
Anoma Research Topics | TECHNICAL REPORT

Intent-centric Applications for the
Anoma Resource Machine
Michael A. Heuer a and D Reuschea

aHeliax AG

* E-Mail: michael@heliax.dev

Abstract
Anoma introduces a universal intent machine, allowing developers to write applications in
terms of intents, which can be ordered, solved, and settled anywhere. This work illustrates
how intent-centric applications can be built using the Juvix language in Anoma’s resource
model and in compliance with the Anoma resource machine. First, we detail the general
architecture of applications and their relation to and dependencies on other components of
the Anoma protocol. Second, we describe recurring design patterns and primitives related
to resource creation and initialization, authorization, ownership, intents, and tokens in a
broader context. Last and by employing these primitives, we present Kudos, an accounting
primitive incorporating trust relationships between identities.

Keywords: Anoma Resource Machine ; Resource Model ; Anoma Applications ;

(Received: August 15, 2024; Version: August 26, 2024)

Contents

1 Introduction 2

2 Application Architecture 4
2.1 State . 5
2.2 Logic . 5

2.2.1 Resource Logic Functions 7
2.2.2 Projection Functions 7
2.2.3 Transaction Functions 8

2.3 Error Handling . 9
2.4 Application Configurations 9

2.4.1 Service commitments 10

3 Application Design Patterns 10
3.1 Resource Initialization & Finalization 11
3.2 Finitely Callable . 12
3.3 Singleton . 13
3.4 Universal Annuler . 14
3.5 Resource Relationships . 14

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 1–A-6

https://art.anoma.net
https://orcid.org/0000-0003-2113-6129
https://dx.doi.org/10.5281/zenodo.13340448

3.6 Authorization . 15
3.7 Property Checks . 17
3.8 Roles . 17
3.9 Intents . 17

3.9.1 Domain-Specific Languages 18
3.10 Token . 19

3.10.1 Resource . 19
3.10.2 Resource Logic . 21
3.10.3 Transaction Functions 21
3.10.4 Projection Functions 30

4 Applications 30
4.1 Kudos . 30

5 Concluding remarks 31

6 Acknowledgements 32

References 32

A Appendix A-1
A.1 The Resource Object . A-1
A.2 Transaction Definitions . A-3
A.3 Code Listings . A-5

1. Introduction
An application is a computer program designed to carry out a specific task
[Wik24]. As such, it provides an interface to read and write state on a machine
according to predefined processes and presents a practical abstraction over
direct interaction with the machine and the mechanisms it provides.

With the advent of distributed ledger technologies, decentralized applica-
tions grew in popularity and can be found in various sectors such as payments,
finance, governance, identity, supply chain management, insurance, law, arts
and social media, but are fragmented over an ever-increasing number of
blockchains.
Generally, these blockchains are not interoperable. Consequently, application
developers are increasingly faced with building additional infrastructure, such
as indexers, ZK circuits and provers, and rely on bridges as intermediaries,
compromising on decentralization and increasing complexity.
Application users are facing this increased complexity as well. Being predom-
inantly written in imperative languages, applications require users to either
understand increasingly complex execution traces, often crossing multiple

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 2

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

different protocols, or trust the processes, which poses usability and security
problems. Moreover, most blockchains are fully transparent and provide no
user privacy.
The Anoma protocol [GYB23] as a universal intent machine [HR24] ad-

dresses these problems of application developers and users by providing four
affordances: a permissionless intent infrastructure, intent-level composability,
information flow control, and heterogeneous trust[Goe24] which is achieved
through three mechanisms: the resource machine [KG24] a heterogeneous
trust node architecture [SWRM24, KS24, She24, HKS24], and languages for
explicit service commitments (paper in progress).

As described in a recent forum post [Goe24], Anoma’s unique affordances
and mechanisms result in desirable application properties. Written in the
declarative paradigm and resource model, users can universally express pref-
erences and constraints over desired states without worrying about execution
traces and specific state machine instantiations. These properties make ap-
plications portable and composable at the intent and intent-machine level,
allowing them to move freely across concurrency and security domains with-
out additional development work or protocol barriers. Related intents can
be ordered, solved, and settled anywhere–on the Ethereum main chain, on
Ethereum virtual machine (EVM) and non-EVM rollups, on Eigenlayer ac-
tively validated services (AVSs), on Cosmos chains, Solana, or any sufficiently
programmable state machine. Accordingly, applications can treat the entire
Anoma network as a virtualized state space–they do not need to be deployed
separately to different chains, integrate different bridges, or pick any spe-
cific security model [Goe24]. Consequently, Anoma applications must be
designed and written differently than conventional decentralized applications,
which are predominantly written in imperative languages and must adhere
to computation-ordering virtual machine (VM) designs.

In this report, we first detail how Anoma applications – their state and logic
– are structured and managed and how they interface with other components
in Anoma’s architectural topology. In this context, we outline how application
state and logic can persist and rely on different service providers . Second, we
explain how to design applications for the Anoma resource machine (ARM)
and show recurring patterns related to resource initialization, finalization,
authorization, intents, and tokens in Juvix [Cza23, CPCMRC24a]. Lastly,
these are used to build an initial version of Kudos, an accounting primitive
incorporating trust relationships between identities.
This report focuses on the transparent case, where information is generally
known by observing parties.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 3

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

2. Application Architecture
Anoma, as a universal intent machine [HR24], transitions its state by execut-
ing transactions settling batches of intents, which are commitments to user
preferences and constraints over the space of possible state transitions.
In this context, applications provide known objects, formats, and processes
for the specific task they carry out, thus allowing users to send transactions
and declare, match, and settle their intents by facilitating coordination and
counterparty discovery around shared interests and topics. Token, messenger
or crowdfunding applications, for example, encompass the logic and manage
the state of resources associated with tokens, messages, and crowdfunding,
who sees or has control over those resources and how they persist over time.

