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Abstract—The current definition of quality of experience 

(QoE) designates delight and annoyance as diametrically 

opposing indicators of the degree of fulfilment of an application, 

service or system user’s pragmatic and hedonic needs and 

expectations. However, these inherited emotion terms are rarely 

used to describe emotions of equal amounts of arousal or 

opposing amounts of valence in the literature. This work 

assesses the significance of this asymmetry to the definition of 

QoE by determining the utility of emotion terms to 

communicate the emotion component of QoE. This was done in 

the context of a QoE evaluation of augmented reality training 

instruction formats. Correlates were sought between various 

measures of emotional state. This included physiological ratings, 

facial expressions and eye gaze. Emotional state was subjectively 

reported using three distinct methods: self-assessment manikin 

questionnaire; 2D emotion space terms; and open-ended terms. 

Regression analysis showed multiple significant correlations 

between implicit and explicit metrics, but not to the emotion 

terms used by the participants. This calls into question the utility 

of such vaguely understood terms. The use of more 

symmetrically opposing emotions in the definition of QoE may 

benefit consensual interdisciplinary communication.  

Keywords—quality of experience, emotion, augmented reality, 

procedure, training. 

I. INTRODUCTION 

The current definition of quality of experience (QoE) 

explicitly uses the terms delight and annoyance [1]. These 

terms are intended to represent diametrically opposing 

emotions in the definition of QoE. Research into the 

semantics of such terms rarely, if ever, attributes equal 

amounts of arousal or equally opposing amounts of valance 

to these emotions as per Fig. 1 [2]–[6]. Consensual 

understanding of the phenomenon under study is essential for 

interdisciplinary collaboration and advancement of the field 

of QoE research. The usage of different terms to represent 

emotion may allow users to communicate elements of QoE 

more intuitively. Evaluation of the utility of emotion terms to 

communicate elements of user QoE was the focus this work. 

This was done in the context of a QoE evaluation of 

augmented reality (AR) training instruction formats.  

Evaluation of AR instruction formats is required to realise 

AR’s potential as a training platform [7]. The experimental 

 
Fig.1. A comprehensively labeled 2D emotion space, adapted from [4] to 

highlight the asymmetrical levels of valance and arousal expressed in delight 

and annoyance (underlined). 

evaluation compared the influence of procedural and example 

instruction formats on AR trainee QoE [8]. A gender 

balanced sample of 60 participants [9] was procured by 

convenience sampling. Participants were trained on a 

GoCube™ [10] manipulation procedure having been 

assigned to one of two independent  groups. The main test 

group (TG) used a combined text and interactive animated 3D 

model instruction format [11]. The control group (CG) used 

a text-only instruction format. The test framework recorded 

the participant’s physiological ratings, facial expressions, and 

eye gaze. After the experience, the participants reported their 

emotional state using three methods. Firstly, they were asked 

to use any open-ended term of their choice to describe their 

post-experience emotional state. Secondly, they completed 

the self-assessment manikin (SAM) questionnaire [12]. 

Finally, they were asked to circle one label that best described 

their emotional state from the 2D space as per Fig. 1 [4]. 



Regression analysis was used to identify correlations between 

these different metrics. This analysis showed many 

significant correlations between physiological, objective and 

subjective metrics, but no significant correlation to the 

emotion terms used by the participants. This calls into 

question the consensual interpretation of such terms. 

The remainder of this paper is structured as follows. The 

following related work section offers a critique of the 

literature relevant to this work. This is followed in Section III 

by a detailed description of the implemented methodology. 

Section IV outlines the post evaluation data analysis that was 

performed. A discussion of statistical results is given in 

Section V. Finally, the conclusions and future direction of 

this work are presented in Section VI.  

II. RELATED WORK 

In 1980 James A. Russell expanded on earlier works 

investigating the polarity of emotion semantics [2]. He used 

a sample of 36 participants to demonstrate that emotion terms 

fall meaningfully into a 2D circle in terms of positive and 

negative arousal and valance dimensions. The participants 

were instructed to position 28 emotion labels within a circle. 

