
Turing Technical Report

Benchmarking the performance of GPT-2
type applications on GPU-accelerated
computing resources

Tomas Lazauskas and David Llewellyn-Jones

August 2024

Report number 3



© The Alan Turing Institute 2024

This work is licensed under Creative Commons licence CC BY-SA 4.0.

To view a copy of this licence, visit

http://creativecommons.org/licenses/by-sa/4.0/

The Alan Turing Institute is a charity incorporated and registered in England

and Wales with company number 09512457 and charity number 1162533

whose registered office is at British Library, 96 Euston Road, London,

England, NW1 2DB, United Kingdom.

https://doi.org/10.5281/zenodo.13349541



Abstract

In this report we look at eight GPU-accelerated systems representing a
cross-section of the available Tier 2 HPC systems in the UK. These include
a mixture of GPU-accelerated platforms from NVIDIA, AMD and Intel. For
each system, we perform a set of benchmarking experiments by training a
GPT-2 model using a mixture of parameters and hyperparameters. These
include model size, number of GPUs, floating point data type, training data
size, distribution strategies and batch size. Our interest is in performance
measured by time taken to complete an epoch of training rather than conver-
gence speed. We also measure memory usage. The overall aim is to compare
systems in order to provide researchers intending to perform AI training with
some benchmarks for what to expect in terms of training speed for a model
in a non-optimised real-world scenario.

1 Introduction

The growing reliance on deep learning models, notably recently large language
models (LLMs) like GPT [1], BERT [2], LLAMA [3], FALCON [4], and others
necessitates understanding their performance on diverse compute resources, a re-
quirement especially pertinent to the UK’s High Performance Computing (HPC)
services.
The UK’s HPC services, driven by a tiered approach to HPC provision, offer

a variety of compute nodes, primarily within the Tier 2 (regional/specialist hubs)
and Tier 3 (local/institutional systems) levels. Given the diversity in computa-
tional resources, including different types of accelerators, we have conducted a
limited benchmarking study to gather insights into the performance of some of
these compute resources.

2 Resources

In the study, we utilised resources available through the UK’s HPC services and the
ExCALIBUR [5] research program. It is important to note that these resources
have varying characteristics and architectures, making direct comparisons
problematic. Table 1 below lists the systems covered by this study, table 2 the
accelerator resources for each system and table 3 their key characteristics.
FP16 (Half Precision), FP32 (Single Precision), FP64 (Double Precision), and

BF16 (Brain Floating Point) refer to different floating-point precision formats used

1



Name Service Server Launch References

J-V100-32 JADE 2 NVIDIA DGX-1 2017-06 [6, 7]
B-A100-40 Baskerville Lenovo ThinkSystem SD650-N V2 2020-06 [8, 9]
B-A100-80 Baskerville Lenovo ThinkSystem SD650-N V2 2021-06 [8, 9]
S-H100-80 Stanage Dell PowerEdge R7525 2023-03 [10, 11]
C-MI100-32 COSMA8 Dell PowerEdge R7525 2020-11 [12, 11]
C-MI210-64 COSMA8 Dell PowerEdge R7525 2022-03 [12, 11]
D-MX1550-128 Dawn Dell PowerEdge XE9640 2023-01 [13, 14]
IPU-POD-16 Graphcore Dell PowerEdge R6525 2021-03 [15, 16]

Table 1: Overview of the systems.

Name Memory (GB) Type Accelerator Interface

J-V100-32 32 GPU NVIDIA V100 SXM2
B-A100-40 40 GPU NVIDIA A100 SXM4
B-A100-80 80 GPU NVIDIA A100 SXM4
S-H100-80 80 GPU NVIDIA H100 PCIe 4.0
C-MI100-32 32 GPU AMD MI100 PCIe 4.0
C-MI210-64 64 GPU AMD MI210 PCIe 4.0
D-MX1550-128 128 GPU Intel Data Center Max 1550 PCIe 5.0
IPU-POD-16 14.4 IPU IPU-M2000 100 GE RoCEv2

Table 2: Summary of accelerator resources.

Name FP16 BF16 FP32 FP64 References

J-V100-32 31.33 — 15.70 7.80 [17, 18]
B-A100-40 312.00 312.00† 19.50 9.70 [19]
B-A100-80 312.00 312.00† 19.50 9.70 [19]
S-H100-80 1 513.00 1 513.00† 51.00 26.00 [20]
C-MI100-32 184.60 92.30 23.10 11.50 [21]
C-MI210-64 181.00 181.00 22.60 22.60 [22]
D-MX1550-128* 52.43 832.00‡ 52.43 52.43 [23, 24]
IPU-POD-16 3 994.00 — 998.00 — [25, 26]
∗ GPUs are split into two tiles. The performance shown is per GPU.
† Tensor core performance.
‡ Matrix Engine performance.

Table 3: Floating point performance (in peak TFLOPS).

2



to represent real numbers in computing. FP16 and BF16 use 16 bits to represent
a real number, while FP32 uses 32 bits. The BF16 numerical format consists of 1
sign bit, 8 exponent bits, and 7 fraction bits, while FP16 consists of 1 sign bit, 5
exponent bits, and 10 fraction bits. FP32 consists of 1 sign bit, 8 exponent bits,
and 23 fraction bits, and FP64 consists of 1 sign bit, 11 exponent bits, and 52
fraction bits.
BF16 is a truncated version of FP32, offering comparable range and precision

to FP32, but with the memory footprint of FP16. Its truncated form means
conversion between BF16 and FP32 can be performed with minimal overhead
making it attractive for mixed precision calculations. In recent years, BF16 has
become the industry standard for machine learning workloads.
BF16 has been supported on AMD GPUs since the MI100, whereas NVIDIA

GPUs have supported BF16 since the introduction of the Ampere architecture,
such as the A100.
Since the Volta architecture (V100 and newer), NVIDIA GPUs also support

Tensor Core [27] technology, which is based on performing matrix operations (mul-
tiplication and addition) in parallel and allows for mixed-precision matrix arith-
metic (using FP16 for multiplication and FP32 for addition and accumulation). It
significantly accelerates computation and helps balance precision and performance.
Alternatively, AMD GPUs, beginning with the MI100, incorporate Matrix Core

technology [28, 29], which notably accelerates generalized matrix multiplication
computations through Matrix Core Processing Units (MCPUs). These MCPUs are
specialized hardware units that conduct matrix operations in parallel and support
mixed-precision matrix arithmetic, bearing similarity to NVIDIA’s Tensor Cores.
The latest AMD GPUs are known for their strong focus on supporting FP64

calculations, which are important for scientific simulations and high-performance
computing tasks. While the latest NVIDIA GPUs can handle FP64 calcula-
tions their primary focus is on delivering performance for workloads using lower-
precision data types, especially for neural network training and inference.
Like NVIDIA, Intel also seems to be focusing on lower- and mixed-precision

data types with their Data Center Max (Ponte Vecchio) series of GPUs. On paper,
BF16 calculations run 16 times faster on the Intel Data Center Max 1550 compared
to other floating-point data types, thanks to the Matrix Engine technology used
to accelerate BF16 matrix operations, including matrix multiplication, addition,
and accumulation. This technology supports mixed-precision matrix arithmetic.
FP16, FP32, and FP64 calculations, in theory, all run at the same—much lower—
speed. However, the real-world performance of Ponte Vecchio is still somewhat

3



of an unknown quantity. A further difference is that each GPU is split into two
tiles, which are best treated as two separate entities. Hence, in our experiments
on Dawn, a four-GPU node is treated much as an eight-GPU node might be on
one of the other HPC platforms, but the performance and timings are reported
per GPU (2 tiles).
Graphcore devices also support mixed precision. FP32.32 Accumulating Mat-

rix Product (AMP) operations have FP32 input multiplicands and use FP32 par-
tial sums of products. FP16.32 AMP operations have FP16 input multiplicands
and use FP32 partial sums of products. Finally, FP16.16 AMP operations have
FP16 multiplicands and use FP16 partial sums of products [30, section 5]. Graph-
core is the only device with native support for stochastic rounding, which helps
alleviate the precision loss when using FP16.16 AMPs. This involves probabilist-
ically rounding the carry into the result mantissa in proportion to the value of the
integer formed by the intermediate bits that must be truncated as a result of the
destination format precision [30, section 7].
It’s important to note that some of the systems we measured are experimental

or in early access and therefore we may not have been able to realise their full
compute potential.