Well-designed applications can also be composed with each other. For
example, a message can be sent to a token recipient with the transfer as
part of a crowdfunding application in a single atomic transaction. In the
following, we describe the architecture of intent-centric applications and how
they interact with different components of the Anoma protocol.
Applications consist of a set of resources constituting the state and car-

rying the application resource logic being verified by the ARM and a user
interface facilitating the generation of transaction objects consuming and
creating said resources in accordance with their logic. For some applications,
no counterparty is required so that users can unilaterally create balanced
transaction objects constituting a valid state transition that can be executed
immediately. For example, a token transfer to a known recipient does not
require intent solving (unless the token logic explicitly requires approval by
the receiving party).
Other application cases require counterparty discovery. Here, application
users create unbalanced transaction objects that solvers then match by com-
posing them with each other to form a balanced and valid transaction. This
is where intents come into play. Intents can be encoded as resources allow-
ing application users to encode the constraints and preferences for the state
transition they desire. For example, a token swap requires at least one coun-
terparty (and multiple ones in case of a ring trade) to produce a balanced,
valid and, therefore, executable transaction. In addition to intent resources
being part of the transaction, users can specify their overall satisfaction
with the transaction object through a preference function attached to it (see
Appendix A.2).

More details on resource- and transaction-related definitions can be found
in Appendices A.1 and A.2 or the ARM specifications [see KG24, pp. 5 ff.].
In the following, we describe how application state and logic are organized
in detail and how applications interact with different services provided by
Anoma network operators.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 4

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

type Resource :=
mkResource {

logic : Resource -> Transaction
-> Bool;↩→

label : Nat;
quantity : Nat;
data : Nat;
eph : Bool;
nonce : Nat;
npk : Nat;
rseed : Nat

};

Listing 1. The resource type definition
taken from the juvix-anoma-stdlib library
v0.5.0.

type Transaction :=
mkTransaction {

roots : List Nat;
commitments : List Commitment;
nullifiers : List Nullifier;
proofs : List Proof;
complianceProofs : List

ComplianceProof;↩→

delta : Delta;
extra : Nat;
preference : Nat

};

Listing 2. The transaction type definition
taken from the juvix-anoma-stdlib library
v0.5.0.

2.1. State
Application state is modelled as resources (see Listing 1) that are created and
consumed adhering to Anoma’s state transition function being processed and
verified by the ARM. This state is commonly distributed over different nodes.
Only two computable resource components (see Appendix A.2) must be stored
and synchronized by all Anoma nodes participating in the network: Resource
commitments and revealed nullifiers. The former and latter are obtained from
the hash of the resource plaintext and the hash of the resource plaintext and
associated nullifier key, respectively, and are stored in an accumulator data
structure, currently a Merkle tree, and a set data structure, respectively.
All other application state is stored as content-addressed binary large objects
(BLOBs), either in the local key-value storage of the node or that of a storage
provider, both of which can be permanent or temporary with pre-defined
deletion criteria, which we describe later in Section 2.4.1. This state includes
resource plaintexts, extra data required by the application in the context of a
transaction, resource logic function objects, and function objects constituting
the application interface that we introduce in the following.

2.2. Logic
Application logic can be divided into three components in agreement with the
Model View Controller (MVC) architecture for user interfaces. More precisely,
it adheres to the less known Model View Intent (MVI) architecture, which is
characterized by a strict, unidirectional dependency between the components
represented by referentially transparent functions.

First, projection functions representing the view component that we denote
as the Application Read Interface. Projection functions observe the application
(or global) state and compute and aggregate data that the application interface

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 5

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

Model
Resource Logic Functions

View
Projection Functions

MVI-Intent
Transaction Functions

writes reads

informs
Interface

Backend (ARM)

Human

Computer

uses

runs on

Figure 1. Schematic visualization of the three logic components of applications and their
unidirectional dependency within the MVI architecture for user interfaces: Projection, trans-
action, and resource logic functions constituting the application read interface, write interface,
and backend, respectively.

requires. Second, transaction functions representing the intent (or, more
commonly, the controller) component, which we denote as the Application
Write Interface. Transaction functions observe the application view and
require additional user input data to construct balanced transactions to be
executed by the ARM or unbalanced transactions to be matched by network
peers, i.e., solvers. Note that the linguistic convergence on the term intent is
slightly misleading here since transaction objects do not generally require an
intent (and therefore counterparties) as they can often be settled unilaterally.
Lastly, the resource logic functions representing the model component being
associated with each individual resource, encoding the rules of their creation
and consumption, and constituting the application backend. In the following,
we describe all components in detail.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 6

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

alwaysTrueLogic (self : Resource) (tx : Transaction) : Bool := true;

Listing 3. A resource logic function always returning true.

