
ARIA: Automated Retinal Image Analyzer v1.0

Pete Bankhead

Developed at:
Centre for Vision and Vascular Science, Queen’s University of Belfast, UK

9th December 2011

ARIA 1.0 2

Contents

1 Introduction 2

2 Getting started 2
2.1 Running ARIA through MATLAB . 2
2.2 The main idea . 3
2.3 Analyzing an image . 3
2.4 The user interface . 4

3 Tips and tests 5
3.1 Important settings . 5
3.2 Improving the results . 7
3.3 Test data . 8

4 Notes for developers 9
4.1 Understanding the source code . 9
4.2 Designing new vessel processors . 11

1 Introduction

Automated Retinal Image Analyzer (ARIA) is software designed for the automated detection
and measurement of retinal blood vessels. It is based upon an algorithm that has been tested
using both fundus photographs and fluorescein angiograms, and which might also be usefully
applied to other non-retinal 2D images in which tubular structures should be measured.

The software is made available along with its source code, and can easily be extended by
modifying the code or adding new algorithms. One algorithm for detection and analysis is built
in. The main focus when developing this has been to devise a method that is fast and general
enough that it can be applied to a wide range of images, while also requiring relatively few
settings to be changed for the effective processing of different images. It should also be possible
either to determine sensible setting from knowledge of the images, or to interactively explore
different options to find those most appropriate.

While ARIA is freely available, note that it can only be run from within MATLABTM. It
therefore requires a valid MATLAB installation and license (version R2010a or later – earlier
versions have not been tested), including its associated Image Processing Toolbox.

2 Getting started

2.1 Running ARIA through MATLAB

After first starting up MATLAB, use the top bar or Current Folder pane to navigate to the base
folder containing the ARIA files (or add this folder to the path under File → Set Path...).
Then type ARIA in the command window, or right-click the file ARIA.m and choose Run. After
a brief delay the ARIA user interface should appear. To avoid needing to manually navigate to
the correct folder each time, type ARIA_setup and the locations will be saved.

ARIA 1.0 3

Figure 1: Running ARIA from the MATLAB command prompt.

2.2 The main idea

Two things are needed to analyze an image automatically:

1. A MATLAB function that implements the analysis algorithm

2. A number of arguments (also called parameters or settings) required by the function

In ARIA, both the name of the function and the required arguments are saved as processors.
This makes it possible to have different processors for different image types, e.g. low or high
resolution, fundus photographs or fluorescein angiograms. Two processors might use exactly the
same function for analysis, but differ in their function arguments. In general, the same processor
should be used for similar images if their measurements will be compared later.

2.3 Analyzing an image

The main processing in ARIA happens immediately when an image is opened, and so before
choosing an image file it is important to check that the desired processor has been selected in
the Processors menu of the user interface.

Selecting the Processors → Prompt for settings option means that the software will
prompt for any required arguments (e.g. vessel detection thresholds, whether the vessels are
lighter or darker than the background) so that the analysis can be tailored for the current image.
Otherwise, the most recent arguments associated with the processor are used and the analysis
happens automatically1. After identifying suitable arguments using several images, it is best to
turn off the prompts for all similar images to ensure that the analysis is unbiased and repeatable.

Available processors are stored in the Vessel_Processors folder. You can make a new one
from within ARIA with Processors → Create new processor, but it may be easier just to
go into the folder, duplicate an existing processor and rename it. It should then appear in the
menu the next time ARIA is run. It can be modified by opening an image with the Prompt for

settings option selected.

1Note that this assumes the author of the processor has supported this option – it is quite possible to write a
processor that ignores this value, and perhaps always prompts or never prompts. Also, it might not be possible
to automate all steps – for example, if a file is needed to use as a field of view mask, then the appropriate file
name will need to be chosen each time.

ARIA 1.0 4

Figure 2: The main window of the ARIA user interface.

2.4 The user interface

Most options and features of ARIA can be accessed through the main window that appears
when it is run, either from the menu or the buttons and check boxes, without requiring any
MATLAB programming skills. The following subsections describe the various options visible in
the user interface.