3 Models

As an LLM representative, we have chosen GPT2, a transformer-based model,
implemented by Andrej Karpathy in PyTorch as a library called minGPT [31].
We have chosen this library as it is a lightweight implementation of GPT2, with
a limited number of dependencies, straightforward to install and run, and has a
small memory footprint, which allows us to run the model on a variety of compute
resources, including those with limited memory. In this work, we have chosen to
use lightning-GPT [32], a minimal wrapper around minGPT, enabling the use of
PyTorch Lightning [33] to train the models.
We acknowledge that this is not a production-ready implementation of GPT2,

and that there are other more performanant and feature-rich implementations, but
we believe that for this limited study, lightning-GPT, is sufÏcient for our purposes.

The model sizes shown in table 4 were used.

4



Model Num. of Num. of Dimensionality of Model Model size
hidden attention the embeddings parameters (MB),
layers heads and hidden states (M) 16 bit

gpt2 12 12 768 85.21 170.51
gpt2-medium 24 16 1 024 302.51 605.16
gpt2-large 36 20 1 280 708.64 1 417.45
gpt2-xl 48 25 1 600 1 475.87 2 951.96
gpt2-xxl 60 30 1 920 2 656.08 5 312.43
gpt2-xxxl 84 40 2 560 6 609.33 13 219.00

Table 4: Summary of GPT2 model sizes used.

4 Benchmarking

The benchmarking was carried out by training the lightning-GPT models on dif-
ferent systems whilst keeping the software and hardware configuration as similar
as possible. Due to the number of benchmarks planned for the study, each exper-
iment was limited to two epochs, and the epoch time and peak memory usage of
the second epoch were recorded. This is because the first epoch can be potentially
slower than the subsequent epochs, due to the fact that the data is being loaded,
and the model is compiled. For many of our experiments training is distributed
across multiple processes. Since there may be small differences in how long each
process takes to complete, the average epoch time for a single epoch refers to the
average of the durations across all processes.
The software configuration was fixed across all of the systems at the following:

1. Python 3.9

2. PyTorch 2.0.1a0

3. PyTorch Lightning 1.9.5

On the NVIDIA system we used:

1. CUDA 11.7.0

2. NCCL 2.12.12

On the Intel system we used:

5



1. Intel Extension for PyTorch 2.0.120+xpu

2. oneCCL Bindings for PyTorch 2.0.200

5 Strategies

For our experiments, we used strategies implemented in PyTorch and PyTorch
Lightning [33], in particular DDP [34], DeepSpeed [35, 36], and FSDP [37, 38].
DDP [34], or Distributed Data Parallel, is a strategy that allows for data par-

allelism. It is the most commonly used strategy for training large models. When
using DDP, each device holds a replica of the model, and the gradients are syn-
chronised across all devices during each backward pass. DDP is limited by the
amount of memory available on a single accelerator, and therefore, it is not suitable
for training very large models. See figure 1 (a).

Figure 1 (a): Schematic representation of data parallelism on multiple GPUs.

DeepSpeed [35, 36, 39, 40] is a library that implements several strategies for
training large models. One of these strategies is ZeRO [41], which allows for special
data parallelisms, or stages. In our experiments, we used three stages of ZeRO:
optimizer state partitioning (ZeRO stage 1), gradient partitioning (ZeRO stage 2),
and parameter partitioning (ZeRO stage 3). Due to the scope of this work, we did
not experiment with the OfÒoad or Activation Checkpointing strategies, which
leverage the host CPU to ofÒoad optimizer state, gradients, and parameters for
additional memory savings, and free activations after the forward pass, respectively.
DeepSpeed splits the model horizontally; see figure 1 (b).
FSDP [37, 38], or Fully Sharded Data Parallel, is a type of data parallelism

achieved by partitioning (sharding) model parameters, optimiser states and gradi-

6



Figure 1 (b): Schematic representation of horizontal model parallelism on
multiple GPUs.

ents across DDP rank. FSDP is similar to DeepSpeed’s ZeRO stage 3, but it splits
the model vertically; see figure 1 (c).
GPUs use SIMD (Single Instruction Multiple Data) to provide data parallelism.

Graphcore IPUs are in contrast MIMD (Multiple Instruction Multiple Data) [42,
section 3]. Their Tile architecture and Bulk-Synchronous Parallel execution model
that splits a task into compute-sync-exchange steps, means that Graphcore IPUs
have their own strategies which are separate from those applicable to GPUs. We
save the discussion of these strategies to the section on Graphcore devices in the
Appendix.

6 Single accelerator comparison

This experiment aimed to compare the performance of different accelerators when
training the gpt2 and gpt2-medium models using FP16, BF16, and FP32 precision,
with batch sizes of 64 and 128, employing the DDP strategy. The results of the
experiments are presented in figure 2.
Observations:

• The S-H100-80 is the fastest GPU accelerator in terms of theoretical per-
formance and matched the D-MX1550-128 in terms of actual performance.
The theoretical performance doesn’t always align with the performance we
see in practice. For example, the B-A100 devices gave better performance

7



Figure 1 (c): Schematic representation of vertical model parallelism on mul-
tiple GPUs.

J-V100
-32

B-A100
-40

B-A100
-80

S-H100
-80

C-MI100
-32

C-MI210
-64

D-MX1550
-128

0
50

100
150
200
250
300
350
400

Av
g.

 e
po

ch
 ti

m
e 

(s
) f

or
 tr

ai
ni

ng

gpt2, batch size 64

FP16 BF16 FP32

Figure 2 (a): Average epoch training time of the gpt2 model with a batch size
of 64.

8



J-V100
-32

B-A100
-40

B-A100
-80

S-H100
-80

C-MI100
-32

C-MI210
-64

D-MX1550
-128

0
50

100
150
200
250
300
350
400

Av
g.

 e
po

ch
 ti

m
e 

(s
) f

or
 tr

ai
ni

ng

gpt2, batch size 128

FP16 BF16 FP32

Figure 2 (b): Average epoch training time of the gpt2 model with a batch size
of 128.

J-V100
-32

B-A100
-40

B-A100
-80

S-H100
-80

C-MI100
-32

C-MI210
-64

D-MX1550
-128

0

100

200

300

400

500

Av
g.

 e
po

ch
 ti

m
e 

(s
) f

or
 tr

ai
ni

ng

gp2-medium, batch size 64

FP16 BF16 FP32

Figure 2 (c): Average epoch training time of the gpt2-medium model with a
batch size of 128.

9



than the C-MI100-32 and C-MI210-64 devices, despite the latter two having
higher theoretical FP16 and FP32 peak performance.

• Although the S-H100-80 offers the best performance, the performance gap
between it and the B-A100s was not as large as expected. While the peak
BF16 performance is 4.8 times higher, the actual performance ranged between
1.26 and 1.89 times faster. This may be attributed to various factors, includ-
ing suboptimal batch and model sizes for the hardware, code optimization,
as well as differences in system architectures.

• Nevertheless, we conclude the differences in performance among various ac-
celerators largely depend on the peak performance of the accelerator and the
precision used. The B-A100 has a peak BF16 performance of 312 TFLOPs,
which is 3.4 and 1.7 times higher than that of the C-MI100-32 and C-MI210-64
respectively, and 2.5 times higher than the J-V100-32. In our experiments,
the B-A100 is 1.5–2.0 times faster than the C-MI100-32 and C-MI210-64, and
2.0–2.5 times faster than the J-V100-32 when training the gpt2 model with
using FP16 precision.