2.2.1. Resource Logic Functions
Resource logic functions (logic : Resource -> Transaction -> Bool1) are
processed by the ARM as part of the validity checking and return a boolean
value. For a transaction to be executable, all resource logic functions must
be valid and return true. In the current Anoma node implementation, logic
functions receive two input arguments.
First, the resource object (see Appendix A.1) the logic function is part of and
that we will refer to as self.
Second, the transaction object (see Appendix A.2) constituting the context in
which the self resource is created or consumed. In particular, it contains the
set of commitments and nullifiers of other resources, extra data, as well as
a preference function and transaction balance value Δ𝑡𝑥 being relevant in the
context of solving.
Given these arguments, resource logic functions can declare predicates

over the transaction consuming or creating them. These predicates can be
related to the associated resource itself and the state it carries, but also to
other resources and data being present in the context of the transaction,
which we will discuss in more detail in Section 3. On one hand, this allows
resource logics to declare precise rules for application state transitions, e.g.,
“The updated counter value resource must be equal to the old counter value
incremented by one”. On the other hand, this allows the declaration of user
intents without specifying the exact execution trace, e.g., “I give 3 Alice Kudos
for at least 2 Bob Kudos or 3 Carol Kudos.”, thus allowing counterparties to
match and settle the transaction. The simplest, valid resource logic function
possible, the function always returning true, is shown in Listing 3.
Resource logic functions are stored separately from the resource objects

in the processing node’s key-value storage (see Appendix A.1) as content-
addressed data BLOBs.2 Accordingly, the same resource logic function can be
associated with multiple resource objects.

2.2.2. Projection Functions
Projection functions constitute the Application Read Interface between the
Anoma node client and the user (or an intermediary frontend), and as such,
provide defined processes, formats, and objects to project data from the appli-
cation state model. As an input argument, projection functions receive a set of

1The logic function type should be Set Nullifier -> Set Commitment -> Tag -> Transaction -> Bool according to the specs
but this is currently not implemented.

2The Anoma node implementation currently deviates from the ARM specifications and stores the function object encoded as a Nat in
the resource object.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 7

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

doNothing : Transaction :=
Transaction.mk@{
roots := [];
commitments := [];
nullifiers := [];
proofs := [];
complianceProofs := [];
delta := [];
extra := 0;

preference := 0

};

Listing 4. A transaction function creating an empty transaction object.

resource plaintexts (Set Resource) and can have custom, developer-defined
output arguments. An example projection function is shown in Listing 27
in Section 3.10.4 and calculates the total quantity of a set of resources. In
general, these resources are obtained from a preceding data discovery and
filtering process, before they are passed to the projection function.

Projection function objects are stored as content-addressed data BLOBs as
well and loaded into the node’s memory when required.

2.2.3. Transaction Functions
Transaction functions constitute the Application Write Interface between the
user (or an intermediary frontend) and the Anoma node client, and, as such,
handle the creation and consumption of resource objects and insert their
commitments and nullifiers in the transaction object, populating the transac-
tion extra data map (e.g., with message objects and signatures), and define
the preference function. They can have custom, developer-defined input
arguments but must return a transaction object3 that can be unbalanced.
Like resource logic function objects, transaction function objects are stored
as content-addressed data BLOBs and loaded into the node’s memory when
required. A simple example transaction function creating an empty transac-
tion is shown in Listing 4. More sophisticated transaction functions might
initialize or finalize resources (see Listings 18 and 19), transfer, split, and
merge resource objects (e.g., Listings 20 to 22), combine or select between
lower-level transaction functions for convenience (e.g., Listing 23), call pro-
jection functions to obtain or check input values or handle errors that might
occur.

3Alternatively, it can return an Result Error (Pair Transaction (List Assignment)) type, which will be supported by the Anoma
node client implementation in the future.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 8

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

type Result E A :=
| error E
| ok A;

Listing 5. A type either resolving into an error of type E or the return argument of type A.

2.3. Error Handling
Transaction and projection functions can encounter errors preventing them
from computing meaningful outputs, or resource logic functions can be
invalid. In the case of projection functions, this can be caused by missing or
unexpected BLOBs in Anoma’s key-value storage, e.g., a non-existent lookup
key. For transaction functions, this can be caused by wrong user input, e.g.,
if a list of resources is expected to be of the same kind but is not in practice,
but also because of missing extra data, e.g., a missing message and signature.
Lastly, resource logic functions can be invalid if constraints are unmet, e.g., if
an expiration date has passed or the caller lacks a required role.

Instead of silently failing, the application should return detailed information
about the error cause and context, allowing the user or developer to debug
the underlying issue. This becomes even more important when applications
are composed. Accordingly, on the interface side, transaction and projection
functions can return a term of the Result type (see Listing 5), either resolving
to an error or to the actual return argument. This is used, for example, in
Listings 18 to 23. For resource logic functions, a logging functionality will be
provided in a future version of the Anoma node implementation.
Instead of just printing errors, they can be handled more sophisticatedly.

Typed errors, in particular, can contain additional information and be used in
a resolution attempt. For example, if the BLOB is unavailable in the node’s
local storage, it can attempt to fetch it from network peers, which can take the
role of dedicated storage service providers. This is described in the following
sections.

2.4. Application Configurations
An application configuration aids fetching all required BLOBs associated with
an application and specifies service provider commitments, e.g., to ensure the
BLOBs are available. These BLOBs contain the resource logic, transaction, and
projection function objects4. These can be stored in application repositories
and be discoverable via the address of the resource logic, requested from
counterparties transferring resources of a new application to a user for the
first time, or shipped with the Anoma node distribution in the case of core
applications.