2.4.1 The menus

File Includes commands to open a new image or save the results of analyzing the currently-
opened image so that these may be reopened in a subsequent ARIA session. If you are familiar
with MATLAB, you might want to use Send to workspace in order to gain access to the
underlying data structures. Then you can do much more processing using MATLAB’s commands
and toolboxes.

Processors Whenever an image is opened, the selected processor determines what happens
next. The processor defines which function should be used for processing, and what arguments
should be passed to it.

Copy Copy either the individual diameter measurements corresponding to the currently-
selected vessel segment, or the summary measurement table (number of diameters, mean,
standard deviation, etc.).

Vessels Sort the vessel segment labels according to segment length or mean diameter. This
makes it easier to identify and remove segments with extreme measurements, where these are
more likely to result from false detections or incorrect measurements.

Retina Manually mark the location of the optic disc, and display circles to show regions
surrounding the optic disc. This is useful for some protocols, in which only measurements

ARIA 1.0 5

within fixed distances from the optic disc are required.

Display Adjust the colours and other properties connected to display. If the user interface is
sluggish when displaying the image, turning off double buffering may help (at the expense of
some flickering).

2.4.2 The main window

Calibration Change the calibration value (pixel size) of the image. By default, measurements
are given in pixels. If the calibration is set, the related pixel measurements are scaled by this
value, and the required calibration unit is shown alongside measurements.

View Show the image, and toggle which lines are displayed. See also the Display menu for
further customization. Turning on the Labels option shows the vessel segment numbers, which
are useful for selecting a specific vessel segment in the next box.

Vessel segment Look in more detail at one individual vessel segment, or delete the entire
segment if it is not required. Plot gives a plot of diameters against distance along the segment
centre line (see also the Display → Plot options). Profiles displays the individual vessel
profiles computed along the vessel (at approximately 1 pixel intervals) stacked together. This
can also be understood as an image giving a ‘straightened’ view of the vessel. Various summary
measurements are also given. These are computed from the vessel diameters that are designated
as ‘included’ (see next section). (Segment length differs slightly: it is the sum of the Euclidean
distance between all points along the centre line, from the first to the last ‘included’ diameters,
and incorporating all centre points in between, irrespective of the inclusion status.) The
Tortuosity measure is the Segment length divided by the Euclidean distance between the
vessel segment end points. It is therefore equal to 1 for a perfectly straight vessel segment, and
higher for a more tortuous vessel.

Vessel diameters The right-hand side of the main user interface window gives a list of the
diameters for the currently-selected vessel segment. If a diameter is selected in this list, the
corresponding profile plot is displayed at the bottom, along with marked vessel edge locations.
If multiple diameters are selected, the average of all profiles (without edges) is shown instead.
You can also select one or more diameters and set whether these are ‘included’ or ‘excluded’.
Excluded diameters are not used for the summary measurements, and are displayed on the image
and in plots in a different colour. They are also omitted whenever Copy → Vessel diameters

is clicked. This makes it possible to manually remove spurious measurements.

3 Tips and tests

3.1 Important settings

When running the built-in analysis algorithm in Prompt for settings mode, there are a lot of
potential settings to change. Most can be left to their default values, and the results are likely
to be similar even if they are varied a bit, but some are more sensitive or useful. In order of
importance, these are:

ARIA 1.0 6

• Dark vessels – During the segmentation phase you need to specify whether the vessels
are darker than the background (fundus images) or lighter (fluorescein angiograms). This
settings affects whether vessels are detected at all, although determining its correct value
should be easy.

• Wavelet levels – These should be set according to image resolution and the size of vessels
that should be detected; larger vessels require levels with higher numbers. The preview
images demonstrate how the output will look for different choices. This will determine
which vessels are detected, and whether 2 thin parallel tracks are considered to be parallel
vessels or the same vessel with a central light reflex.

• Threshold percentage – This defines the percentage of pixels on the wavelet levels that
will be provisionally detected as vessels. Often, in typical human retinal images about
12-14% of the pixels belong to vessels, but the default value for this settings is 20% –
which means about one third of the detected pixels will not actually belong to vessels.
However, many of these extra pixels will belong to small, isolated objects that are not very
vessel-like, and which will be removed by later steps of the algorithm. Therefore it is a
good idea to set this threshold value to be slightly higher than the percentage of pixels
you would ideally detect in any image.