The labels were sorted so that words at opposite sides of the 

circle described opposing emotions and those positioned 

close together were similar. Factor analysis produced the 2D 

emotion space containing several emotion labels positioned 

as in Fig. 1. A distance metric had a median correlation of r 

= 0.80 across the 36 participants and correlated to previously 

theorised positions with r > 0.90. Thus, Russell stated in [2] 

that the 2D circumplex model of emotion provided a 

convenient means for self-reporting the cognitive 

conceptualisation of emotion. Continued research into the 2D 

emotion space has resulted in the modern 2D graph used in 

our research as seen in Fig. 1, adapted from [4].  

The SAM questionnaire was proposed by Peter J. Lang in 

1985 [13] for measuring emotional response in terms of 

arousal, valence and dominance. This was done to simplify 

the complexities of Russell’s semantic differential model 

(SDM), which was the state-of-the-art for recording explicit 

affect since 1974. The SDM consisted of 18 bipolar adjective 

pairs, each rated on a 9-point scale. Factor analysis of the 

scores on the three dimensions results in a cumbersome 

database that requires statistical expertise to resolve. The use 

of a verbal rating system also restricts use to test subjects who 

are literate in the given language. The SAM questionnaire is 

a direct and simple method of affect reporting, overcoming 

these difficulties associated with the SDM. The SAM 

questionnaire was promisingly evaluated against the SDM in 

[13]. The authors demonstrated that the paper-based SAM 

questionnaires correlated with the SDM for valance, arousal 

and dominance with r=0.97, r=0.94 and r=0.23, respectively. 

For the two major affect dimensions (valance and arousal), 

SAM showed almost complete agreement with the far more 

complicated SDM.  

Our evaluation of emotion semantics was undertaken in 

the context of a QoE evaluation of AR training instruction 

formats. Context aware interactive AR training applications 

can ensure correct learning by verification of instruction 

execution on the workpiece [14]. This stepwise verification 

automates self-pacing which can reduce trainee cognitive 

load [15]. However, cognitive load can also be impacted by 

the AR content including of instruction format [15]. 

Instructions can be presented in procedural and example 

formats [8]. Procedural instructions describe how to complete 

a procedure in a stepwise manner. Examples provide an 

analogous model showing exactly how a particular task is 

carried out. A graphical example can reduce extraneous 

cognitive load but may impact learning due to the 

development of over-dependence [8]. The cognitive effort 

involved in carrying out procedural instructions may benefit 

learning [8]. For these reasons, research is required in order 

to evaluate the influence of training instruction formats to 

fully realise AR’s potential as a training platform [16]. The 

experimental methodology used to undertake this evaluation 

is described in detail in the following section. 

III. EXPERIMENTAL METHODOLOGY 

A. The AR training application 

Participants received visuospatial aptitude training using 

an AR GoCube™ training application on the HoloLens 2 

(HL2) AR headset [17]. The GoCube™ is an electronic 

version of the world-famous Rubik’s Cube® puzzle. 

GoCube™ state was relayed to the HL2 over Wireless 

network. This Cube state information was used to automate 

instruction progression, to animate the Cube model (the 

example format, see Fig. 2), and to cue corrective instructions 

in the event of trainee errors. As such, the system provided a 

robust solution for the repeatable workpiece tracking required 

of the scientific method, whereas computer vision-based 

tracking has been shown to be subject to context influencing 

factors such as lighting, target object pose and occlusion [18]. 

The independent variable between the TG and CG was 

instruction format as described in the following sections. 

B. The example instruction format 

The TG was trained using an interactive animated 3D 

model of the GoCube™ as an example instruction format as 

seen in Fig. 2. This was combined with text instructions as 

recommended in [11]. The model animated the direction of 

rotation of the Cube face for the given instruction. This 

included directional arrows indicating clockwise or anti-

clockwise face rotation. The interactive animated 3D model 

represented the entire GoCube™ in its current configuration, 

as the trainee should be looking at it for the given instruction. 

The accompanying text instruction told the trainee what 

colour face to rotate and in what direction; either 90o 

clockwise or anti-clockwise. 