4The only mandatory and unique component of an application is the resource logic since it encodes the constraints that transactions
of the application must fulfill. Its address is provided in every resource belonging to the application. Transaction and projection
functions are provided for “convenience”, since arbitrary ways to arrive at transactions fulfilling the resource logic are permitted.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 9

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

2.4.1. Service commitments
Different services will be needed to run an application on the Anoma network
depending on the task it carries out. Nodes in the network can commit to
providing these services to other network participants. For example, the
application developers might commit to making BLOBs for resource logic,
transaction, and projection function objects available for the next 𝑁 blocks
of a specific consensus provider, including storage and bandwidth needs.
These storage and bandwidth commitments, which we can consolidate as data
availability (DA) commitments, can be unconditional or contingent on, e.g.
a minimal sum of user contributions in specific denominations to a specific
address.
Another type of commitment would be an ordering commitment, in which a
consensus provider commits to producing ordering in blocks for transactions
containing resources of a specific application for a certain fee. This could be
bundled with a commitment to make block data (i.e., the commitment tree
and nullifier set) and transaction data available for a specific duration. The
ordering and data availability service will often be co-located on the same
node (set), using the same key-value store. Alternatively, they could be run
on disjoint infrastructure and have internal commitments with each other.
Lastly, nodes can also provide compute services, e.g. on-demand data aggre-
gation and projection or proof generation. Although yet to be specified, these
could be metered in Nockma operations following the gas model of the ARM
[see KG24, p. 19].
A more complex, derived service would be an indexer for the transparent

subset of transactions of an application providing balance information for all
identities in respect to a specified set of consensus providers. A more complex,
derived service would be an indexer for an application’s transparent subset of
transactions, providing balance information for all identities for a specified
set of consensus providers. This would entail user-facing service commit-
ments specifying cost per query and internal commitments to secure data,
bandwidth, and compute provisioning necessary for the indexer’s operation.

3. Application Design Patterns
Applicationswritten for the EVM in imperative, computation-ordering-oriented
programming languages differ significantly fromARM applications, which are
written in the declarative and object-oriented paradigm and within Anoma’s
resource model.

Accordingly, before presenting detailed reusable design patterns related to
the initialization and finalization of resource quantities, authorization, prop-
erty checking, roles, intents, and tokens, we give general advice on designing
application state and logic.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 10

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

Concerning application state, it is advisable to divide it into granular resource
types having a single responsibility. This way, transaction functions only
result in minimal overall state change and resource logic functions require
fewer operations for evaluation, thus reducing computational costs. For ex-
ample, instead of creating a single token resource that maintains a mapping
of account balances, creating a token resource for each account owner is
advisable. This way, multiple tokens can be sent in one transaction without
requiring any particular order, transfers can occur locally only involving
related controllers, and minimal state needs to be synchronized between
token holders after each transfer.
Application logic must be specific enough to ensure that the intended task
the application is designed for is carried out (although there is no fixed set
of possible execution traces, as this is the case, for example, for the EVM).
For owned resources, for example, checks must be written forward-facing,
i.e., predicate logic must be located on consumed resources and monitor
the created ones. Otherwise, if checks were written backward-facing and
located on created resources, malicious actors getting hold of the transaction
object before settlement, such as solvers or relayers, could alter resources,
still producing valid logic and balance checks. For example, a node getting
hold on a transfer transaction could replace a created resource to be owned
by a receiver with one having a different owner still satisfying the resource
logic checks. Another desirable property is compositionality, which allows
application logic to be used with or as part of other applications in a single
atomic transaction. This translates into the requirement that a valid transac-
tion can be composed with all other valid transactions so that the resulting
composed transaction is still valid. To achieve this, resource logic predicates
should be robust and tolerate other resources of the same or different kinds
present. Moreover, they should be written succinctly and minimally, i.e., only
check the resources related to their consumption (see Section 3.5). Next, we
introduce patterns satisfying these requirements being written in the Juvix
language [Cza23, CPCMRC24a, CPCMRC24b, CMRCPC24, CHMR24].

3.1. Resource Initialization & Finalization
The first pattern we introduce is about the initial creation and final consump-
tion of resource quantities. Every transaction must be balanced to be settled,
which means that the total quantities of created and consumed resources of
the same kind must be equal. However, if a new resource quantity of specific
kind should be created, there exists no resource of this kind that could be
consumed. To satisfy the balance checker, an ephemeral, consumed resource
of matching kind and quantity for which the existence check is skipped (see
Appendix A.1) must be added to the transaction object. We denote this as
initialization and visualized it schematically in the top of Figure 2, where an

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 11

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

𝑎 RAlice 𝑎 RAlice

𝑎 RAlice 𝑎 RAlice

𝑎 RAlice 𝑎 RAlice

RIntent RIntent

Consumed Created

Initialization:

State Change:

Finalization:

Intent
Matching:

Figure 2. Schematic visualization of (top) resource initialization, (upper mid) state change,
(lower mid) resource finalization, and (bottom) intent matching with ephemeral and non-
ephemeral resources indicated by dashed and solid circles, respectively.

𝑎 Alice-kind resource is consumed, and an ephemeral 𝑎 Alice-kind resource
is created. Likewise, for a resource of specific kind and quantity to be finally
removed (e.g., to reduce its supply), an ephemeral resource of matching kind
and quantity must be added to the transaction object. We denote this as
finalization and visualized it schematically in the lower middle of Figure 2,
where an 𝑎 Alice-kind resource is consumed, and an 𝑎 ephemeral Alice-kind
resource is created.
Code examples are shown in Listing 6 for a dummy resource and later in

the context of a token in Listings 18 and 19, where an ephemeral token must
be part of the mint and burn function and described further in Section 3.10.3.

If not restricted by the resource logic function, ephemeral resources allow
everyone to initialize resources for themselves (by setting the nullifier public
key npk to their identity) or finalize resources they know the nullifier key
nk for, thus inflating or deflating the resource supply. Although this might
be desirable sometimes, it is often not wanted. In the following sections, we
show how constraints can be added.