• We were impressed by the performance of the D-MX1550-128, which is some-
what comparable to that of the S-H100-80 for BF16 performance. However,
performance suffered when using traditional FP16 calculations.

• The reported peak FP16 and FP32 performances (see table 3) do not reflect
the performance observed in our experiments. For example, the B-A100 has
a peak FP16 performance of 77.97 TFLOPs and a peak FP32 performance of
19.5 TFLOPs, while the C-MI210-64 boasts a peak FP16 performance of 181
TFLOPs and a peak FP32 performance of 22.6 TFLOPs. However, in our
experiments, the B-A100 outperformed the C-MI210-64. This is likely due to
the fact that the B-A100 utilises Tensor Core [27] technology, which allows
for mixed-precision training and, therefore, provides higher throughput for
AI workloads. In contrast, both the C-MI100-32 and C-MI210-64 can offer
higher peak performances for FP16 and FP32 workloads, potentially making
them more suitable for traditional HPC workloads.

• The difference in performance between 16-bit and 32-bit precision, except
for J-V100-32, is less significant when training a smaller model. In the
case of B-A100, the difference ranges from 8% to 15%, while for C-MI100-32
and C-MI210-64, the difference is between 35% and 48% when training the

10



gpt2 model. However, the difference ranges between 16% and 19%, and
42% and 63%, respectively, when training the gpt2-medium model. This can
potentially be attributed to the fact that larger models require more memory,
thus increasing memory bandwidth requirements.

• Increasing the model size from gpt2 to gpt2-medium results in a significant
increase in training time, between 2.5 and 3.2 times, for all accelerators. This
is expected, as the number of parameters increases from 85.21M to 302.51M,
approximately 3.5 times.

• Doubling the batch size from 64 to 128 does not significantly improve training
time. B-A100 showed a more significant improvement, between 10% and 15%,
in reduced average epoch time, compared to C-MI100-32 and C-MI210-64,
which showed a 6% to 8% improvement.

• Experiments with the gpt2-medium model, using a batch size of 128, were
not able to fit on accelerators with 40 GB of memory or less.

7 Scaling up and out with DDP

While we have demonstrated that the B-A100 and D-MX1550-128 are among the
fastest accelerators for the models used in this study, we followed up on the pre-
vious experiment by investigating how scaling on multiple GPUs affects the per-
formance of training the gpt2 model. This investigation was conducted using the
DDP strategy and executed on both B-A100-40 and D-MX1550-128 using FP16
and BF16 precision, respectively. We varied the number of GPUs and the batch
size; see figure 3. Additionally, we investigated how the peak memory usage is
affected by the batch size; see figure 4.
Observations:

• The scaling between 1 and 16 GPUs on B-A100-40 is almost linear. We note
a 3.5–3.9× speedup when using 4 GPUs compared to 1 GPU, a 7.0–7.6×
speedup when using 8 GPUs compared to 1 GPU, and a 12.9–14.1× speedup
when using 16 GPUs compared to 1 GPU. This is expected, as the number
of GPUs is directly proportional to the number of training steps required
to complete an epoch. Therefore, the more GPUs used, the fewer training
steps are required to complete an epoch, thereby reducing the training time.

11



2 4 6 8 10 12 14 16
Total GPUs

1

10

100

1000

Av
g.

 e
po

ch
 ti

m
e 

(s
) f

or
 tr

ai
ni

ng

gpt2, B-A100-40, FP16, DDP
batch size = 16
batch size = 32
batch size = 64
batch size = 128
batch size = 256

Figure 3 (a): Average epoch training time of the gpt2 model running on
B-A100-40, varied by altering the number of GPUs and the batch size.

2 4 6 8 10 12 14 16
Total GPUs

1

10

100

1000

Av
g.

 e
po

ch
 ti

m
e 

(s
) f

or
 tr

ai
ni

ng

gpt2, D-MX1550-128, BF16, DDP
batch size = 16
batch size = 32
batch size = 64
batch size = 128
batch size = 256

Figure 3 (b): Average epoch training time of the gpt2 model running on
D-MX1550-128, varied by altering the number of GPUs and the batch size.

12



16 32 64 128 256
Batch size

0

5000

10000

15000

20000

25000

30000

35000

Pe
ak

 m
em

or
y 

(M
B)

gpt2, B-A100-40, FP16, DDP

Figure 4 (a): Peak memory usage of the gpt2 model running on B-A100-40,
varied by altering the batch size.

16 32 64 128 256
Batch size

0

5000

10000

15000

20000

25000

30000

35000

Pe
ak

 m
em

or
y 

(M
B)

gpt2, D-MX1550-128, BF16, DDP

Figure 4 (b): Peak memory usage of the gpt2model running on D-MX1550-128,
varied by altering the batch size.

13



• When doubling the B-A100-40 batch size from 64 to 128, training time de-
creases by 15%, and when quadrupling it from 64 to 256, training time
reduces by 22%. Conversely, if halving the batch size from 64 to 32, train-
ing time increases by 31%. When quartering it from 64 to 16, training time
experiences a significant 137% increase. These observations align with the
fundamental concept that batch size is directly related to the number of
training steps necessary to complete an epoch. Larger batch sizes lead to a
reduced number of training steps and subsequently shorter training times,
while smaller batch sizes necessitate more steps, resulting in longer training
durations.

• Comparing B-A100 with D-MX1550-128 we find the results are remarkably
similar. Initially with just a single GPU D-MX1550-128 outperforms B-A100
irrespective of batch size. As the number of GPUs and nodes increases, the
gap narrows until at 8 GPUs the B-A100 starts to outperform the D-MX1550-128
and then remains ahead. This may be due to increased communication due
to the tiled nature of the Ponte Vecchio GPUs, meaning that we were ex-
ecuting twice as many processes compared to CUDA on the B-A100.

• When the model size is fixed, the limiting factor enhancing performance is
the batch size, which is, in turn, limited by the memory available on the
accelerator.

• Doubling the batch size increases the peak memory usage by a factor of 1.5.

• We also note that peak memory usage did not significantly change when the
number of GPUs varied between 1 to 16.

We also looked into determining the largest model size that can potentially be
trained using FP16 precision and the DDP strategy. We chose B-A100-80 as it
has the largest amount of memory available at 80 GB (while the D-MX1550-128
has more memory on paper, this is split across the two tiles when using DDP).
We also set the batch size to 1 to allow for the largest possible model size to be
trained on a single accelerator. The results of the experiment are summarised in
table 5.
Observations:

• The DDP strategy allows only for data parallelism; therefore, the model size
is limited by the amount of memory available on a single accelerator.

14



Model Peak memory (MB) Avg. epoch time (s)

gpt2 2 298.80 2 555.80
gpt2-medium 8 093.53 4 067.32
gpt2-large 19 424.99 4 951.83
gpt2-xl 32 586.84 6 289.65
gpt2-xxl 57 239.73 8 128.52
gpt2-xxxl Out of Memory -

Table 5: Summary of the largest FP16 model size that can be trained on a
single B-A100-80 accelerator using the DDP strategy.

• The largest model size that we were able to train on a single B-A100-80
accelerator using DDP is gpt2-xxl, which has 2.7B parameters and requires
57.2 GB of memory.

• To train larger models, model or pipeline parallelism is required as it enables
the splitting of the model across multiple accelerators, thereby reducing the
memory requirements on a single accelerator and allowing for larger models
to be trained.

7.1 Larger Datasets

The results presented so far have all relied on a small amount of input training data:
the classic shakespeare_text.txt file [43]. This comprises the works of Shakespeare
containing 4.4 MiB of data, which in ML training terms is very small. The entire
dataset can easily be stored in main or GPU memory, reducing the impact of data
transfer speeds on our benchmarking results.
We wanted to compare results with a larger, but otherwise similar dataset.