C. The procedural instruction format 

The CG was trained using the same suite of instructions 

as the TG. These instructions consisted of the text instruction 

only from Fig. 2. The text-based procedural instruction 

described the direction to rotate the Cube face for the given 

instruction. Magenta text colour was used to contrast the 

workpiece and the environment. Black is transparent by 

default in AR applications. The test environment was white 

with a wooden table. Magenta did not appear as a colour on 

the workpiece or in the test environment. 



 
Fig. 2. The TG participant’s view showing a combined text and interactive 

animated 3D model instruction format.  

D. Objective metric capture 

The participant’s manipulation of the GoCube™ was 

relayed to the HL2 over wireless network. This enabled real-

time capture of instruction response times, quantity of errors, 

and durations. The participant’s baseline and post-experience 

mental rotation abilities were recorded using the standard 

Vandenberg mental rotation test [19]. 

E. Implicit metric capture 

Our implicit data capture framework recorded eye gaze 

features, physiological ratings, and expressions of the lower 

face. The participant was seated at a table in the test 

laboratory where they were fitted with the HL2. The HL2 eye 

tracking sensors were calibrated to the participant’s eyes. The 

eye gaze sensors on the HL2 are intended as an input medium, 

but their usage was adapted in this study to record user eye 

gaze to the HL2. The Empatica E4 sensor [20] was used to 

record the participant’s skin temperature, blood volume pulse 

(BVP), heart rate (HR), interbeat interval (IBI) and 

electrodermal activity (EDA). The E4’s 

photoplethysmography sensor measures BVP at 64Hz as the 

level of blood oxygenation measured in nano Watts (nW). HR 

is calculated from the BVP signal as beats per minute (bpm). 

IBI is calculated as the duration of time, in seconds (s), 

between consecutive diastolic peaks of equal amplitudes (±5 

nW) in the BVP signal. EDA and peripheral skin temperature 

are both sampled at a rate of 4Hz. A desk-mounted C930s 

Logitech™ 1080p video camera [21] was used in conjunction 

with OpenFace facial recognition software [22] to record the 

participant’s lower facial Action Units (AUs) [23].  

F. Explicit metric capture 

Post-experience, the participants were asked to complete 

an affect questionnaire that consisted of three parts [24]. 

Firstly, participants were asked to describe their current 

emotional state using an emotion of their choice. Secondly, 

participants were asked to complete the SAM questionnaire. 

Finally,  participants were asked to select a label from Russel’s 

2D emotion space [2] as per Fig. 1, that best described their 

post experience emotional state. They also reported their QoE, 

subjective task load and cognitive load in Likert scale and 

NASA-TLX questionnaires, respectively. The Likert scale 

questionnaire recorded aspects of interaction, efficiency, 

usability, aesthetics, utility and acceptability [25].  

G. Protocol 

This evaluation consisted of ten distinct phases. These are 

shown in Table I. Each of these phases is described in the 

following paragraphs. The protocol adhered to the standards 

for test methodologies of head-mounted displays outlined in 

ITU-T P.919 [9]. This involved a self-paced between-groups 

study design conducted on a gender-balanced sample in a 

controlled testing environment, after appropriate informed 

consent, instruction and verification of understanding. The 

testing room provided control for consistent lighting 

conditions and noise pollution. This research was approved 

by the ethics committee of the Athlone Institute of 

Technology. Participant consent was obtained in written 

format. Consent and anonymised data were stored separately.  

1) Sampling and Information Sharing: A gender-

balanced sample of 60 participants was secured by 

convenience sampling. The sample group had an age range 

from 19 to 62 years old with a mean age of 32. Twelve 

nationalities were represented. The sample group was divided 

into two independent groups of 30, with an equal distribution 

of 15 males and 15 females. Each participant was greeted and 

thanked for their participation in the testing laboratory. They 

were then provided with a test information sheet. This 

explained the entire test procedure including that participants 

would undergo training in a GoCube™ manipulation 

procedure under one of the instruction conditions, and that 

they would be then required to recall the procedure as trained 

from memory. An opportunity was afforded to address any 

questions about the evaluation process, after which test 

subjects completed and signed a consent form. This 

information sharing phase lasted 2 minutes on average, and 

the signing of the consent form took 1 minute and 30 seconds 

on average. After giving written consent, the participant was 

fitted with the E4 sensor. This was done during this phase to 

allow the maximum time for the temperature heat flux sensor 

to acclimatise to the participant’s skin temperature. 