3.2. Finitely Callable
Instead of allowing a resource logic function (or a branch within) to be
repeatedly callable, we can constrain it to be callable only a finite number

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 12

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

initialize (self : KeyPair) :
Transaction :=↩→

let
dummy : Resource :=

mkDummy@{

npk := KeyPair.pubKey self;

eph := false

};

in mkTransaction@{

nullifierKey := KeyPair.privKey
self;↩→

consumed := [dummy@Resource{
eph := true; npk :=
KeyPair.pubKey self }];

↩→

↩→

created := [dummy];

extraData := Map.empty
};

finalize (self : KeyPair) (dummy :
Resource) : Transaction :=↩→

mkTransaction@{

nullifierKey := KeyPair.privKey
self;↩→

consumed := [dummy];

created := [dummy@Resource{eph
:= true}];↩→

extraData := Map.empty
};

Listing 6. Transaction function implementations (left) initializing and (right) finalizing a
dummy resource, whose constructor is shown in Listing A.4.

of times, e.g., once, which we describe in the following. This is achieved by
consuming another non-ephemeral resource in the transaction and requiring
its presence in the transaction nullifier set nfs from the logic function (branch),
which should only be callable once. This way, because every resource is
unique and can only be consumed once, the call cannot be repeated after
settling the transaction. In practice, a dummy resource, e.g., with an empty
label and data field, can be consumed, resulting in a known and unique
nullifier. This nullifier is then stored as part of the resource label or hardcoded
in the resource logic and checked to be present in the transaction commitment
or nullifier by the resource logic. In both cases, this results in a unique resource
kind. The nullifier is then referenced in the extra data and required to be
present in the transaction by the resource logic. This pattern can be extended
to any finite number of calls by specifying a set of nullifiers with the respective
cardinality.

3.3. Singleton
With the previous pattern and by applying it to the initialization logic of a
resource, we can create a resource kind that can only be instantiated once,
which we will refer to as a singleton. If the resource is instantiated with a
quantity greater than 1, this resource might be split into multiple resources
in a subsequent transaction if the resource logic allows it. However, the total
supply of the resource will remain fixed. This pattern allows us to create
a counter singleton, allowing the creation of other resources with unique
identifiers (UIDs) or a token with a fixed supply (see Section 3.10).

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 13

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

type ResourceRelationship :=
mkResourceRelationship {

origin : Commitment;
mustBeCreated : Set Commitment;
mustBeConsumed : Set Nullifier

};

Listing 7. The definition of a message defining relationships between an origin resource
and others that must be created or consumed.

3.4. Universal Annuler
Consuming a resource requires the knowledge of the nullifier key nk cor-
responding to the nullifier public key npk and the resource plaintext (see
Appendix A.1), the former of which is usually shared only with trusted par-
ties. A frequent requirement in applications is to have resources that anyone
can nullify within the constraints of their resource logics. Instead of gener-
ating a random nullifier key and sharing it with everyone requiring it, the
resource creator can select a seed with low entropy that is known by everyone,
e.g., 0 (see Listing A.2) and use it to derive the nullifier public key for the
resource in question. In particular, since Anoma offers composable identities,
people wanting to consume universal resources can compose their identities
with this key pair. For example, this pattern can be used, to build a singleton
counter that can be incremented by anyone and generates UIDs.

3.5. Resource Relationships
As stated in the beginning of this section, resource logics must support compo-
sitionality, i.e., a valid transaction should not become invalid after composition
with another valid transaction unless this is specifically wanted. Accordingly,
resource logics must tolerate the presence of other resources being created
or consumed during transaction execution time. Still, resource logics might
want to express that specific other resources must be present during the
transaction, either to ensure that these resources have required properties, or
to check that a signature authorizes their creation or consumption. We also
point out, again, that these checks must happen from a consumed resource
because created resources can be replaced by malicious nodes having access
to the transaction object (i.e., solvers or gossiping nodes).

Creating a link between the consumed resource conducting the check and
other consumed and created resources is possible by requiring a message of
a certain format to be present in the transaction’s extra data, whose formats
are shown in Listing 7.
The check proceeds as follows: The resource logic of the consumed re-

source 𝑟 ∗ requiring other resources to be created or consumed as part of the
transaction expects a message of known format to be in the extra data key-

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 14

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

value map with its own commitment cm∗ = ℎcm(𝑟 ∗) as the lookup key.5 The
lookup function is shown in Listing 8. Upon successful retrieval of the mes-
sage, the logic function 𝑙∗ first checks that the commitment cm∗ in the origin
field links back to the resource 𝑟 ∗ that 𝑙∗ is associated with. Second, it checks
that all the created and consumed resources referenced in the mustBeCeated
or mustBeConsumed field are a subset of the commitment set cms or nullifier
set nfs of the transaction, respectively. If the message cannot be found, the
message does not link back to 𝑟 ∗, or a referenced resource is missing, the
logic function returns false. If it passes, the resource logic can continue and
either require specific properties to hold over the created resources6 or verify
a signature over the message by an authority, e.g., the owner of the consumed
resource, that must be present in the extra data as well. This is described in
the next section.

3.6. Authorization
Having a message format allowing us to express resource relationships, we
can implement an authorization mechanism. For this, we require the signa-
ture of an authority to authorize the consumption of a resource and require
related resources with known commitments and nullifiers to be created and
consumed within the same transaction. For example, this can be a resource
owner or originator of a particular resource kind, which we employ later
in Section 3.10.2 to ensure that a token can only be initialized and spent by
a specific public key. This proceeds as follows: In addition to the message
lookup describing the resource relationships that we showed in the previ-
ous section, we also require a signature to be present under the lookup key
that must be made by a public key being known by the resource logic, i.e.,
because it is stored in the label, data, or logic function. Upon retrieval of the
message-signature pair, the resource logic can then check that the signature
is valid, that the related resources are indeed created and consumed as part
of the transaction, and that the message links back to the original, consumed
resource whose resource logic is conducting the check. The latter is critical
because it ensures that the signature cannot be replayed in a different context.
These checks are combined into a function shown in Listing 9 and used later
in Section 3.10.2 in the resource logics of different token types (see Listings 15
and 16).