We used data from The Pile dataset [44] processed to maintain otherwise similar
characteristics to the Shakespeare dataset used for all other experiments. This
processing involved projecting the UTF-8 text down to an 8-bit ASCII format.
The resulting 361 GiB of data was truncated to the first 4.5 GiB to avoid excessive
runtimes. This is still small by AI training dataset standards, capable of being
stored entirely on the GPU. Nevertheless, it is orders of magnitude larger than
our small dataset.
Apart from the basic size, the other main difference between the Shakespeare

data loader and the Pile data loader was that the former stores the data in CPU

15



memory, whereas the latter spools the data from disk as needed. For the lar-
ger dataset, we copy the files to temporary scratch storage in order to maximise
throughput.
In figure 5 we show the results of experiments varying the quantity of training

data and the number of GPUs. In all runs we used DDP strategy, FP16 precision,
model size of 85.3 million parameters and running on B-A100-40.

1 GPU 2 GPUs 3 GPUs 4 GPUs0

10000

20000

30000

40000

50000

60000

70000

Da
ta

 th
ro

ug
hp

ut
(b

yt
es

 p
er

 se
co

nd
 p

er
 G

PU
)

Effect of training set size on data throughput (batch size 64)

4.4 MiB 4.5 GiB

Figure 5 (a): Data throughput using a batch size of 64.

1 GPU 2 GPUs 3 GPUs 4 GPUs0

20000

40000

60000

80000

Da
ta

 th
ro

ug
hp

ut
(b

yt
es

 p
er

 se
co

nd
 p

er
 G

PU
)

Effect of training set size on data throughput (batch size 128)

4.4 MiB 4.5 GiB

Figure 5 (b): Data throughput using a batch size of 128.

Observations:

16



1 GPU 2 GPUs 3 GPUs 4 GPUs0

20000

40000

60000

80000

Da
ta

 th
ro

ug
hp

ut
(b

yt
es

 p
er

 se
co

nd
 p

er
 G

PU
)

Effect of training set size on data throughput (batch size 256)

4.4 MiB 4.5 GiB

Figure 5 (c): Data throughput using a batch size of 256.

• Although we do see a drop in throughput for the larger dataset, the impact
is small, much smaller than we were expecting in fact. In practice, we see
average epoch time scaling only slightly more than linearly with training
dataset size.

• Batch size has a larger impact on data throughput than dataset size. In-
creasing the batch size allowed us to get greater throughput with the larger
dataset than we were able to achieve with a smaller batch size using the
smaller dataset. In practice, larger batch sizes are a good way to increase
training speed where GPU memory allows for it.

• In all cases we see throughput reducing slightly as the number of GPUs
increases. This is to be expected since using DDP the larger number of
GPUs will increase data transfer requirements during the back-propagation
stage.

• We see broadly the same levels of PCI data sent and received for both the
small and large training datasets. Average data transfer drops slightly as
the batch size increases. For the small training dataset and 1 GPU, we
see an average transfer of 33.5 MB/s, 27.8 MB/s and 22.9 MB/s for batch
sizes of 64, 128 and 256 respectively. For the larger dataset, the equivalent
values are 32.6 MB/s, 27.0 MB/s and 22.06 MB/s. As soon as we introduce
more GPUs, data transfer unsurprisingly increases by multiple orders of
magnitude (ranging between 1458 MB/s and 3027 MB/s).

17



• The rule of thumb for training data is that training time will increase linearly
with training data size.

7.2 Model Parallelism

One of the reasons we chose lightning-GPT [32] for our experiments is that it
has already integrated DeepSpeed and FSDP strategies, which allow for model
parallelism. The following experiments were carried out with the intention of
better understanding the performance of these strategies when training different
sizes of the gpt2 models, as well as to determine the largest model size that can
be trained using these strategies.
Experiments using the DeepSpeed and FSDP strategies were carried out using

their default settings, FP16 precision, a batch size of 16, and by varying the model
size and the number of GPUs. B-A100-40 was also chosen due to the availability of
the resource when the experiments were carried out. The results are summarised
in figure 6.

gpt2 gpt2-medium gpt2-large gpt2-xl gpt2-xxl gpt2-xxxl0
5000

10000
15000
20000
25000
30000
35000
40000

Pe
ak

 m
em

or
y 

(M
B)

FP16, batch size 16, 1 gpu, B-A100-40

DDP DeepSpeed Stage 1 DeepSpeed Stage 2 DeepSpeed Stage 3 FSDP

Figure 6 (a): Peak memory using 1 GPU.

Observations:

• Utilising the DeepSpeed Stage 3 strategy enables training of the largest
model size, gpt2-xxxl, which necessitates a minimum of 16 GPUs.

• The FSDP strategy facilitates training of the gpt2-xxl model — the largest
possible size with this method — when at least 4 GPUs are utilised.

18



gpt2 gpt2-medium gpt2-large gpt2-xl gpt2-xxl gpt2-xxxl0

500

1000

1500

2000

2500

Av
g.

 e
po

ch
 ti

m
e 

(s
) f

or
 tr

ai
ni

ng

FP16, batch size 16, 1 gpu, B-A100-40

DDP DeepSpeed Stage 1 DeepSpeed Stage 2 DeepSpeed Stage 3 FSDP

Figure 6 (b): Average epoch training time using 1 GPU.

gpt2 gpt2-medium gpt2-large gpt2-xl gpt2-xxl gpt2-xxxl0
5000

10000
15000
20000
25000
30000
35000
40000

Pe
ak

 m
em

or
y 

(M
B)

FP16, batch size 16, 4 gpus, B-A100-40

DDP DeepSpeed Stage 1 DeepSpeed Stage 2 DeepSpeed Stage 3 FSDP

Figure 6 (c): Peak memory using 4 GPUs (1 node).

19



gpt2 gpt2-medium gpt2-large gpt2-xl gpt2-xxl gpt2-xxxl0

100

200

300

400

500

600

Av
g.

 e
po

ch
 ti

m
e 

(s
) f

or
 tr

ai
ni

ng

FP16, batch size 16, 4 gpus, B-A100-40

DDP DeepSpeed Stage 1 DeepSpeed Stage 2 DeepSpeed Stage 3 FSDP

Figure 6 (d): Average epoch training time using 4 GPUs (1 node).

gpt2 gpt2-medium gpt2-large gpt2-xl gpt2-xxl gpt2-xxxl0
5000

10000
15000
20000
25000
30000
35000
40000

Pe
ak

 m
em

or
y 

(M
B)

FP16, batch size 16, 8 gpus, B-A100-40

DDP DeepSpeed Stage 1 DeepSpeed Stage 2 DeepSpeed Stage 3 FSDP

Figure 6 (e): Peak memory using 8 GPUs (2 nodes).

20



gpt2 gpt2-medium gpt2-large gpt2-xl gpt2-xxl gpt2-xxxl0

50

100

150

200

250

300

350

Av
g.

 e
po

ch
 ti

m
e 

(s
) f

or
 tr

ai
ni

ng

FP16, batch size 16, 8 gpus, B-A100-40

DDP DeepSpeed Stage 1 DeepSpeed Stage 2 DeepSpeed Stage 3 FSDP

Figure 6 (f): Average epoch training time using 8 GPUs (2 nodes).

gpt2 gpt2-medium gpt2-large gpt2-xl gpt2-xxl gpt2-xxxl0
5000

10000
15000
20000
25000
30000
35000
40000

Pe
ak

 m
em

or
y 

(M
B)

FP16, batch size 16, 16 gpus, B-A100-40

DDP DeepSpeed Stage 1 DeepSpeed Stage 2 DeepSpeed Stage 3 FSDP

Figure 6 (g): Peak memory using 16 GPUs (4 nodes).

21



gpt2 gpt2-medium gpt2-large gpt2-xl gpt2-xxl gpt2-xxxl0

20

40

60

80

100

120

140

Av
g.

 e
po

ch
 ti

m
e 

(s
) f

or
 tr

ai
ni

ng

FP16, batch size 16, 16 gpus, B-A100-40

DDP DeepSpeed Stage 1 DeepSpeed Stage 2 DeepSpeed Stage 3 FSDP

Figure 6 (h): Average epoch training time using 16 GPUs (4 nodes). Note
that DeepSpeed Stage 3 average epoch time for gpt2-xxxl was 1050.21 s and
did not fit on the graph.

gpt2 gpt2-medium gpt2-large gpt2-xl gpt2-xxl gpt2-xxxl0
5000

10000
15000
20000
25000
30000
35000
40000

Pe
ak

 m
em

or
y 

(M
B)

FP16, batch size 16, 32 gpus, B-A100-40

DDP DeepSpeed Stage 1 DeepSpeed Stage 2 DeepSpeed Stage 3 FSDP

Figure 6 (i): Peak memory using 32 GPUs (8 nodes).

