of A.

The Hadamard product of A = (a;;) € R™*" and B =
(bij) € R™*™ is defined by A o B = (a;;b;;) € R™*™. Let
A = (ai;),B = (b;;) € R™*", the Fan product of A and B
is denoted by A* B = C = (¢;;) € R™*™, and is defined by

) —agbiy, if i # g,

Cij = e .

aiiby, if i =j.
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Let A = (ai;) be an n X n matrix with all diagonal entries
being nonzero throughout. For any 4, j, kK € N, denote

n
D la

R =
ki
R,
4 =
A4
aji o
Tji = —‘ il . JF
lagil = > lajxl
ktj,i
T = I?Qf{?"ji}
lajil + > lajilrs
k#3,1 . .
Sji = |0L_J_|Z , JFI
77
s; = fggjx{sji}

Denote the set of all simple circuits in the digraph I'4
of A by U(A). A circuit of length k in I'4 is an ordered
sequence v = (i1,--- ,%k,ik+1), Where i1,--- i € N
are all distinct, and ixy; = 4¢1. The set {i1, - ,ir} is
called the support of ~ and is denoted by 7. The length
of the circuit v is denoted by |vy|, n is the greatest com-
mon divisor of 2 and s, 7 = 2. E(A) = {ejjla;; #
0,i,7 € N} is the set of directed edge of I'(A). We say
{ei1,i276i1+n,i2+m"' 7ei2+(771)n7i3+(7'*1)7]} is the odd 1I-
path cover; {€iy,iy; €irtrigtns "+ Cint(r—1)mis+(r—1)n} i
the even 1-path cover; The certain 1-path cover of v recorded
as p'(y). When s is an positive odd number, the odd and
even 1-path cover is the same, namely, only one 1-path cover
contains all the directed edge of 7. We denote p'(A4) =

U p'(y) is a 1-path cover of I'(A). For any 4,5 € N,
~EW(A)
denote, « = {i € N|i € vy € ¥(A)}, O4 = {a;;]i € N\ a},

Ay Aiiy - Aigi,
5 Aigi,  Aigiz -+ Aigi, o ‘
A° = 7{7‘17227"'727‘@}:04
Aipin Aiis A,
mL(A) = max{ max r4(y),max©,},
YEY(A)

M (A) = i . max©4Y,
£(4) = max{_min ra().max,)

74(7y) denotes the real roots of the equation

H($ — a”) = HRZ*(AO),

i€y [1Se7
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which greater than max{a;; }.
1EY

II. MAIN RESULTS
For convenience, we give some lemmas which are useful
for obtaining the main results.

Lemma 2.1 [1]. Let A € R™*"™ be an irreducible nonnegative
matrix. Then

1) A has a positive real eigenvalue equals to its spectral
radius;

2) To p (A) there corresponds an eigenvector x > 0.
Lemma 2.2 [2]. Let A,B € R"*". If E F are diagonal
matrices of order n, then

E(AoB)F = (EAF)o B = (EA)o (BF)
= (AF) o (EB) = Ao (EBF)

and
E(AxB)F = (FAF)x B = (EA) % (BF)
= (AF)x(EB) = Ax (EBF).

Lemma 2.3 [1]. Let A € R™*", with n > 2. Then, if \ is an
eigenvalue of A, there is a pair (¢, 7) of positive integers with
i # 7,(1 <1i,57 <n) such that

|)\—CL“ H )\—ajj |§ RZR]

Lemma 24 [2]. Let A = (a;;) € R™"™ be diagonally
dominant M-matrix. Then, for A=! = (8;;), we have

lagil + Y lajilre
kA

ajj

Bji < Bii, for all j # .
Lemma 2.5 [2]. Let A = (a;;) € R™™ be a strictly row
diagonally dominant M-matrix. Then, for A~ = (8;;), we
have

Bji < sjibii, for all j # .
Lemma 2.6 [3]. Let A = (a;;) € M, be a strictly row
diagonally dominant M -matrix. Then, for A=! = (Bij), we

have 1

Bii = —-.
Lemma 2.7 [4]. Let A = (a;;) € R™™ be nonnegative
matrix, then

me(A) < p(A) < Mg (A).