5It should be noted that we would prefer to use the nullifier nf = ℎnf (nk, 𝑟 ∗) as both, the lookup key and the origin field type, to
not unnecessarily leak information about the creation date of 𝑟 ∗ to observers. However, this is not possible with the current Anoma
node implementation, because only the plaintext 𝑟 ∗ and commitment cm∗ are known in the local view of the resource logic function
𝑙∗ , whereas the nullifier nf∗ itself and the nullifier key nk allowing for its computation are unavailable. This is only a temporary
problem and solved when the Anoma node and consequentially Juvix can will adhere to the specifications by having the tag as a
resource logic public input [see KG24, p. 20], which will refer to the commitment and nullifier depending on whether the resource
logic function is created or consumed.

6The checks are limited to created resources because, again, the plaintexts of the consumed resources cannot be associated with the
nullifiers due to the lack of knowledge about the nullifier keys in the local view of the resource logic.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 15

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

lookupExtraData {Value : Type} (key : Bytes32) (tx : Transaction) : Maybe
Value :=↩→

let
keyValueMap : Map Bytes32 Value := anomaDecode (Transaction.extra tx);

in Map.lookup key keyValueMap;

Listing 8. A function looking up a key and returning a value from the key-value map in the
transaction extra data or nothing if the key does not exist.

isAuthorizedBy (signer : PublicKey) (self : Resource) (tx : Transaction) :
Bool :=↩→

let
cm := commitment self;

in case
lookupExtraData@{

key := natToBytes32 (anomaEncode cm);

Value := Pair ResourceRelationship Signature;
tx

}

of
| nothing := false

| just (msg, sig) :=
ResourceRelationship.origin msg == cm

&& anomaVerifyDetached sig msg signer

&& isSubset (ResourceRelationship.mustBeConsumed msg) (nullifierSet

tx)↩→

&& isSubset (ResourceRelationship.mustBeCreated msg) (commitmentSet

tx);↩→

Listing 9. A function checking if the transaction extra data map contains a message-
signature pair of type Pair ResourceRelationship Signature (see Listing 7) with the
resource commitment as a lookup key. Upon successful lookup, it is checked that the
consumed resource whose commitment was used for the lookup is referenced as in the
message’s origin field, that the signer public key being passed as an input argument has
signed the message, and that the mustBeCreated commitments and mustBeConsumed nullfiers
are subsets of the commimtment set cms and nullifier set nfs, respectively–otherwise, the
function returns nothing.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 16

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

3.7. Property Checks
Instead of requiring a signature over themessage to be present, resource logics
can check that the referenced, created or consumed resources have specific
properties. Similar to the signature check and after a lookup of the resource
relationship message as described in Section 3.5, we check that the related
resources are indeed created and consumed as part of the transaction and that
the message links back to the original, consumed resource whose resource
logic is conducting the check. Instead of checking a signature, we obtain
the resource plaintexts associated with the mustBeCreated commitments and
mustBeConsumed nullifiers being available from the resource logic private
inputs [see KG24, p. 20], which allows us to check their properties. This can
be employed to ensure that state is transitioned correctly, e.g., that a counter
value is incremented by exactly one.

3.8. Roles
The authorization mechanisms from the previous sections can be used to
implement roles, e.g., by storing allowed public keys in the resource’s plaintext.
The keys can either be stored in the data field, where they do not affect the
resource’s fungibility, in the label field, or inside the resource logic function
object, where they affect the resource kind. The keys can then be used within
the resource logic for signature-based checking, e.g., to verify that a role
holder has authorized the consumption and creation of related resources or
property-based checking, e.g., to verify that the role data has been correctly
moved over from consumed to created resources.

3.9. Intents
Intents are unbalanced transactions describing preferred state transitions
and are necessary if a sender cannot settle the transaction unilaterally, thus
requiring one or multiple counterparties. Matching intents can be composed
with each other and add the mutually missing created or consumed resources
to the transaction to form a balanced and valid transaction, the process of
which is called intent solving.

Intents can be realized in two approaches. One approach is to consume
the exact resources one is willing to give and create the exact resources one
wants to receive. The latter resources must be specified in detail, including
the exact nonce and randomness seed. However, this approach does not allow
expressing optionality (e.g., “I want either a 5 A resource or 3 B resource.”)
and variability (e.g., “I want at least 5 A or more.”). It is also harder for solvers
to match these intents due to the narrow solution space, thus rendering this
approach impractical.

