Preferred Practices Through a Project Template

1% Peter F. Peterson
Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN, USA
https://orcid.org/0000-0002-1353-0348
petersonpf@ornl.gov

31 Jose M. Borreguero-Calvo
Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN, USA
https://orcid.org/0000-0002-0866-8158
borreguerojm@ornl.gov

Abstract—In the realm of scientific software development,
adherence to best practices is often advocated. However, im-
plementing these can be challenging due to differing opinions.
Certain aspects, such as software licenses and naming conven-
tions, are typically left to the discretion of the development
team. Our team has established a set of preferred practices,
informed by, but not limited to, widely accepted best practices.
These preferred practices are derived from our understanding
of the specific contexts and user needs we cater to. To facilitate
the dissemination of these practices among our team and foster
standardization with collaborating domain scientists, we have
created a project template for Python projects. This template
serves as a platform for discussing the implementation of various
decisions. This paper will succinctly delineate the components
that constitute an effective project template and elucidate the
advantages of consolidating preferred practices in such a manner.

Index Terms—Python, best practices, template repository, re-
search software engineer

I. INTRODUCTION

In any software development team, both formal and informal
rules coalesce based on shared values and practical needs.
Documenting these rules is crucial for consensus building
and serves as a valuable guide for newcomers, particularly
as the team expands. At Oak Ridge National Laboratory
(ORNL), the Neutron Data Project (NDP) team oversees a
broad spectrum of Python software of various origins and fre-
quently launches new, typically small, projects. To standardize
project layouts, expedite new project initiation, and reduce the
overhead incurred when maintaining a software portfolio, we
have developed a comprehensive project template.

This manuscript has been authored by UT-Battelle, LLC, under contract
DE-AC05-000R22725 with the US Department of Energy (DOE). The US
government retains and the publisher, by accepting the article for publica-
tion, acknowledges that the US government retains a nonexclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the published form of
this manuscript, or allow others to do so, for US government purposes. DOE
will provide public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan,

2"d Chen Zhang
Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN, USA
https://orcid.org/0000-0001-8374-4467
zhangc@ornl.gov (Corresponding author)

4™ Kevin A. Tactac
Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN, USA
tactacka@ornl.gov

This paper outlines the components encompassed in our
Python project template, ranging from opinion-based guide-
lines to practical best practices. This template is of particular
relevance to research software engineers, as it can be adopted
to establish their project standards, thereby optimizing effi-
ciency and collaboration within the research software engi-
neering community.

II. TEMPLATE CONTENTS

The |neutrons python project template| (on github) serves
as a well-organized repository of essential configuration in-
formation and reusable examples. It not only promotes team
consensus and efficient documentation but also provides an
easily accessible source of information, proving particularly
beneficial for new team members and collaborators. The
included elements such as README contents, frequently
used tools, libraries, and build configurations, all contribute
to enhance clarity and foster reuse.

Although many development teams use templating tools
like Cookiecutter [1] to initiate new projects, this approach
was not adopted by the NDP team. Despite the convenience
of Cookiecutter, it requires instantiation to fully unveil its
features. Preference was given to a working example that
directly illustrates the necessary modifications. This strategy
ensures that projects on GitHub appear ready-to-use, thereby
encouraging domain scientists to follow NDP’s preferred prac-
tices. From the standpoint of a research software engineering
team, this method contributes to enhancing software stability
and usability, thus minimizing potential issues during collab-
oration.

A. Preferred license

Choosing the right open-source license is crucial for any
project. Among the numerous open source licenses [2f, our
default choice is the MIT License due to its simplicity and

https://www.energy.gov/doe-public-access-plan
https://github.com/neutrons/python_project_template/

permissiveness. The MIT License only requires the preser-
vation of copyright and license notices, making it easy to
comply with organizational requirements while encouraging
open collaboration. However, depending on project-specific
needs or constraints, we remain flexible and open to adopting
other licenses as necessary. This adaptability ensures that our
licensing aligns with both our team’s values and the broader
requirements of our projects.

B. OpenSSF Best Practices Badge Program

The Open Source Security Foundation (OpenSSF) [3]] is a
community of developers and security experts dedicated to
securing open source software. Supported by the Linux Foun-
dation [4], they have developed the OpenSSF Best Practices
Badge Program [5]], which outlines guidelines for open source
software development. These guidelines cover essential topics
such as basics (e.g., website and license), change control (e.g.,
revision control and unique version numbers), reporting (e.g.,
bugs and vulnerabilities), quality (e.g., automated testing and
compiler warnings), security (e.g., involving knowledgeable
security personnel), and analysis (e.g., static and dynamic code
analysis).