Theorem 2.1 [5]. Let A = (a;;) € M, be a strictly row
diagonally dominant M -matrix. Then, for A~! = (3;;), B =
(bi;) € My, we have

q(Bo A™") > q(B) min §j;. (1
Theorem 2.2 [6]. Let A = (a;;) € M, be a strictly row

diagonally dominant M -matrix. Then, for A~! = (3;;), B =
(bi;) € My, we have

_ 1-— p(JA)p(JB) . b“
s 2 P\TA/PANIE) i
qg(Bo A™Y) T+ 2(J) min e 2)
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Theorem 2.3 [7]. Let A = (a;;) € M, be a strictly row
diagonally dominant M -matrix. Then, for A~! = (8;;), B =

(bi;) € M, we have
bii — 55y _|bjil

q(BoA™') > min Al
1<i<n [£27]

3)

Theorem 2.4 Let A = (a;5) € M, be a strictly row diagonally
dominant M-matrix. Then, for A=! = (8;;), B = (b;j) € M,,
we have

q(Bo A1) > rgi]n%{buﬁm + 0855 — [(bnﬂm‘

3 “)
~bj;B;;)? + 45i5jﬁii5jj2|bji|2|blj|:| }
TR
Proof: If A is irreducible, then 0 < s; < 1, forany i € N.
Since q(Bo A1) is an eigenvalue of Bo A~!. From Lemma
2.2 and Lemma 2.5, ¢(Bo A7) = ¢(D~Y(Bo A71)D) =
q(D(BT o (A=Y)T)D=1). Let D = (81,82, ,8,) >0
Ri(Bo A1) = R(D}(BoA~)D)
= Ri(D(B" o (A")T)D1)
=D |bjiBil
J#i
< 50y [bjilssil Bl
J7#i
<50y {bjilss| Bl
J#i
= silBul Y _|bjil-
j#i
Thus, by Lemma 2.3, there exists a pair (i,j) of positive
integers with 7 # j (1 < 4,5 < n) such that
lg(B o A™") = bisfiillg(B o A™") — bj; B4
< siBiy_bjilsiBis Y _Ibisl.
i 1%
From the above inequality and 0 < ¢(B o A7) < ayby,
Vi € N, we have
(q(BoA™Y) —biifii)(q(B o A7) — bj;855)
< Si5i¢2|bji|8jﬁjj2|blj|- ®)
i 1%
Thus, from (5), we have

g(BoA™t) > é{bnﬂn’ + 0585 — {(buﬂn‘ - bjgﬂjj)Q

1

+4si5;B8:B55 > _Ibjil Y Iyl }
#
> Igél?é{bmﬁn +b;i855 — {(bnﬂn‘ —b;;iBj)*
13
+4Si8j5iiﬁjj2|bﬂ|2|bl]‘\ }

J#i I#j

If A is reducible, it is well known that a matrix in Z,, is a
nonsingular M-matrix if and only if all its leading principle
minors are positive. If we denote by D = (d;;) the n x n per-
mutation matrix with dio = dog = -+ = dp_1n = dp1 = 1,
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the remaining d;; zero, then A—tD is irreducible nonsingular
M -matrices for any chosen positive real number ¢, sufficiently
small such that all the leading principle minors of A —tD is
positive. Now we substitute A—¢D for A in the previous case,
and then letting ¢ — 0, the result follows by continuity. ]

Remark 2.1 We next give a simple comparison between the
lower bound in (4) and the lower bound in (3). Without loss
of generality, for ¢ # j, assume that

biiBii — siBii Y _ |bjil < biiBss — 5iBi; Y _ bl (6)
J# 1#35
Thus, we can write (6) equivalently as
$iBi; > il < bjiBij — biBii + siBii ¥ |biil.
1#] ji

From (4) and the above inequality, we get
biiBii + bj; 855 — [(bnﬂn‘ — bjiBi;)?