Recording of physiological ratings began at this time. The 

participant then proceeded to the screening phase. 

2) Screening: The participant was first screened for 

visual acuity using the standard Snellen eye test [26]. They 

were then screened for colour perception using digital Ishihara 

colour plates [27]. Following this, an interactive digital 

Vandenberg mental rotation test was implemented [19]. This 

provided a baseline of the participant’s mental rotation 

abilities [28]. No participants were excluded during screening. 

The screening phase took an average of 4 minutes.  

3) Instruction and calibration: The participant was 

introduced to the GoCube™ in terms of face colours and face 

rotation directions. The GoCube™ has six faces. Each Cube 

face is referenced by the tile at its centre. This is because each 

centre tile is bound to one face. Like the standard 3x3 Rubik’s 

Cube®, the faces are coloured blue, green, white, yellow, red, 



TABLE I. PROTOCOL PHASES  

Number Phase 

1 Sampling and information sharing 
2 Screening 

3 Instruction and calibration 

4 Baseline 
5 Practice 

6 Training 

7 Waiting 
8 Recall 

9 Transfer 

10 Questionnaires 

and orange. The participant was instructed to rotate each 

Cube face in one of two ways by reference to Cube face 

colour. These were 90o clockwise rotation and 90o anti-

clockwise rotation. The participant’s understanding of this 

information was verified using a standard Rubik’s Cube®. 

Then they were fitted with the HL2 which was calibrated to 

their eyes. This instruction and calibration phase took 4 

minutes on average. The baseline phase then began.  

4) Baseline: The start of the 5 minute baseline period was 

marked by the beginning of recording of eye gaze features 

(i.e., blink rate) using the HL2’s eye tracking sensors. The 

raw data captured during this baseline phase was used to 

extract various physiological and physical baseline features 

as described in the following data analysis section. The 

deviation of these features from baseline during the task was 

used to create deviation features to reflect the influence of the 

instruction formats on the participant. After recording of 

baseline physiological ratings, facial AUs and eye gaze 

features had elapsed, the participant proceeded to the practice 

phase. The recording of these implicit QoE metrics continued 

throughout the evaluation and only ceased after the recall 

phase was complete. 

5) Practice: The participant underwent a practice phase 

for their given instruction format. This involved following 

instructions to rotate each GoCube™ face 90o in both 

clockwise and anti-clockwise directions (i.e., 12 

instructions). It had been verified that they could do this 

independently of the HL2 during the instruction and 

calibration phase. Now the goal was to verify that they could 

see, understand, and correctly follow instruction from the 

HL2. Corrective instructions were issued by the AR 

application in the event of user mistakes. Upon successful 

completion of all instructions, the participant automatically 

progressed to the training phase in which they were trained in 

a specific GoCube™ manipulation procedure. The practice 

phase was self-paced and lasted on average 1 minute and 9 

seconds for the TG and 47 seconds for the CG. 

6) Training: The training phase began with the 

GoCube™ in the solved state. Training was self-paced. 

Training cycles consisted of two halves, where the participant 

was required to action a suite of 7 instructions to and from the 

solved state. Total training time and number of errors were 

recorded to the HL2 as measures of the influence of the 

instruction formats on training. In the TG, the average 

training phase lasted 4 minutes and 36 seconds. In the CG the 

average training phase lasted 3 minutes and 51 seconds. The 

participant alerted the researcher once they were confident 

that they had learned the procedure as trained. The researcher 

then ended training by remote command to the HL2.  

7) Waiting: As informed by the literature, a minimum of 

20 seconds of workpiece-free waiting is sufficient to ensure 

that learned information has either been schematised into LM 

or retained in working memory (WM) [29] by means of 

repetition. If after 20 seconds, the participant cannot perform 

the task, the information has either not been learned, or has 

been lost from WM, in which case it will not be learned. The 

participant waited for a 30 second interval as inspired by 

[30]. They performed arithmetic questions taken directly 

from, or adapted from [31] during this time. Correctly 

performing these equations requires WM resources, and any 

training not schematised to long term memory [29] will likely 

be lost during this process.  