Our project template incorporates several of these principles
by default. By utilizing GitHub [6]], including a license, and
pre-configuring static analysis tools, projects that adopt our
template are well-positioned to meet the criteria for a passing
badge. While achieving a passing badge does not guarantee
high-quality software, it establishes a solid foundation for
open source projects, promoting best practices and effective
communication with the community.

C. Dependency management

A topic that needs to be decided early in a python project
is how dependencies will be managed and how the software
will be distributed. Managing dependencies when creating and
distributing Python packages can be complex. Many of the
more popular options for dependency management involve
virtualization via things like conda [[7], virtualenv [8[, and
poetry [9]. The choice of dependency management system is
heavily influenced by how the software will be packaged and
distributed, however, selecting one does not necessarily dictate
the other. Some of our software is python with much written
in C++, which has many C++ dependencies [[10]] that are not
readily available via PyPi [11]]. Based on this and the need
to install python software into a central location on behalf
of users, our group selected conda for both packaging and
dependency management.

Anaconda [[7] simplifies dependency management by storing
package configurations in conda.recipe/meta.yaml,
promoting reproducible environments. While publishing a
package directly via PyPI [[11] is straightforward, it lacks
extensive dependency resolution, leading to potential issues in
production. To circumvent this, we use Anaconda to mitigate
dependency concerns, installing any packages exclusive to
PyPI last to ensure maximum compatibility. Anaconda cir-
cumvents having to rely on resources installed on the host

machine, such as compilers, database client/servers, as well
as system, numerical, and GU libraries. Different software
packages or even different versions of the same package will
require different version of some of these resources. Encapsu-
lating these resources in anaconda environments allows us to
consistently deploy more than 30 products to over 100 systems
every two weeks. Despite its efficiency, this method may still
require additional configuration for projects with complicated
dependencies or those involving multiple languages.

D. Static analysis configuration

Static analysis tools are essential for ensuring code quality,
catching numerous common issues even though they may
occasionally produce false positives. The Python-based pre-
commit framework [|12] simplifies the integration of various
static analysis tools, ensuring they run before code is com-
mitted, thus conserving automated build resources for testing.
Pre-commit’s extensibility supports a wide range of tools, and
its service, pre-commit.ci [13]], runs these tools automatically
and commits any changes. This acts as a safety net for
developers who might not configure pre-commit locally or
use web-based integrated development environments (IDEs).
Additionally, pre-commit.ci proactively creates pull requests
for updates to itself and the tools used.

Our team configures pre-commit with built-in tools to
block large files, check YAML syntax, enforce consistent end-
of-line characters, and remove trailing spaces. For Python,
we have adopted the recently released ruff and ruff-format
tools [14]], which are faster replacements for flake8, pylint, and
black [[15]—-[17]]. Ruff also resolves configuration discrepancies
among these tools, simplifying setup by requiring only a single
configuration at a centralized location.

E. Package layout

project_root/
src/
L,package_name/
L init_ .py
tests/
notebooks/
example_notebook.ipynb
docs/
L,conf.py
scripts/
example_script.py
conda.recipe/
L,meta.yaml
environment.yml
.github/
| workflows/
L,ci.yml

Fig. 1. Preferred Python Package Layout

A well-structured package layout (Figure [I) is vital for
maintaining organization and efficiency in Python projects.

Our preferred layout supports development, documentation,
and deployment needs, ensuring clarity and ease of use. The
key components of the repository are listed as follows:

o Source Files (src/package_name/): This directory
stores all Python source files, ensuring a clean namespace
and reducing import errors.

o Tests (tests/): This directory hosts all unit test and
integration test files, ensuring thorough testing and vali-
dation of the project.

o Demonstration Notebooks (notebooks/): This op-
tional folder contains Jupyter notebooks [|18] for demon-
strating the package’s functionality, useful for tutorials
and examples.

e Documentation (docs/): This directory stores all project
documentation, which is published using Read the
Docs [19], ensuring consistent and accessible documen-
tation.

o Scripts (scripts/): For packages with application fea-
tures requiring standalone command-line applications,
this optional folder stores the necessary starting scripts.

e Anaconda Packaging (conda.recipe/): This direc-
tory contains configuration files for creating conda pack-
ages, facilitating distribution and installation.

o Development Environment (environment.yml): A
single YAML file provides the configuration for the
development environment, ensuring consistency across
setups.

o GitHub Workflows (.github/workflows/): This
folder contains templated GitHub Action definitions for
CI/CD processes, automating testing and deployment.