22



gpt2 gpt2-medium gpt2-large gpt2-xl gpt2-xxl gpt2-xxxl0

20

40

60

80

100

120

140

Av
g.

 e
po

ch
 ti

m
e 

(s
) f

or
 tr

ai
ni

ng
FP16, batch size 16, 32 gpus, B-A100-40

DDP DeepSpeed Stage 1 DeepSpeed Stage 2 DeepSpeed Stage 3 FSDP

Figure 6 (j): Average epoch training time using 32 GPUs (8 nodes).

• Employing solely 1 GPU resulted in lower peak memory usage with the
DeepSpeed and FSDP strategies as compared to the DDP strategy; see fig-
ure 6 (a). Depending on model size and strategy, the peak memory usage
was, on average, 22% lower. While the FSDP not only reduced peak memory
usage but also decreased the average epoch time by 17% compared to the
DDP strategy, the DeepSpeed strategies lowered peak memory usage but
escalated the average epoch time by 3%, 19%, and 146% for Stages 1, 2, and
3, respectively, relative to the DDP strategy (figure 6 (b)). Notably, only
the FSDP strategy was able to train the gpt2-xl model on a single GPU, a
feat that was unattainable with the DDP and DeepSpeed strategies.

• Leveraging 4 GPUs (1 node) resulted, on average, in a 50% reduction in peak
memory usage with both the DeepSpeed and FSDP strategies compared to
the DDP strategy (see Figures 5(a) and (c)), leading to more than a 2-fold
reduction relative to using 1 GPU for the gpt2-large model. Concerning
the differential in peak memory usage between DeepSpeed Stages 1, 2, and 3
and FSDP, DeepSpeed was, on average, 1%, 14%, and 6% higher than FSDP,
respectively. For larger model sizes, namely gpt2-xl and gpt2-xxl, the
differential in peak memory usage between DeepSpeed and FSDP remained
within 10%, with stages 1 and 3 of DeepSpeed presenting marginally lower
peak memory usage than FSDP. As for the average epoch time, FSDP was, on
average, 26%, 12%, 26%, and 221% faster compared to DDP and DeepSpeed
Stages 1, 2, and 3, respectively; see figure 6 (d).

23



• Analogous trends were observed for 8, 16, and 32 GPUs (or 2, 4, and 8 nodes).
The average peak memory usage, when applying both the DeepSpeed and
FSDP strategies relative to the DDP strategy, diminished by 54%, 57%, and
58% respectively, for model sizes ranging from gpt2 to gpt2-large.

• When employing more than 8 GPUs, the DeepSpeed Stage 3 strategy exhib-
ited the lowest average peak memory usage for model sizes of gpt2-xl or
larger. It was the sole strategy capable of training the gpt2-xxxl model, ne-
cessitating at least 16 GPUs. However, the memory savings with DeepSpeed
Stage 3 were counterbalanced by a significantly increased average epoch time,
being between 1.3 to 2.2 times slower compared to FSDP.

8 Conclusions

• When comparing GPU accelerators, BF16 peak performance seems to be a
better indicator of performance for AI workloads than FP16 or FP32 peak
performance.

• The B-A100 utilises Tensor Core [27] technology, enabling mixed-precision
training and, therefore, higher throughput for AI workloads. In contrast, the
C-MI100-32 and C-MI210-64 can offer higher peak performance for FP16 and
FP32 workloads, potentially making them more suitable for traditional HPC
workloads.

• The D-MX1550-128 utilises Matrix Engine technology, which is well-suited
for BF16 workloads.

• The DDP strategy allows for data parallelism only; as a result, the model
size is limited by the amount of memory available on a single accelerator.

• The largest model size we were able to train on a single B-A100-80 accelerator
using DDP is gpt2-xxl, which has 2.7 billion parameters and requires 57.2
GB of memory.

• To train larger models, model or pipeline parallelism is required, as it enables
the splitting of the model across multiple accelerators, thereby reducing the
memory requirements on a single accelerator and allowing for the training
of larger models.

24



• The Intel Ponte Vecchio GPU compared favourably with equivalent NVIDIA
GPUs on a single node but lost ground as we scaled up, potentially due to
increased communication overhead from having twice as many processes or
system architecture differences. It’s possible this could be alleviated through
software and configuration changes but requires further exploration.

• Both DeepSpeed and FSDP strategies showed improvements in peak memory
usage and average epoch time compared to the DDP strategy, even on a single
GPU.

• Incrementing the GPU count consistently demonstrated diminishing average
peak memory usage across a range of model sizes when implementing both
DeepSpeed and FSDP strategies, highlighting the clear benefits of using
these strategies for large-scale experiments and model training.

• In this study, the largest model sizes that can be trained using DeepSpeed
and FSDP strategies are gpt2-xxxl (6.6 billion parameters) and gpt2-xxl
(2.7 billion parameters) with at least 16 and 4 GPUs, respectively.

• The FSDP strategy is faster than the DeepSpeed strategy, but DeepSpeed
Stage 3 appears to be more memory-efÏcient for the largest models.

• Nuances in peak memory usage and epoch time between DeepSpeed and
FSDP strategies necessitate a balanced consideration of both memory and
time efÏciency, especially when scaling to larger models.

9 Limitations and future work

The future work would greatly benefit from addressing the many limitations of
this study:

• Diversity of accelerators and their types: Only specific NVIDIA, AMD, and
Intel GPUs, as well as a Graphcore IPU were used. It would be beneficial to
include other GPUs or different types of accelerators, such as FPGAs, TPUs,
IPUs, etc., in the study.

• Diversity of models: This study exclusively utilized a specific GPT-2 model.
However, including other models, such as BERT, XLNet, RoBERTa, GPT-3
would be beneficial, as different models exhibit distinct memory and compu-
tational characteristics and requirements.

25



• Diversity of parallelism techniques: This study only examined DDP, Deep-
Speed, and FSDP. However, including other parallelism techniques, such as
tensor, pipeline, and hybrid parallelisms, would be beneficial for the study.

• Diversity of workflows: The study was also limited to examining the training
of the models. However, fine-tuning and inference are also important parts
of the ML/AI workflow. It would be beneficial to investigate the inference
performance of the models.

• Diversity of workloads: This work would also benefit from exploring not only
large language models (LLMs) but also other types of ML/AI workloads, such
as computer vision, speech recognition, etc.

• Consideration of data throughput: We have considered the effect of varying
the training data size, but only to a limited extent. Testing much larger data-
sets (larger than the available GPU memory) and different storage devices,
along with analysing data throughput rates to identify bottlenecks, would
provide additional insight.

10 Acknowledgements

We’re grateful to Edwin Brown (jointly from the University of ShefÏeld and the
Alan Turing Institute) for his input and generous support, especially in running
various experiments for us on Stanage.