• Apply connectivity constraint – Edges are detected where there is a steep gradient
around the vessel. Most of the time the steepest gradients near to a vessel correspond to
its true edges, but sometimes they might belong to other vessels or structures. Several
constraints are already integrated into the detection algorithm, but these might not be
sufficient to ensure the correct edges are found. The ‘connectivity constraint’ forces the
algorithm to only accept large gradients that form a long, connected line close to the vessel
– and thus it ignores most other spurious gradients, which are normally much shorter.
However, sometimes this constraint is too much, and even the true edge does not meet it
(perhaps due to noise, pathology or imperfections in the detected centre line). Therefore
it is a good idea to set this to Yes if doing so gives reasonable results, but No if it causes
too many vessels to be missed. Because edges are defined in the same way irrespective of
this setting (i.e. as zero-crossings of the second derivative) then in ideal conditions the
results are identical whether or not the constraint is used.

• Perpendicular smoothing scale – This changes the amount of smoothing to apply
across the vessel before searching for edges. If this is too large, neighbouring vessels
may become merged and the edges poorly localized; however, if it it too small then noise
may cause problems for edge localization and the detected vessel edge will be broken or
missing in parts. Technically, if the scaling is s and an estimate for the vessel width w,
then a 1D Gaussian filter with σ =

√
sw is applied to the vessel. Therefore if the vessel

is 10 pixels in diameter and s = 0.2, it follows that sigma ≈ 1.414. As a guide, consider
values of s around 0.1–0.2, and only increase if the results are inadequate.

• Parallel smoothing scale – Similar to the perpendicular smoothing scale, but the 1D
Gaussian filtering is applied parallel to the vessel. It can therefore take a larger value,
because it is not likely to cause blurring into neighbouring vessels. However, very large
values will reduce variability along edges – and so rapid changes in vessel width would be
smoothed away (although such changes often indicate noise rather than actual variability

ARIA 1.0 7

in the vessel, in which case smoothing gives a result closer to the truth). As a general
guide, consider values in the range 0.5–2.

• Clear branches – The main effect of selecting Yes for this is that centre lines will be
shortened approaching branches. So if you really need measurements there, you should
choose No. But often these measurements are not so important, and are also less accurate
(because the branch causes the vessel edge to ‘disappear’ on one side, and can pull the
centre line in the wrong direction briefly). Also, the analysis is usually faster if Yes is
selected, since less effort is spent on making more difficult measurements.

3.2 Improving the results

This section gives some common specific problems and how they might be solved by adjusting
settings.

Individual vessels have two parallel centre lines

This is probably due to the presence of the ‘central light reflex’ (CLR) making the vessel appear
as two. Try changing the wavelet levels used for the initial segmentation to use higher levels, or
fewer low levels, e.g. if levels 2–4 are used, try 2–5 or 3–4. This causes more smoothing before
detection, which tends to blur out the CLR so it stops causing problems. The disadvantage is
that it will also blur out very small true vessels, so these become harder to detect.

Detected vessel edges deviate far from the true edge, or disappear

This might be due to noise in the image, or reduced local contrast. Try changing the
setting for Apply connectivity constraint, or increasing the values of the Smoothing scale

parameters.

The centre lines of vessels are subdivided, despite there being no obvious branches

The segmentation is probably inaccurate. Either you can try to adjust this by changing wavelet
levels or thresholds, or alternatively increase the value of Length of spurs to remove. This
latter option gets rid of smaller offshoots from vessels that arise from segmentation errors, but
are not actually true branches. (Note that if the centre line remains, but edges disappear, then
the problem is edge and not vessel detection – in which case adjusting the smoothing scales is
more likely to be helpful.)

The centre line moves outside tortuous vessels

The spacing between spline breaks might be too much. Try reducing the Spacing between

spline pieces in pixels option (although this should remain > 5). This causes more
polynomial curves to be fit along the length of the vessel, making it easier to trace complex
shapes. But it increases the risk of the next problem. . .

The angles across which the vessel diameters are measured flucuate rapidly

The spacing between spline breaks might be too little. Try reducing the Spacing between

spline pieces in pixels option. With fewer polynomial pieces tracing the centre line, it

ARIA 1.0 8

cannot bend as quickly and so is less prone to excessive variation caused by noise or segmentation
errors.