This layout promotes organization, clarity, and ease of
use by separating different aspects of the project. It makes
management and collaboration easier and ensures that new
team members can quickly understand the project structure.
The consistent structure also aids in automated processes and
helps maintain high-quality standards, reducing the workload
for the devops engineers by using a consistent CI/CD structure.

FE. Specifying metadata for development tools

Proper configuration of development tools is essential for
efficient software development and publishing. We use a
variety of tools, including Python’s native tools for packaging,
versioningit for versioning, Anaconda for packaging
and publishing, and GitHub Actions for CI/CD automation.
Each of these tools needs to be configured correctly to ensure
smooth and efficient workflows. As these tools evolve in
time, the template project is updated as necessity arises.
These updates have the additional advantage that any fixes
to the template can be readily ported to any child project.
For instance, troubleshooting efforts are considerably reduced
when the CI stops working because a update in any of the
third-party GitHub actions cause the workflow to fail.

Storing Python package metadata correctly is essential
for package management and distribution. We follow PEP
621 [20] and the latest packaging specifications [21] to store

metadata in pyproject .toml, which centralizes configura-
tion and improves interoperability. This standardized approach
ensures compatibility with various tools, though it may require
updates as specifications evolve

Versioning software reliably is crucial for tracking changes
and ensuring consistency. Managing version numbers manu-
ally can lead to errors, so we use the versioningit [22]]
tool to automate versioning based on Git tags. This ensures
accuracy and reduces manual intervention, providing consis-
tent and traceable versioning, though it requires adherence to
a specific workflow, which is documented in the on-boarding
guide for NDP team members.

Automating testing and deployment with GitHub Actions
addresses common challenges such as ensuring code quality
and reducing manual deployment errors. We configure GitHub
Actions to run unit tests for every pull request, integration tests
for every change in the protected branches, and automated
package building and publishing for every major releases. This
setup ensures continuous integration and delivery, enhancing
reliability and efficiency, and the template configuration files
in .github/workflows take care of most of the work,
allowing developers to focusing on feature implementation.

In addition to the tools described above, we also use
additional services such as Read the Docs and CodeCov to
improve overall software quality. The guidelines on how to
install CodeCov access token are detailed in the README,
which enables automatic uploading of the coverage reports
generated during execution of the GitHub actions. These
tools offer straightforward integration with GitHub, and their
configuration files can often be reused across projects. By
including them in the template repository, new projects can
benefit from these services right from the start, enhancing
documentation accessibility and code coverage analysis.

G. GUI application with MVC pattern

Developing GUI applications differs from creating libraries
and command-line tools, necessitating extra care. User inter-
face design, event handling, and state management all add
complexities that require careful planning to ensure a user-
friendly and responsive application. There are various design
patterns available for GUI development, but we’ve chosen to
use the Model-View-Controller (MVC) pattern for all our GUI
applications. This choice simplifies the development process
and allows team members to easily understand and contribute
to any project within our organization.

Listing 1. home_view.py
from qtpy.QtWidgets import (
QHBoxLayout,
QWidget,
)

class Home(QWidget):
7 Main widget”””
def __init__ (self, parent=None):
super (). __init__(parent)

LAt the time of writing, setup.py is still required to build C-extensions
for a Python package, which is a common requirement for large projects.

layout = QHBoxLayout()
self.setLayout(layout)

Listing 2. home_presenter.py
class HomePresenter:
”””Main presenter

9

def __init__(self, view, model):
self . _view = view
self._model = model

@property

def view(self):
”””Return the view for this presenter”””
return self._view

@property

def model(self):
”””Return the model for this presenter”””
return self._model

Listing 3. home_model.py
from mantid. kernel import Logger

logger = Logger ("PACKAGENAME”)

class HomeModel:
o Main model”””

def __init__(self):

return

The MVC pattern separates concerns into three intercon-
nected components: Model, View, and Controller. This division
allows for each component to be developed, tested, and
maintained independently, thus improving the overall quality
and scalability of our applications. To facilitate quick start
and maintain consistent coding standards, we provide template
files in our project template repository. These templates offer a
structured starting point for the main components of an MVC
application.

We use qtpy to abstract out lower-level dependencies. Qtpy
is a wrapper that allows us to use either PyQt or PySide
libraries without changing the codebase. This abstraction en-
sures our code remains flexible, adaptable to different under-
lying libraries, and simplifies dependency management while
enhancing portability.

By adhering to the MVC pattern and using our provided
templates, we ensure all GUI applications within our organi-
zation follow a consistent structure and coding standard. This
approach not only streamlines development but also promotes
better collaboration and code quality across different projects.