This work was funded by The Alan Turing Institute under the EPSRC grant
EP/N510129/1. Additionally, it was partially supported by Baskerville, a na-
tional accelerated compute resource under the EPSRC Grant EP/T022221/1;
JADE: Joint Academic Data Science Endeavour - 2 under the EPSRC Grant
EP/T022205/1; The Exascale Computing: Algorithms and Infrastructures Bene-
fiting UK Research (ExCALIBUR) program, which is funded under Wave 2 of the
Strategic Priorities Fund (SPF); and using resources provided by the Cambridge
Service for Data Driven Discovery (CSD3) operated by the University of Cam-
bridge Research Computing Service, provided by Dell EMC and Intel using Tier-2
funding from the Engineering and Physical Sciences Research Council (capital
grant EP/T022159/1).
We acknowledge IT Services at The University of ShefÏeld for the provision

of services for High Performance Computing. We also acknowledge the use of the

26



Mandelbrot system at the UCL Centre for Advanced Research Computing, and
associated support services, in the completion of this work.
This work used the DiRAC@Durham facility managed by the Institute for Com-

putational Cosmology on behalf of the STFC DiRAC HPC Facility. The equip-
ment was funded by BEIS capital funding via STFC capital grants ST/P002293/1,
ST/R002371/1 and ST/S002502/1, Durham University and STFC operations grant
ST/R000832/1. DiRAC is part of the National e-Infrastructure.
This support granted access to the Baskerville, JADE2, DAWN, Stanage, Graph-

core and Cosma-8 computing facilities, respectively. We’re grateful to all involved
for allowing us to use these services and for the helpful feedback on this manu-
script.

References

[1] URL: https://openai.com/research/gpt-4 (visited on 24/07/2024).
[2] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Trans-

formers for Language Understanding. 2019. arXiv: 1810.04805.
[3] URL: https://github.com/facebookresearch/llama (visited on 24/07/2024).
[4] URL: https://falconllm.tii.ae (visited on 24/07/2024).
[5] Exascale Computing ALgorithms & Infrastructures Benefiting UK Research

(ExCALIBUR). URL: https://excalibur.ac.uk (visited on 24/07/2024).
[6] NVIDIA DGX-1. NVIDIA. URL: https://www.nvidia.com/en-gb/data-

center/dgx-systems/dgx-1/ (visited on 24/07/2024).
[7] JADE HPC UK. JADE. URL: https : / / www . jade . ac . uk/ (visited on

24/07/2024).
[8] Baskerville System. Baskerville. URL: https://docs.baskerville.ac.uk/

system/ (visited on 24/07/2024).
[9] Lenovo ThinkSystem SD650-N V2 Server. Lenovo. URL: https://lenovopress.

lenovo.com/lp1396-thinksystem-sd650-n-v2-server (visited on 24/07/2024).
[10] Stanage. University of ShefÏeld. URL: https://docs.hpc.shef.ac.uk/en/

latest/stanage/ (visited on 24/07/2024).
[11] PowerEdge R7525 Spec Sheet. Dell Technologies. URL: https://i.dell.

com / sites / csdocuments / Product _ Docs / en / PowerEdge - R7525 - Spec -
Sheet.pdf (visited on 24/07/2024).

27

https://openai.com/research/gpt-4
https://arxiv.org/abs/1810.04805
https://github.com/facebookresearch/llama
https://falconllm.tii.ae
https://excalibur.ac.uk
https://www.nvidia.com/en-gb/data-center/dgx-systems/dgx-1/
https://www.nvidia.com/en-gb/data-center/dgx-systems/dgx-1/
https://www.jade.ac.uk/
https://docs.baskerville.ac.uk/system/
https://docs.baskerville.ac.uk/system/
https://lenovopress.lenovo.com/lp1396-thinksystem-sd650-n-v2-server
https://lenovopress.lenovo.com/lp1396-thinksystem-sd650-n-v2-server
https://docs.hpc.shef.ac.uk/en/latest/stanage/
https://docs.hpc.shef.ac.uk/en/latest/stanage/
https://i.dell.com/sites/csdocuments/Product_Docs/en/PowerEdge-R7525-Spec-Sheet.pdf
https://i.dell.com/sites/csdocuments/Product_Docs/en/PowerEdge-R7525-Spec-Sheet.pdf
https://i.dell.com/sites/csdocuments/Product_Docs/en/PowerEdge-R7525-Spec-Sheet.pdf


[12] The Cosma 7 Supercomputer. Durham University. URL: https://www.dur.
ac.uk/icc/cosma/cosma8/ (visited on 24/07/2024).

[13] DAWN. University of Cambridge, Research Computing Services. URL: https:
//www.hpc.cam.ac.uk/d-w-n (visited on 24/07/2024).

[14] PowerEdge XE9640 Rack Server. Dell Technologies. URL: https://www.
dell.com/en-uk/shop/ipovw/poweredge-xe9640 (visited on 24/07/2024).

[15] IPU-POD16 Direct Attach Datasheet - Overview. Graphcore. URL: https:
/ / docs . graphcore . ai / projects / ipu - pod16 - datasheet / en / latest /
overview.html (visited on 24/07/2024).

[16] PowerEdge R6525 Rack Server. Dell Technologies. URL: https://www.
dell.com/en-uk/shop/ipovw/poweredge-r6525 (visited on 24/07/2024).

[17] NVIDIA Tesla V100 SXM2 32 GB Specs. TechPowerUp. URL: https :
//www.techpowerup.com/gpu- specs/tesla- v100- sxm2- 32- gb.c3185
(visited on 24/07/2024).

[18] NVIDIA V100 Tensor Core GPU Datasheet. NVIDIA. URL: https://
images.nvidia.com/content/technologies/volta/pdf/volta- v100-
datasheet-update-us-1165301-r5.pdf (visited on 24/07/2024).

[19] NVIDIA A100 Tensor Core GPU Datasheet. NVIDIA. URL: https://
www.nvidia.com/content/dam/en- zz/Solutions/Data- Center/a100/
pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf (visited on
24/07/2024).

[20] NVIDIA H100 Tensor Core GPU Datasheet. NVIDIA. URL: https://
nvdam . widen . net / content / vuzumiozpb / original / h100 - datasheet -
2287922.pdf (visited on 24/07/2024).

[21] AMD Instinct MI100 Product Brief. AMD. URL: https://www.amd.com/
content/dam/amd/en/documents/instinct- business- docs/product-
briefs/instinct-mi100-brochure.pdf (visited on 24/07/2024).

[22] AMD Instinct MI210 Product Brief. AMD. URL: https://www.amd.com/
content/dam/amd/en/documents/instinct- business- docs/product-
briefs/instinct-mi210-brochure.pdf (visited on 24/07/2024).

[23] Intel Data Center GPU Max 1550 Specs. TechPowerUp. URL: https://
www.techpowerup.com/gpu-specs/data-center-gpu-max-1550.c4068
(visited on 24/07/2024).

28

https://www.dur.ac.uk/icc/cosma/cosma8/
https://www.dur.ac.uk/icc/cosma/cosma8/
https://www.hpc.cam.ac.uk/d-w-n
https://www.hpc.cam.ac.uk/d-w-n
https://www.dell.com/en-uk/shop/ipovw/poweredge-xe9640
https://www.dell.com/en-uk/shop/ipovw/poweredge-xe9640
https://docs.graphcore.ai/projects/ipu-pod16-datasheet/en/latest/overview.html
https://docs.graphcore.ai/projects/ipu-pod16-datasheet/en/latest/overview.html
https://docs.graphcore.ai/projects/ipu-pod16-datasheet/en/latest/overview.html
https://www.dell.com/en-uk/shop/ipovw/poweredge-r6525
https://www.dell.com/en-uk/shop/ipovw/poweredge-r6525
https://www.techpowerup.com/gpu-specs/tesla-v100-sxm2-32-gb.c3185
https://www.techpowerup.com/gpu-specs/tesla-v100-sxm2-32-gb.c3185
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://nvdam.widen.net/content/vuzumiozpb/original/h100-datasheet-2287922.pdf
https://nvdam.widen.net/content/vuzumiozpb/original/h100-datasheet-2287922.pdf
https://nvdam.widen.net/content/vuzumiozpb/original/h100-datasheet-2287922.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/product-briefs/instinct-mi100-brochure.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/product-briefs/instinct-mi100-brochure.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/product-briefs/instinct-mi100-brochure.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/product-briefs/instinct-mi210-brochure.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/product-briefs/instinct-mi210-brochure.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/product-briefs/instinct-mi210-brochure.pdf
https://www.techpowerup.com/gpu-specs/data-center-gpu-max-1550.c4068
https://www.techpowerup.com/gpu-specs/data-center-gpu-max-1550.c4068


[24] Intel Data Center GPUMax Series Technical Overview. Intel. URL: https:
//www.intel.com/content/www/us/en/developer/articles/technical/
intel-data-center-gpu-max-series-overview.html (visited on 24/07/2024).