%
+43i3jﬂii6jj2|bji|zblj:|
A A
> biiBii + b 855 — {(biiﬁn‘ —b;;iBj5)?

+4(bj; B85 — bnﬂii)£i5ii2|bﬂ|

R
+(2siﬁiiZ|bﬂ|)2]
J#i
= 2b;i B — 28iﬂz‘iZ|bji\-

J#i

From Lemma 2.6, we have

qg(Bo A_l) > Igﬁljn%{buﬁu + b5 85—

.

3
[(buﬂu‘ —bj;B55)* + 45i3j5iiﬂjjz|bﬁ|z|b”|} }
[ETa
= min{b; i — Szﬁuzwﬂ}
iy .
J#
i25 (277

Hence, the bound (4) is sharper than the bound (3).
Theorem 2.5 If A = (a;;) € R"*", B = (b;;) € R"*", are
two nonnegative matrices, then

AoB) < i
p(Ao )_max{vegzlAnoB)

TAoB (7)7 max ®AOB}-
raop(7y) denotes the real roots of the equation H(m -
i€y
ai;bi;) = HRZ-(A o B)° which greater than max{a;;b;; }.
i€y '
Proof: From Lemma 2.7 it is easy to obtained the desired
result. ]
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Theorem 2.6 Let A = (a;;) € M, and B = (b;;) € M,.
Then
q(AxB) = H;}I.l%{an'bii +a;ibjj — [(Giz‘bn‘ — aj;bj;)?
i#]

1

e (b — a(B)) by — q(B))} 2 }
(7)

where «; = max{|a;|},Vi € N.
ki

Proof: If AxB is irreducible, then A and B are irreducible.
Since, A — q(A)I and B — q(B)I are singular irreducible M-
matrices. Then

Q5 — q(A) > O,VZ € N.
and

b“‘ —q(B) > O,VZ € N.

Since A = (a;;), B = (b;;) are irreducible nonsingular M-
matrices, then there exists two positive vectors u, v Such that
Au = q(A)u, Bv = q(B)v. Thus, we have

| aij | v
i — ————=¢q(A
a E — q(A),
J#i
or equivalently,

> laij Luj = [ai — q(A)u;

J#i

b3y | 0
bii—2$ =q(B),

J#i

and

or equivalently,
Z | bij | vj = [bii — q(B)]v;
J#i
For convenience, let denote «v; = Izlitx{‘ ak; |},Vi € N. Since
7

A is an irreducible matrix, o; > 0,Vi € . Define a positive
diagonal matrix Z = diag(z1,- - , z,), where
zi:ﬁ>07Vi€N.
Q;
By Lemma 2.2, we have q(Ax B) = ¢(Z"'(Ax B)Z) =
q(A%(Z7'BZ)). For convenience, let B = (b;;) = Z 'BZ.
So we have
Ri(Z"Y(A* B)Z) = Ri(Ax B)
= lai by |
i
< by | v
J#i
= (bii — q¢(B))a.
According to Lemma 2.3, there exists a pair (i, j) of positive
integers with 7 # j(1 < 4,5 < n), such that

| q(AxB)—aibsi || q(AxB)—aj;b;5 |< (bii—q(B))ai(bj;—q(B))oy

From the above inequality and 0 < q(A*B) < a;;b;;,Vi € N,
we have

(q(Ax B) — aiibi;)(q(A* B) — a;;bj;)
< a;a(bi; — q(B))(bj; — q(B))
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Example 3.1