In the second approach, the sender creates an ephemeral resource express-
ing predicates over the state transition via its resource logic function, e.g.,

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 17

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

type Asset :=
mkAsset {

quantity : Nat;
kind : Kind

};

type Quantifier :=
| Any
| All;

type QuantifiedAssets :=
mkQuantifiedAssets {

quantifier : Quantifier;
assets : List Asset

};

syntax operator of_ additive;

syntax alias of_ := mkAsset;

any (as : List Asset) :
QuantifiedAssets :=↩→

mkQuantifiedAssets@{

quantifier := Any;
assets := as

};

all (as : List Asset) :
QuantifiedAssets :=↩→

mkQuantifiedAssets@{

quantifier := All;
assets := as

};

Listing 10. Listings showing (left) asset-related type definitions and (right) and operators,
aliases, and functions constituting syntactic sugar for an intent DSL.

conditionally requiring resources with specific properties to be part of the
transaction or ensuring time constraints. This ephemeral resource, which we
refer to as an intent resource, must be consumed by a solver identity (that can
be specified through the nullifier public key npk) within the same transaction
[see Figure 2, bottom, and KG24, pp. 25 ff.]. In contrast to the first approach,
the predicates allow for expressing optionality and variability, including
weighted preferences for different resource kinds, [see Har23, pp. 22 ff.] and
general constraints, e.g., with respect to time. This is demonstrated later in
Section 3.10.3, where we present the implementation of a simple token swap.
Because application users cannot be expected to code such predicates

themselves, application interfaces (see Figure 1) must facilitate intent resource
authoring through transaction and projection functions and by employing
domain-specific languages.

3.9.1. Domain-Specific Languages
Intent domain-specific languages (DSLs) provide a user-friendly way to trans-
late an intent into an intent resource with the desired predicates encoded
in the resource logic function. For example, to encode optionality, an intent
DSL can define a QuantifiedAssets type consisting of a list of assets and
a quantifier, as shown in Listing 10. An asset encodes a desired resource
kind and quantity, whereas the quantifier expresses if Any or All of the listed
assets are required in the transactions. This allows formulating Alice’s intent
from above as the following expression: any [5 of_ A; 3 of_ B] . Later, in
Section 3.10.3, we employ the DSL to write a swap transaction function that

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 18

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

creates a swap intent resource (see Listings 25 and 26).

3.10. Token
With the patterns discussed, we can implement reusable and composable
resource logic, transaction, and projection functions for tokens, which we
describe in the following.
Three roles exist in the context of a token: The token originator can initialize
new token resources and characterize the token kind. A token owner can
consume existing tokens and create new ones with the same or a different
owner. A token receiver receives created tokens and is specified by the owner
of the consumed token.
Additionally, we define a token supply type that can either be unbound,

capped, or fixed. For a token with an unbound supply, the originator can
initialize token resources an unlimited number of times, thus inflating the
supply of this token kind. The token owner can finalize token resources and,
therefore, deflate the supply. For a token with a capped supply, the total
quantity is capped by a limiting value.7 Lastly, for a token with a fixed supply,
the originator can only initialize once with a given quantity and never finalize,
thus resulting in a constant total quantity of this resource kind. Note that
non-fungible tokens (NFTs) can be realized as tokens with a fixed supply and
a quantity of 1.
Independently of the token supply type, a token can be transferable. This

means that an owner can consume the resource and create corresponding
resources for different receivers (including the owner itself) as the owners.
Three elementary operations, transfer, split, and merge, can be distinguished.
A transfer consumes a token resource and creates one of the same kind
owned by a receiver (who can be the current owner). A split consumes a
token resource and creates a set of tokens of the same kindwith corresponding
sub-quantities and corresponding receiving public keys as the new owners.
The sub-quantities of the created tokens must add up to the quantity of the
consumed resource. A merge consumes a set of multiple token resources of
the same kind and creates a token of the same kind owned by a receiver (who
can be the current owner). The quantity of the created token must be the sum
of all consumed token quantities. For non-transferable tokens, sometimes
referred to as soulbound tokens (SBTs), none of the above operations is
possible. Next, we present the implementation of the token.

3.10.1. Resource
A token resource with a specific quantity is constructed, as shown in List-
ing 11, from a specific token label (tokenLabel : Label), owned by an external

7This supply type is not implemented yet.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 19

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

mkToken (quantity : Nat) (tokenLabel : Label) (npk : PublicKey) {eph : Bool :=
false} : Resource :=↩→

Resource.mk@{
logic := tokenLogic (Label.supply tokenLabel);

label := anomaEncode (tokenLabel);

quantity;

data := 0;

eph;

npk;

nonce := rand;

rseed := rand

};

Listing 11. The token resource constructor.

type Label :=
mkLabel {

name : String;
symbol : String;
decimals : Nat;
supply : Supply;
transferable : Bool;
originator : PublicKey

};

Listing 12. The token label type definition.

type FixingNullifier := mk {nf :
Nullifier};↩→

type Supply :=
| Unbound
| Capped
| Fixed FixingNullifier;

Listing 13. The token supply type defini-
tion.

identity being assigned as the nullifier public key (npk : PublicKey). By de-
fault, the constructed resource is non-ephemeral.
The token label is shown in Listing 12 and has six data fields: The name

(name : String), the symbol (symbol : String), the decimals(decimals : Nat)
allowing token quantities to be represented as floating-point values in user in-
terfaces (UIs), the supply-type (supply : Supply) encoding the different supply
types and shown in Listing 13, the transferability specifier (transferable : Bool)
denoting the transferability of the token, and the originator public key
(originator : PublicKey) expressing who has initialized the resource. The
Fixed supply type shown in Listing 13 is special because it contains an ad-
ditional FixingNullifier field containing the nullifier. Because the nullifier
becomes part of the resource label, this results in a unique resource kind, as
discussed in Section 3.2.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 20

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

tokenLogic (supply : Supply) : Resource -> Transaction -> Bool :=
case supply of
| Unbound := unboundSupplyLogic

| Capped := cappedSupplyLogic

| Fixed f := fixedSupplyLogic (FixingNullifier.nf f);

Listing 14. The token logic function implementation covering different supply cases.

3.10.2. Resource Logic
The resource logic function is shown in Listing 14, obtained after partial
function application depending on the supply type provided in the label.
The unbound and fixed case logic functions are shown in Listings 15 and 16,
whereas the capped supply logic has not been implemented yet.