[25] IPU-POD16 Direct Attach Datasheet - Technical specifications. Graph-
core. URL: https://docs.graphcore.ai/projects/ipu-pod16-datasheet/
en/latest/product-description.html#technical-specifications (vis-
ited on 24/07/2024).

[26] Mixed-Precision Arithmetic for AI: A Hardware Perspective - The IPU
16-bit floating point format. Graphcore. URL: https://docs.graphcore.
ai/projects/ai-float-white-paper/en/latest/ai-float.html#the-
ipu-16-bit-floating-point-format (visited on 24/07/2024).

[27] NVIDIA Tensor Cores. URL: https://www.nvidia.com/en- gb/data-
center/tensor-cores/ (visited on 24/07/2024).

[28] AMD CDNA Architecture. URL: https://www.amd.com/en/technologies/
cdna.html (visited on 24/07/2024).

[29] AMD CDNA 2 Architecture White Paper. URL: https://www.amd.com/
content / dam / amd / en / documents / instinct - business - docs / white -
papers/amd-cdna2-white-paper.pdf (visited on 24/07/2024).

[30] Mixed-Precision Arithmetic for AI: A Hardware Perspective. Graphcore
Ltd. URL: https : / / docs . graphcore . ai / projects / ai - float - white -
paper/en/latest/ (visited on 24/07/2024).

[31] Andrej Karpathy. minGPT: A Minimalist, PyTorch-based Transformer
implementation. URL: https://github.com/karpathy/minGPT (visited on
24/07/2024).

[32] URL: https://github.com/llewelld/lit-GPT (visited on 24/07/2024).
[33] PyTorch Lightning. URL: https://www.pytorchlightning.ai (visited on

24/07/2024).
[34] Distributed Data Parallel. URL: https://pytorch.org/docs/stable/

generated/torch.nn.parallel.DistributedDataParallel.html#torch.
nn.parallel.DistributedDataParallel (visited on 24/07/2024).

[35] DeepSpeed. URL: https://github.com/microsoft/DeepSpeed (visited on
24/07/2024).

[36] URL: https://lightning.ai/docs/pytorch/latest/advanced/model_
parallel/deepspeed.html#deepspeed (visited on 24/07/2024).

29

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-data-center-gpu-max-series-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-data-center-gpu-max-series-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-data-center-gpu-max-series-overview.html
https://docs.graphcore.ai/projects/ipu-pod16-datasheet/en/latest/product-description.html#technical-specifications
https://docs.graphcore.ai/projects/ipu-pod16-datasheet/en/latest/product-description.html#technical-specifications
https://docs.graphcore.ai/projects/ai-float-white-paper/en/latest/ai-float.html#the-ipu-16-bit-floating-point-format
https://docs.graphcore.ai/projects/ai-float-white-paper/en/latest/ai-float.html#the-ipu-16-bit-floating-point-format
https://docs.graphcore.ai/projects/ai-float-white-paper/en/latest/ai-float.html#the-ipu-16-bit-floating-point-format
https://www.nvidia.com/en-gb/data-center/tensor-cores/
https://www.nvidia.com/en-gb/data-center/tensor-cores/
https://www.amd.com/en/technologies/cdna.html
https://www.amd.com/en/technologies/cdna.html
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://docs.graphcore.ai/projects/ai-float-white-paper/en/latest/
https://docs.graphcore.ai/projects/ai-float-white-paper/en/latest/
https://github.com/karpathy/minGPT
https://github.com/llewelld/lit-GPT
https://www.pytorchlightning.ai
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html#torch.nn.parallel.DistributedDataParallel
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html#torch.nn.parallel.DistributedDataParallel
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html#torch.nn.parallel.DistributedDataParallel
https://github.com/microsoft/DeepSpeed
https://lightning.ai/docs/pytorch/latest/advanced/model_parallel/deepspeed.html#deepspeed
https://lightning.ai/docs/pytorch/latest/advanced/model_parallel/deepspeed.html#deepspeed


[37] Fully Sharded Data Parallel: faster AI training with fewer GPUs. URL:
https://engineering.fb.com/2021/07/15/open-source/fsdp/ (visited
on 24/07/2024).

[38] Train models with billions of parameters using FSDP. URL: https://
lightning.ai/docs/pytorch/latest/advanced/model_parallel/fsdp.
html (visited on 24/07/2024).

[39] DeepSpeed: Extreme-scale model training for everyone. URL: https://
www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-
model-training-for-everyone/ (visited on 24/07/2024).

[40] Accelerate Large Model Training using DeepSpeed. URL: https://huggingface.
co/blog/accelerate-deepspeed (visited on 24/07/2024).

[41] Samyam Rajbhandari et al. ZeRO: Memory Optimization Towards Train-
ing A Trillion Parameter Models. 2019. arXiv: 1910.02054.

[42] IPU Programmer’s Guide. Graphcore Ltd. URL: https://docs.graphcore.
ai/projects/ipu-programmers-guide/en/latest/ (visited on 24/07/2024).

[43] Andrej Karpathy. All works of Shakespeare concatenated. URL: https :
//cs.stanford.edu/people/karpathy/char-rnn/ (visited on 24/07/2024).

[44] Leo Gao et al. The Pile: An 800 GB Dataset of Diverse Text for Language
Modeling. 2020. arXiv: 2101.00027.

[45] PyTorch for the IPU: User Guide. Graphcore Ltd. URL: https://docs.
graphcore.ai/projects/poptorch-user-guide/en/latest/ (visited on
24/07/2024).

A Graphcore IPU-IPOD 16

In addition to the five GPU-based systems covered in the document earlier, we
also performed the same benchmarking tests on a Graphcore IPU-POD-16 system,
which makes use of “Intelligent Processor Units” (IPUs) specifically designed for
Artificial Intelligence based workflows.

The characteristics and programming models used by the system are quite
different, making direct comparisons with the GPU systems challenging. For ex-
ample, the optimisation strategies are different, so we aren’t able to use DDP,
DeepSpeed or FSDP with the IPUs. Instead, four alternative strategies are sup-
ported which we describe below. The execution characteristics are also quite dif-
ferent. Before running the code the compiler performs a simulated run in order to

30

https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://lightning.ai/docs/pytorch/latest/advanced/model_parallel/fsdp.html
https://lightning.ai/docs/pytorch/latest/advanced/model_parallel/fsdp.html
https://lightning.ai/docs/pytorch/latest/advanced/model_parallel/fsdp.html
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://huggingface.co/blog/accelerate-deepspeed
https://huggingface.co/blog/accelerate-deepspeed
https://arxiv.org/abs/1910.02054
https://docs.graphcore.ai/projects/ipu-programmers-guide/en/latest/
https://docs.graphcore.ai/projects/ipu-programmers-guide/en/latest/
https://cs.stanford.edu/people/karpathy/char-rnn/
https://cs.stanford.edu/people/karpathy/char-rnn/
https://arxiv.org/abs/2101.00027
https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/
https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/


automatically optimise execution for use on the IPUs. This can increase execution
time with the result that the first epoch is always considerably slower than sub-
sequent epochs. Finally, the memory structure of the system is also quite unusual.
Each IPU has a large amount of SRAM (referred to as “In-Processor-Memory”)
organised into smaller independent distributed memory units. It also has a set of
attached DRAM (referred to as “Streaming Memory”) which can transfer to the
SRAM by explicit request of the code [42, section 2].
The IPU-POD-16 device used for our testing has 3.6 GiB of In-Processor-Memory

per IPU and 512 GiB of Streaming Memory, giving a total of 526.4 GiB. However,
because of the way this memory is arranged, we found using the same parameters
(model size and batch size) as with the GPUs-based systems to be problematic.
This also makes it more challenging to compare the results.