The processing time is too long, or there is not enough memory

Try downsampling (shrinking) the image prior to processing. If the region of the image in
which you are interested is small, you could crop it first (e.g. using ImageJ) making sure to
leave a large enough border since vessels close to the image boundary cannot be measured.
Some improvements can also be attained by reducing the number of vessels analyzed, e.g. by
increasing the values for Delete all objects < (during segmentation) and Minimum number

of pixels for a centre line. Finally, newer releases of MATLAB may well include more
highly-optimized versions of some functions used by ARIA, so updating to the most recent
MATLAB release can improve performance.

There are too many short vessels, so it’s hard to see the interesting ones

Increase the value of Minimum number of pixels for a centre line during detection, or
choose Vessels → Delete → Few diameters afterwards. If some short vessels may be of
interest, choose Vessels → Sort by... → Length to move the shorter vessels to the end of
the list, making them less obtrusive.

There appears to be missing information in the centre of the field of view

If you are using a mask created by thresholding, check the settings used for this. Pixels below
a low threshold and above a high threshold are excluded. If the high threshold is anything less
than the maximum pixel value in the image, then the bright parts of the image will be masked
out. This might be helpful if you want to exclude the optic disc, for example, but most of the
time it is undesirable.

No vessels are detected – just the regions close to them

If you have a fundus image, make sure that the Dark vessels is checked in the segmentation
stage. If you have a fluorescein angiogram, make sure it isn’t.

3.3 Test data

We have tested ARIA using images from three publicly available databases of fundus photo-
graphs.

High-resolution images, including manual vessel diameter measurements:

• The REVIEW database: http://reviewdb.lincoln.ac.uk/

Lower-resolution images, primarily used to validate vessel segmentation:

• The DRIVE database: http://www.isi.uu.nl/Research/Databases/DRIVE/

• The STARE database: http://www.parl.clemson.edu/stare/probing/

Information about how to replicate the results given in the published paper is provided in
README.txt.

http://reviewdb.lincoln.ac.uk/
http://www.isi.uu.nl/Research/Databases/DRIVE/
http://www.parl.clemson.edu/stare/probing/

ARIA 1.0 9

4 Notes for developers

The idea underlying ARIA’s use of ‘vessel processors’ is that analyzing an image requires a
function that can take an image and determine the location of any vessels, along with (usually)
a number of arguments required by the function. The analysis can be changed by modifying the
function, the arguments, or both.

By storing the function name and arguments all within a single processor file, it is easy
to test out new approaches by creating new processors, and without needing to modify any
existing ARIA code. These may simply be duplicates of existing processors with only a few
changes. Nevertheless, to do this properly it is helpful to know a bit about how the current code
is structured.

4.1 Understanding the source code

4.1.1 ARIA and object oriented MATLAB

ARIA makes extensive use of the objected oriented programming (OOP) features introduced in
MATLAB 2008a. Briefly, OOP assists in the writing of short, structured and maintainable code.
One of the principal concepts is ‘encapsulation’, which relies upon

• Classes, which define properties and functions for a particular purpose

• Objects, which are specific instances of classes

To illustrate the utility of OOP, suppose one wishes to store the following information about
each vessel in a particular image:

• Coordinates of edge points (the sides of the vessel)

• Diameter measurements

In addition, one wishes also to be able to plot the diameters. There would be several ways to
achieve this in MATLAB, but the ‘simplest’ methods might well involve storing the diameters
in an array and writing a separate function for appropriate plotting. Whenever multiple
vessels are stored, and more properties and functions are required, this can rapidly become
complicated. OOP helps out by making it possible to define a Vessel class that includes
all the relevant properties and functions. From this class definition, which acts as a kind of
template, one can create as many vessel objects as needed (an ‘object is an instance of a class’).
Properties are accessed straightforwardly in a form such as vessel.side_1, vessel.side_2 and
vessel.diameters. The diameters do not actually need to be stored as an array, but are rather
just calculated as needed as the distance between the two sides – and so if the sides change, one
does not need to worry about updating the diameters too. Functions are also defined for the
class, and available to any objects made from that class. These are called in a similar way to how
properties are accessed, e.g. vessel.plot, or alternatively using the more familiar MATLAB
syntax plot(vessel). The function need only be written once, and both syntaxes automatically
work.