8) Recall: In the recall phase, the participant had to 

reproduce the GoCube™ manipulation procedure as trained. 

Number of errors, Cube face rotation intervals and total recall 

duration were recorded to the HL2. The recall phase was self-

paced and lasted 46 seconds in the TG while in the CG it lasted 

30 seconds. 

9) Transfer: The participant re-took the standard 

Vandenberg mental rotations test as per baseline during the 

screening phase. This took 1 minute. 

10) Questionnaires: Firstly, the participant was asked to 

write down an emotion that best described their emotional 

state. This took 20 seconds on average. They were then asked 

to complete the SAM questionnaire. This took 13 seconds on 

average. They were then asked to select one emotion label 

from Russel’s 2D emotion space [4]. This took 48 seconds to 

perform on average. Following this, the participant completed 

a ten-statement five-point Likert scale questionnaire. This 

took 1 minute and 30 seconds to complete on average. There 

were two cognitive load questions taken from [32] on the 

questionnaire; one each to evaluate the amount of cognitive 

effort invested during the training phase and the recall phase. 

There were also three questions related to cognitive load (one 

each specific to intrinsic, extrinsic and germane cognitive 

load) invested during the training phase [33]. The participants 

then completed the NASA-TLX questionnaire, taking 3 

minutes to complete on average.  

IV. DATA ANALYSIS 

Post-evaluation data analysis involved time domain 

feature extraction from the captured data. Minimum, mean, 

and maximum features were extracted from the physiological 

data. Instruction gaze hits were used to calculate dwell times 

and gaze shift rates [34]. A fixation was calculated as a 

stationary gaze above 200ms [35]. Eye gaze below this 

threshold was excluded as a natural rapid eye movement 

known as a saccade. Gaze shift rate was normalised on a per 

minute basis [34]. Contiguous AU presence below 500ms 

was classified as a micro facial expression (MFE) [36]. 

Contiguous AU presence above this threshold was classified 

as a normal facial expression (NFE). The quantity of MFEs 

and NFEs recorded during varying practice, training and 

recall phase durations were normalised on a per-minute basis. 

Deviation from baseline to practice, training and recall of 

these features was calculated. Open-ended and 2D space 

emotion labels were assigned ordinal values for statistical 

analysis. Statistically significant differences were sought 



between the independent groups to provide an insight into the 

influence of the different instruction formats on these features 

with 95% confidence level (α=0.05). Linear regression 

analysis between these features was undertaken to 99% 

confidence level (α=0.01).  

V. RESULTS AND DISCUSSION 

There was a significant difference between the genders in 

mental rotation baseline abilities (male: 9 rotations, female: 7 

rotations) with p = 0.04 [37]. Instruction response times were 

significantly faster in the CG during practice and training 

with p = 0.01 and p = 0.05 respectively. Practice instruction 

response times are broken down by gender in Table II. In 

addition to Table II, CG males were faster than TG females 

with p = 0.01. Consequently, the practice phase was 

significantly shorter in the CG with p = 0.04. The CG made 

significantly less mistakes during the practice phase with p < 

0.01. This result is broken down by gender in Table III. In 

addition to Table III, CG males made significantly less 

mistakes than TG females with p = 0.04. The CG’s eye gaze 

dwelled significantly longer on the GoCube™ than the TG 

with p = 0.03. AU14 NFE deviation correlated to text 

instruction dwell in male participants with R2 = 0.21, p = 

0.01, while AU14 MFE deviation correlated to text 

instruction dwell in female participants with R2 = 0.23, p = 

0.01. 

During recall, the CG’s Cube face rotation intervals of 2.5 

s were significantly shorter than the TGs of 3.4 s, with p = 

0.01. This is broken down by gender in Table IV. In addition 

to the findings from Table IV, CG males were faster than TG 

females with p = 0.05. TG female recall Cube face rotation 

intervals correlated significantly to their training instruction 

response times with R2 = 0.46, p = 0.01. However, the TG 

female’s mental rotation baseline correlated significantly to 

both their training duration and recall Cube face rotation 

intervals with R2 = 0.18, p = 0.02 and R2 = 0.13, p = 0.05 

respectively. This suggests that slower recall in TG females 

was not only influenced by training instruction format but 

also by their mental rotation abilities. This might suggest that 

female trainees might benefit from text-only instruction in 

terms of faster training [38], and possibly faster recall as a 

result. The CG female’s maximum HR during recall of 90 

bpm correlated to mental demand with R2 = 0.41, p = 0.01.  