The four strategies available for use with PyTorch with IPUs are Pipelined Ex-
ecution, Sharded Execution, Serial Phased Execution and Parallel Phased Execu-
tion. Our benchmarking code is built using PyTorch Lightning and so is restricted
to making use of these strategies.

Pipelined Execution [45, Pipelined Execution] requires that the model is
split into phases with ideally the same number of phases as IPUs (up to 16 in our
case). Each phase can be further subdivided into stages. PopTorch will stagger
the phases across the IPUs so that once a single batch has been processed by the
first phase on one IPU the outputs can be passed to the second phase on a different
IPU. The next batch can then be passed to the first IPU to run the first phase
again in parallel with the second phase on the second IPU. The aim is to split the
model across the IPUs and have them all processing in parallel to the maximum
extent. For a short time at the start of each epoch, there is a “ramp-up” period
during which IPUs later in the chain are waiting for data; similarly, towards the
end of each epoch, there is a “ramp-down” period.
With this strategy, the forward and backward passes are interleaved across

the IPUs so that the last forward stage can be combined with the first backward
stage. Using this strategy the effective batch size becomes the configured batch
size multiplied by the number of IPUs in operation.

Sharded Execution [45, Sharded Execution] has each IPU sequentially execute
a distinct part (a shard)) of the model. These shards split the model vertically,
similarly to the FSDP approach shown in Figure 1.3. Each shard is executed
sequentially on a single GPU. This approach is generally inefÏcient compared to
other approaches because only one IPU is being used at any point in time. It’s
recommended if only a single sample is being processed or for debugging.

31



Phased Execution [45, Phased Execution] comes in two flavours: Parallel
Phased Execution and Serial Phased Execution. With this strategy, some portion
of weights and activations are ofÒoaded to Streaming Memory between phases.
This can be useful for models with larger memory footprints at the expense of
some efÏciency, although the compiler optimises the code to use cross-IPU copies
of weights and activations rather than using Streaming Memory where possible. As
with Pipelined Execution, phases must be defined to aggregate processing across
IPUs.
In the case of Parallel Phased Execution phases are executed in parallel split

between even and odd numbered IPUs (so odd IPUs hand off to even IPUs and
vice versa). In the case of Serial Phased Execution phases operate sequentially
on a single set of IPUs.
A notable characteristic of all of these strategies is that they require annotations

to be added to the model code in order to distribute the model effectively across
the IPUs. This introduces a challenge for benchmarking since there’s no canonical
approach for partitioning the model into phases or shards in an ideal way for the
IPUs (the AutoStage method assigns stages to blocks, but still requires the blocks
to be manually defined in the model).
Simplified representations of Pipelined Execution and Sharded Execution are

shown in figure 7.

Stage 3

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7

Stage 1 Stage 1 Stage 1 Stage 1 Stage 1 Stage 1 Stage 1

Stage 2 Stage 2 Stage 2 Stage 2 Stage 2

Stage 3 Stage 3 Stage 3

IP
U

 1
IP

U
 2

IP
U

 3

Ramp-up period Full IPU usage

Forward pass Backward pass

Stage 3

Stage 2

Figure 7 (a): Schematic representation of Pipelined Execution on a set of
IPUs.

We ran tests to benchmark the IPU-POD-16 system using different strategies
and numbers of IPUs. IPUs must be utilised in powers of two. We used the same

32



Batch 1 Batch 2

Stage 1 Stage 1 Stage 1

Stage 2 Stage 2

Stage 3 Stage 3

IP
U

 1
IP

U
 2

IP
U

 3

Forward pass

Forward pass Backward pass

Backward pass Forward pass

Figure 7 (b): Schematic representation of Sharded Execution on a set of IPUs.

min-GPT model as for the other experiments but due to the way the memory is
arranged had to use different hyperparameters. Our training model contained 12
layers and 12 heads with an embedding of either 384 or 768 in order to test different
model sizes (21.4 million and 85.3 million parameters respectively, amounting to
42.79 MiB and 170.514 MiB respectively). We constrained training to a batch size
of 1. Precision was set to 16-bit and epoch time is the average over a total of 10
epochs.
For the larger model size, a minimum of four IPUs was needed to avoid memory

exhaustion.
As discussed above, an important difference between GPU-based training and

the Graphcore IPU approach is that an initial compilation stage is needed to gen-
erate a multi-operation computation graph. This process ensures that tile usage is
maximised while also minimising memory requirements. This compilation stage
can take some time and although the result can be cached it is highly depend-
ent on the parameters, including hyperparameters, of the model [42, section 4.4,
“Compilation”].

Compilation is therefore a normal part of operation and an important consid-
eration. In the figure 8 we detail both the compilation and average epoch times.

Observations:

• For both Sharded and Pipelined Execution strategies the compilation time
generally increases with the number of IPUs used (approximately logarithmic
in the number of IPUs). This relationship holds for both model sizes.

33



1 IPU 2 IPUs 4 IPUs 8 IPUs 16 IPUs0

100

200

300

400

500

Co
m

pi
le

 ti
m

e 
(s

ec
on

ds
)

Effect of strategy on compile time (model size 42.79 MiB)

Sharded Execution Pipelined Execution

Figure 8 (a): The effect of strategy and number of IPUs on compile time,
smaller model.

1 IPU 2 IPUs 4 IPUs 8 IPUs 16 IPUs0

25

50

75

100

125

150

175

Av
g.

 e
po

ch
 ti

m
e 

(s
ec

on
ds

)

Effect of strategy on avg. epoch time (model size 42.79 MiB)

Sharded Execution Pipelined Execution

Figure 8 (b): The effect of strategy and number of IPUs on average training
epoch time, smaller model.

34



1 IPU 2 IPUs 4 IPUs 8 IPUs 16 IPUs0

100

200

300

400

500

600

700

Co
m

pi
le

 ti
m

e 
(s

ec
on

ds
)

Effect of strategy on compile time (model size 170.514 MiB)

Sharded Execution Pipelined Execution

Figure 8 (c): The effect of strategy and number of IPUs on compile time,
larger model.

1 IPU 2 IPUs 4 IPUs 8 IPUs 16 IPUs0

50

100

150

200

250

Av
g.

 e
po

ch
 ti

m
e 

(s
ec

on
ds

)

Effect of strategy on avg. epoch time (model size 170.514 MiB)

Sharded Execution Pipelined Execution

Figure 8 (d): The effect of strategy and number of IPUs on average training
epoch time, larger model.

35



• Parallel Phased Execution ran considerably slower — on average around 50
times slower — than Pipelined Execution; we’ve skipped the results from the
figure because of this big difference. Phased Execution moves parameters
from In-Processor-Memory to Streaming Memory between phases, which
likely accounts for the slower execution. One important benefit is that we
were able to train the larger 170.514 MiB model even on a single IPU using
Parallel Phased Execution, even though this failed with both Sharded and
Pipelined.

• We were unfortunately unable to get a working Serial Phased Execution
implementation due to the need for execution phases to be data-independent.
The structure of the code made it challenging to annotate the code in a
suitable way.

• Increasing the model size also causes the compilation time to increase in a
non-trivial way.

• Epoch time decreases with the number of IPUs in use. As expected, the de-
crease is far more marked for pipelined execution in comparison to sharded
execution. In the latter case, increasing the number of IPUs has little prac-
tical effect.

• For these examples, the compile time was nearly double the time taken to
run a single training epoch. The impact of compile time therefore reduces
proportionally as the number of epochs increases. For our ten-epoch experi-
ments compilation constituted a non-trivial portion of the overall execution.

• As expected, in general, Pipelined Execution is the far superior strategy in
terms of model training efÏciency compared to Sharded Execution.

36


	Introduction
	Resources
	Models
	Benchmarking
	Strategies
	Single accelerator comparison
	Scaling up and out with DDP
	Larger Datasets
	Model Parallelism

	Conclusions
	Limitations and future work
	Acknowledgements
	Graphcore IPU-IPOD 16