In short, OOP in MATLAB requires a bit of a learning curve, but in the end can result
in simpler code. A reader unfamiliar with this approach can find an introduction online at
http://www.mathworks.com/products/matlab/object_oriented_programming.html.

http://www.mathworks.com/products/matlab/object_oriented_programming.html

ARIA 1.0 10

4.1.2 Directory structure

The following subdirectories of the main ARIA directory contain code related to different aspects
of the software.

Vessel GUI

Files related to the particular user interface of the ARIA software, e.g. to change display colours.

Vessel Classes

Four classes that relate to different aspects of vessel analysis.

• Vessel_Data The class that contains everything related to a single image. This includes
the original image itself, any segmented (binary) image created from it, and an array
containing any available vessel segments. When an image is opened, it is added to a
new Vessel_Data object, and the processing function adds all the other extra properties
required by the object.

• Vessel_Data_IO A simple class containing static functions to save and load Vessel_Data

objects. It can also be made responsible for creating the Vessel_Data and calling the
processing function whenever an image is first read.

• Vessel The class that defines an individual vessel segment. This contains the edge points
for the vessel, as well as the coordinates of the pixels along its centre line. It also stores
the profiles across the vessel, and computes diameters.

• Vessel_Settings A class used to store the display settings for ARIA. These are saved in
the file ARIA_prefs.mat after the software is closed.

Vessel Processors

The directory containing vessel processors. On startup, the names of all processors within this
directory are added to the Processors menu of ARIA, with underscores replaced by spaces.
The directory also contains load_vessel_processor.m and save_vessel_processor.m, the
functions to load and save the processors in the correct format and location.

Vessel Algorithms

A directory to store .m files that take care of all the steps of vessel detection, and which can
therefore be associated with vessel processors. When making a new processing through the
ARIA user interface, this directory is checked for available functions.

Vessel Library

A collection of .m files containing functions that carry out a particular stage of processing, e.g.
image segmentation, centre line fitting or diameter edge point location. These tend to take a
Vessel_Data object as input, and set various properties during execution.

ARIA 1.0 11

Vessel Library Utilities

Utility functions used by functions within Vessel_Library, e.g. to compute the isotropic
undecimated wavelet transform used for segmentation. These do not have a fixed format for
input and output arguments.

Vessel Library Dialogs

Additional custom dialog boxes and figures used by functions within Vessel_Library to obtain
user input.

4.2 Designing new vessel processors

Each .vessel_processor file contains a MATLAB struct called args, which has a single
compulsory field args.processor_function that contains the processing function name. Other
fields can have any name and contain whatever extra data is required by the function.

The header for the processor function is
function [vessel_data, args, cancelled] = processor_function(

vessel_data, args, prompt)

where the first argument is a Vessel_Data object containing the image to be processed, the
second is the args structure and the third is either true or false depending upon whether
the user should be prompted for input. If this is true, then where possible the user should be
requested for any values that should be stored in the args structure, which will then be saved
in the processor after the processing is complete.

The first two output arguments are the same as the input arguments, but possibly modified
by the function. If the user cancels the operation at some stage while prompting for settings
then cancelled should be set to true so that the image is not displayed.

4.2.1 Duplicating existing processors

If a new processor should share the same function as an existing processor, simply duplicate
the file, select it in the Processors menu, and open an image with the Prompt for settings

option checked to change its arguments.

4.2.2 Writing new algorithms

The struct for a new processor can be created at the MATLAB command prompt, and stored
using the save_vessel_processor command. Any .m file on the MATLAB search path may
be used as the processor_function, provided it uses the same input and output arguments
as described above and it sets all the necessary properties of the Vessel_Data. An example
is given in aria_algorithm_general.m . Any such function put into the Vessel_Algorithms

folder can be added to a processor with the Processors → Create new processor command.

	Introduction
	Getting started
	Running ARIA through MATLAB
	The main idea
	Analyzing an image
	The user interface

	Tips and tests
	Important settings
	Improving the results
	Test data

	Notes for developers
	Understanding the source code
	Designing new vessel processors