III. USING THE PROJECT TEMPLATE

This section demonstrates how the template repository can
be applied to various scenarios within the Neutron Data Project
(NDP), including starting new Python projects (both non-
GUI and GUI applications), modernizing existing projects,
and encouraging domain scientists to refine their prototypes.
These examples highlight the repository’s ability to streamline
development and promote best practices.

A. For starting new projects

The template repository offers a robust foundation for new
Python projects. For non-GUI applications, the provided struc-
ture ensures consistency and organization, enabling developers
to focus on functionality rather than setup. Instructions on how
to remove unnecessary files (for example, non-GUI apps do
not need MVC template files) are provided in the README,
allowing developers to modify the repository once the new
project is created from the template. The standardized layout
helps maintain a high standard of code quality and facilitates
easier onboarding for new team members. For GUI applica-
tions, the included MVC pattern templates guide developers
in creating clean, maintainable designs from the outset. This
structured approach minimizes setup time and helps maintain
a high standard of code quality.

B. For modernizing existing projects

Modernizing an existing project can be challenging, but
the template repository serves as a valuable reference for
incorporating best practices. By adopting the structured layout
and modern tooling provided by the template, legacy projects
can be updated to enhance maintainability, scalability, and
performance. This modernization process includes integrat-
ing CI/CD pipelines, static analysis tools, automated testing,
package publication, code coverage, and documentation pub-
lication. All these additions dramatically improve the overall
development workflow and ensure a more robust and reliable
codebase.

C. Encouraging Domain Scientists

Domain scientists often develop prototype software with
significant differences in structure and standardization. Pre-
senting a ready-to-use template repository motivates these
scientists to adopt preferred practices, making their prototypes
more robust and easier to integrate into larger projects. This
approach reduces barriers to collaboration, as the prototype
software is already aligned with established development stan-
dards, facilitating a smoother and more productive teamwork.

The template repository is a living document that evolves
over time to incorporate new best practices and tools. Its
version tracking and branching capabilities ensure versatility
and applicability to a wide range of software development
projects. This adaptability allows the template to meet the
diverse needs of the Neutron Data Project (NDP) and support
ongoing innovation in software development.

IV. MAINTENANCE AND FUTURE IMPROVEMENTS

Maintaining and improving the project template is an on-
going process guided by practical development needs and
team consensus. Our approach to sustaining this template is
structured yet flexible, allowing for both incremental updates
and significant changes when necessary.

These strategies ensure that our project template remains
relevant, adaptable, and aligned with both evolving best prac-
tices and the specific needs of our software development en-
vironment. By balancing flexibility with centralized oversight,

we can continuously improve our template while minimizing
disruption to ongoing projects. The following strategies outline
how our team addresses maintenance and future improve-
ments.

A. Incremental Updates via Pull Requests

Individual developers are encouraged to explore and adopt
new tools or practices during their project development. When
a developer identifies a beneficial improvement that does not
require a drastic overhaul of the template, they can submit a
pull request. The proposed change is then reviewed by one
of the designated gatekeepers. If the change is accepted, it
becomes the new standard for future projects. While existing
projects are encouraged to adopt the updated practices, they
are not required to do so.

B. Collaborative Decision-Making for Drastic Changes

In cases where a proposed change involves a substantial
deviation from the existing template structure or introduces
a significant new tool, the development team organizes a
dedicated meeting. These discussions, held either in person
or online, allow the team to evaluate the potential impact and
reach a consensus on whether the new tool or practice should
be adopted as the new standard. This ensures that any major
updates are thoughtfully considered and align with the broader
goals of the team.

C. Centralized Documentation of Issues and Solutions

A common challenge in maintaining multiple software
projects is staying updated with the latest versions of tools
and plugins, especially in continuous integration workflows
like GitHub Actions. Often, build failures arise due to out-
dated plugin versions that are no longer maintained or have
changed their interfaces. The template repository serves as a
central information hub, where solutions to these problems are
documented through pull requests. Software project leads can
contribute their findings and, in turn, benefit from existing so-
lutions recorded in the repository. This shared knowledge base
reduces redundant troubleshooting efforts and helps ensure that
all projects are using stable and supported configurations.

V. SUMMARY

The comprehensive project template developed by the Neu-
tron Data Project (NDP) at Oak Ridge National Laboratory
provides a robust foundation for Python software development.
By incorporating best practices and standardized configura-
tions, the template streamlines the initiation of new projects,
facilitates the modernization of existing ones, and encourages
domain scientists to adopt structured development approaches.
This template not only enhances collaboration and code quality
but also supports ongoing innovation by evolving over time
to integrate new tools and practices, ensuring it remains up
to date, versatile, and effective for a wide range of scientific
software development needs.