Happy was the most common open-ended emotion term, 

being chosen by 17% of the sample, followed by excited at 

13%. However, from the 2D emotion space, interested was 

the most chosen emotion term being chosen by 13% of the 

sample with happy in second place being chosen by 8%. 

Forty percent of the open-ended emotion terms chosen did 

not appear in the 2D space seen in Fig.1, with 10% of these 

not being regarded as emotion terms at all, perhaps due to 

language barriers. Once presented with the terms available in 

the 2D space seen in Fig. 1, only 35% of the sample whose 

open-ended term did appear in the 2D space persisted with 

their original choice. There were no significant correlations 

seen between either open-ended emotion terms or those 

chosen from the 2D emotion space to any of the other metrics 

captured during this evaluation, including SAM 

questionnaire responses.  

TABLE II. MEAN PRACTICE INSTRUCTION RESPSONSE TIMES 

 Male Female p 

TG 5 s 5 s 0.84 
CG 4 s 5 s 0.05 

p 0.01 0.20  

TABLE III. MEAN PRACTICE PHASE ERRORS 

 Male Female p 

TG 0 1 0.25 
CG 0 0 1.00 

p 0.24 0.03  

TABLE IV. RECALL CUBE FACE ROTATION INTERVALS  

 Male Female p 

TG 3 s 4 s 0.27 
CG 2 s 3 s 0.22 

p 0.44 0.01  

SAM valance correlated to the rank given to NASA-TLX 

frustration with R2 = 0.24, p < 0.01, while SAM dominance 

corelated to the rank given to performance and overall task 

load with R2 = 0.52, p < 0.01 and R2 = 0.38, p < 0.01 

respectively, across both test groups. When SAM arousal 

(female score of 1.3, male score of 1.0, p = 0.36), valance 

(female score of 2.9, male score of 2.4, p = 0.11) and 

dominance (female score of 1.3, male score of 1.6, p = 0.56) 

results were combined into ordinal values, they correlated to 

deviation of AU15 and AU17 MFEs in females with R2 = 

0.18, p = 0.02 and R2 = 0.35, p < 0.01 respectively. Ordinal 

SAM results also correlated to gender with R2 = 0.27, p < 

0.01. This may suggest that greater utility can be derived from 

consideration of emotion in terms of its constituent 

dimensions rather than using rather vaguely understood 

terms.   

In summary, mental rotation abilities and training 

instruction response times correlated to recall Cube 

interaction speed in females of the TG. This suggests that 

female trainees may benefit from text-only instruction in 

terms of speed of training [38]. This in turn may even 

influence speed of recall from memory. There were various 

significant correlations seen between physiological and 

physical manifestations of emotion, task performance and 

subjective experience. However, there were no significant 

correlations between any of these metrics and the emotion 

labels chosen by the participants using either open-ended or 

2D emotion space terms. This might call into question the 

consensual interpretation of such emotion terms. SAM 

questionnaire responses correlated significantly to facial 

expressions and gender suggesting utility for communicating 

emotional state.  

VI. CONCLUSIONS 

This paper evaluated the significance of emotion 

semantics to the participants of a QoE evaluation of 

procedural and example instruction formats in an AR training 

application. Female trainees that used a text-only instruction 

format performed training and recall significantly faster than 

females that used the example format. Various significant 

correlations were seen between physiological and facial 

manifestations of emotion, objective performance and 

subjective experience. However, the absence of significant 



correlations to the emotion designations used by the 

participants should call into question the utility of such 

vaguely understood terms. QoE requires a consistent and 

precise definition for the consensual development of 

measurement instruments and for interdisciplinary 

communication and collaboration. Emotion terms of utility 

should correlate to measurable physiological, physical or 

cognitive experiences of emotion. Future work will focus on 

identifying such correlations in various contexts. The 

strength of such correlations will guide meaningful 

discussion on the best terms to communicate the emotion 

component of QoE. 
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