III. NUMERICAL EXAMPLES

14
+da;a;(bii — q(B))(bj; — q(B)) } 4 -1 -1 -1
E - -2 5 -1 -1
> H;én;{aubu +a;ibi; — |:(aiibii —aj;bj;)? o 0 -2 4 -1 |’
! 1 ~1 -1 -1 4
Hava 0~ a1~ (3] L Z1z 0 o
If AxB is reducible. It is well known that a matrix in Z,, is B = —1/2 L -1/ 0
. =~ P L 0 —1/2 1 —1/2
a nonsingular M-matrix if and only if all its leading principal 0 0 —1/2 1

minors are positive. If we denote by D = (d;;) the n x n per-
= dnfln = dnl =1,
the remaining d;; zero, then both A —¢D and B — ¢D are
irreducible nonsingular M-matrices for any chosen positive
real number ¢, sufficiently small such that all the leading
principal minors of both A—¢D and B —¢D are positive. Now
we substitute A —¢D and B —tD for A and B, respectively
in the previous case, and then letting ¢ — 0, the result follows

mutation matrix with dio = dos =

by continuity.

inequality (1), we get

By the inequality (2), we

get

q(Bo A™Y) > 0.07

q(Bo A™Y) > 0.052

Then

B By the inequality (3), we get
Theorem 2.7 Let A = (a;;) € M,, and B = (b;;) € M,.

q(Bo Ail) > 0.075
By Theorem 2.4, we have

By calculation, we have ¢(B o A™!) = 0.2148. By the

q(AxB) > H;gl% {&nbn‘ + ajjbjj — {(anbu‘ — aj;bj;)°

48,8 (a5 — a(A)) (a5 — q<A>>] 2 }
where (3, = rilgxﬂbki\},w € N.

According to Theorem 2.6 and Theorem 2.7, it is easy to
obtain the following corollary.
Corollary 2.1 If A = (a;;) and B = (b;;) are two n X n
nonsingular M -matrices, then

q(A x B) > max {min%{anbn‘ +a;ib;;

i#j
- [(au‘bu‘ — ajibj;)? + dasa(bis — a(B)) (bj; — Q(B))}
rggy% {au’bu’ + ajjbj; — {(aiibn — a;;b;;)?

1

where «; = Iilig({‘aki‘} and f§; = I}ﬁf{\bM} Vie N.

488 (asi — a(A))(ay; — q<A>>}

Corollary 2.2 If A = (a;;) and B = (b;;) are two n X n
nonsingular M -matrices, then

|det(Ax B)| > [q(A* B)]"

i L b b b — b )2
Zg?w{aubm"'awbm (aiibii — a;jbj;)

+4aia;(bi — q(B))(bj; — Q(B))] 5}"7

1
2 }
’

q(Bo A™h) > 0.1729.

Example 3.2

8§ 1.0 0 O 11111
121 00 11111
A=|0 1 5 1 0|B=|1 1111
0 01 21 11111
0 0 0 1 8 11111

It is easy to calculate that p(A o B) = p(A) = 8.1801. If we
use Gersgorin theorem and Brauer theorem, we have

p(AoB)<0.

and

If we take pl(A) = {6172762’3,6374764’5}, ’I"AOB(].,Q)
— "8.3166, raon(l,5)
T408(2,4) = 4, 7408(2,3) = raop(3,4) = 6, raon(1,3)

TAOB(1,4)

7 405(3,5) = 8.5616.

= TAoB(Q,E))

p(Ae B) <

From Theorem 2.5 we get
p(AoB) < M!(AoB)

= max

min

9.

L

TAoB (7)7 max @AOB }

and

|det(Ax B)| = [q(A+ B)]"

in L b — b )2
2%2?27 (aiibii — ajjbj;)

1

#4005 o — a4 s — a(4)] |

a;ibi + ajjbjj -
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€W (AoB)
= 8.3166.
Example 3.3
=i 2[00 3]
By calculation, we have
qg(AxB)=6
By Theorem 2.6, we get
q(A* B) =6.
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IV. CONCLUSIONS

In this paper, we give some inequalities for the spectral

radius of the Hadamard product of two nonnegative matrices.
These bounds improve some existing results and numerical
examples illustrate that our results are superior.
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