For the research software engineering community, this tem-
plate repository offers significant benefits. It promotes consis-
tent and efficient development practices, enhancing collabo-
ration between software engineers and domain scientists. By
providing a structured and standardized approach, the template
reduces barriers to the setup of the ecosystem supporting a
software package, making it easier for domain scientists to
adopt best practices and contribute effectively. This fosters
a more integrated and productive research environment. We
recommend other research software engineering groups create
their own template repository and share it, thereby promoting
research software engineering practices to a broader audience
and enhancing the overall quality of research software.

REFERENCES

[11 A. R. Greenfeld, D. R. Greenfeld, and R. Pierzina. (2019)
Cookiecutter: Better project templates. [Online]. Available: https:
/[cookiecutter.readthedocs.io/en/2.0.2/

[2] (2024). [Online]. Available: https://choosealicense.com/

[3] (2024). [Online]. Available: https://openssf.org/

[4] (2024). [Online]. Available: https://www.linuxfoundation.org/

[5]1 (2024). [Online]. Available: https://www.bestpractices.dev/

[6] (2024). [Online]. Available: https://www.github.com/

[7] Anaconda, Inc. (2024) Anaconda. [Online]. Available: https://www.
anaconda.com/download/

[8] (2024) venv — creation of virtual environments. [Online]. Available:
https://docs.python.org/3/library/venv.html

[9] (2024) Poetry. [Online]. Available: https://python-poetry.org/

[10] O. Arnold, J. Bilheux, J. Borreguero, A. Buts, S. Campbell, L. Chapon,
M. Doucet, N. Draper, R. F. Leal, M. Gigg, V. Lynch, A. Markvardsen,
D. Mikkelson, R. Mikkelson, R. Miller, K. Palmen, P. Parker, G. Passos,
T. Perring, P. Peterson, S. Ren, M. Reuter, A. Savici, J. Taylor,
R. Taylor, R. Tolchenov, W. Zhou, and J. Zikovsky, ‘“Mantid—data
analysis and visualization package for neutron scattering and g sr
experiments,” Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, vol. 764, pp. 156 — 166, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0168900214008729

[11] (2024) Python package index - pypi. [Online]. Available: https:
/Ipypi.org/

[12] (2024). [Online]. Available: https://pre-commit.com/

[13] (2024). [Online]. Available: https://pre-commit.ci/

[14] (2024). [Online]. Available: https://docs.astral.sh/ruff/

[15] (2024). [Online]. Available: https://flake8.pycqa.org/

[16] (2024). [Online]. Available: https://pylint.pycqa.org/

[17] [Online]. Available: https://github.com/psf/black

[18] (2024). [Online]. Available: https://jupyter.org/

[19] (2024). [Online]. Available: https://about.readthedocs.com/

[20] (2024). [Online]. Available: https://peps.python.org/pep-0621/

[21] (2024). [Online]. Available: https://packaging.python.org/en/latest/
specifications/

[22] (2024). [Online]. Available: https://versioningit.readthedocs.io/

https://cookiecutter.readthedocs.io/en/2.0.2/
https://cookiecutter.readthedocs.io/en/2.0.2/
https://choosealicense.com/
https://openssf.org/
https://www.linuxfoundation.org/
https://www.bestpractices.dev/
https://www.github.com/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://docs.python.org/3/library/venv.html
https://python-poetry.org/
http://www.sciencedirect.com/science/article/pii/S0168900214008729
https://pypi.org/
https://pypi.org/
https://pre-commit.com/
https://pre-commit.ci/
https://docs.astral.sh/ruff/
https://flake8.pycqa.org/
https://pylint.pycqa.org/
https://github.com/psf/black
https://jupyter.org/
https://about.readthedocs.com/
https://peps.python.org/pep-0621/
https://packaging.python.org/en/latest/specifications/
https://packaging.python.org/en/latest/specifications/
https://versioningit.readthedocs.io/

	Introduction
	Template Contents
	Preferred license
	OpenSSF Best Practices Badge Program
	Dependency management
	Static analysis configuration
	Package layout
	Specifying metadata for development tools
	GUI application with MVC pattern

	Using the Project Template
	For starting new projects
	For modernizing existing projects
	Encouraging Domain Scientists

	Maintenance and future improvements
	Incremental Updates via Pull Requests
	Collaborative Decision-Making for Drastic Changes
	Centralized Documentation of Issues and Solutions

	Summary
	References