For non-ephemeral resources, the fixed and supply case logic functions are
identical. In the creation case, both return true. In the consumption case, the
validity is determined by the same transfer logic shown in Listing 17. The
transfer logic checks that the token is transferable as per its label and that the
owner has authorized related, consumed, and created resources via a message
and signature (see Section 3.6 and Listing 9 therein).
In the case of ephemeral resources, the unbound and fixed supply cases

differ. To initialize tokens with unbound supply, ephemeral resources can be
consumed if the originator, whose public key is encoded in the token label,
authorizes the consumption and creation of related resources. To finalize
tokens with unbound supply, ephemeral resources can be created in which
case associated logic function will always return true.
To initialize tokens with a fixed supply, an ephemeral resource can be

consumed once if two conditions are met. First, the originator, whose public
key is encoded in the token label, must authorizes the consumption and
creation of related resources. Second, the fixing nullifier, which is encoded in
the token label as well, must be present in the transaction object. Token with
fixed supply can never be finalized. This is because the logic function will
always return false for created, ephemeral resources.

Lastly, if the resource’s lifecycle status is unknown, e.g., because of an un-
expected bug, the resource logic must return false regardless of its ephemer-
ality.

This resource logic covers the entire token model described initially. In the
following, we present the transaction functions constituting the application
write interface.

3.10.3. Transaction Functions
We start by introducing the function to initialize and finalize tokens (often
called to as minting and burning).

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 21

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

unboundSupplyLogic (self : Resource) (tx : Transaction) : Bool :=
case lifecycle self tx, ephemerality self of
| Consumed, Ephemeral := unboundSupplyInitializationLogic self tx

| Consumed, NonEphemeral := transferLogic self tx

| Created, Ephemeral := true

| Created, NonEphemeral := true

| Unknown, _ := false;

unboundSupplyInitializationLogic (self : Resource) (tx : Transaction) : Bool
:=↩→

isAuthorizedBy (getOriginator self) self tx;

Listing 15. The token logic function for tokens with unbound supply together with the
dedicated initialization logic function. The transfer logic function is shown in Listing 17.

fixedSupplyLogic (nf : Nullifier) (self : Resource) (tx : Transaction) : Bool
:=↩→

case lifecycle self tx, ephemerality self of
| Consumed, Ephemeral := fixedSupplyInitializationLogic nf self tx

| Consumed, NonEphemeral := transferLogic self tx

| Created, Ephemeral := false

| Created, NonEphemeral := true

| Unknown, _ := false;

fixedSupplyInitializationLogic (nf : Nullifier) (self : Resource) (tx :
Transaction) : Bool :=↩→

isNullifierPresent nf tx && isAuthorizedBy (getOriginator self) self tx;

Listing 16. The token logic function for tokens with fixed supply together with the dedicated
initialization logic function. The transfer logic function is shown in Listing 17.

transferLogic (self : Resource) (tx : Transaction) : Bool :=
isTransferable self && isAuthorizedBy (Resource.npk self) self tx;

Listing 17. The token transfer logic function.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 22

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

Initialize. As inputs, the initialize transaction function as in Listing 18
receives the key pair (self : KeyPair) of the sender, a label (label : Label), a
quantity (quantity : Nat) to be created, and a receiver (receiver : PublicKey)
becoming the owner of the initialized resource. It returns a Result type that ei-
ther resolves into a TokenError on failure or a Transaction object on success.
The function initializes a token by constructing a non-ephemeral resource
to be created being owned by the receiver with the provided label and quan-
tity and a corresponding, ephemeral token resource to be consumed being
owned by the sender, thus balancing the transaction. Next, it creates an
extra data map containing the message describing the resource relationship
Section 3.5 and signature with the consumed, ephemeral resource commit-
ment in the origin field and the created, non-ephemeral token resource in
the mustBeCreated commitment set. Subsequently, the consumed and cre-
ated resources as well as the prepared extra data are used to populate the
transaction object. In case the token to be initialized has an unbound supply,
the transaction is returned. If the supply is capped, which is currently not
supported, the function returns an error. If the supply is fixed and a fixing
nullifier must be part of the consumed transaction object (see Section 3.2), the
function currently expects a dummy resource plaintext (see Listing A.4) to be
part of the node’s key-value storage with the nullifier as the lookup key. If it
finds the value, it calls the finalize transaction function of the dummy (see
Listing 6), producing a second transaction object containing the nullifier and
related data that can then be composed with the first one (see Listing A.1)
and returned. If not, the function silently fails.8

Finalize. The finalize transaction function shown in Listing 19 receives
the sender key pair (self : KeyPair) and the plaintext of the resource to
be finalized. The function first checks if the sender is the current owner
of the passed token resource and returns an error if the check does not
pass. If it passes, it checks the supply type. Tokens with capped and fixed
supply can not be finalized, as this is not implemented yet, and not be burned,
respectively. For tokenswith unbound supply, the transaction function creates
an ephemeral copy of the token resource, where the nullifier public key (i.e.,
the owner) is set to the zero public key, thus balancing the transaction. After
creation of the associated extra data expressing the resource relationship, the
transaction object is returned.

Transfer. The transfer transaction function shown in Listing 20 receives
the key pair (self : KeyPair) of the sender, the resource plaintext (token :
Resource) of the token resource to be transferred, and a receiver (receiver :
PublicKey). First, the function checks if the token is transferable and if

8This will be improved in a future Anoma node version.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 23

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

initialize (self : KeyPair) (label : Label) (quantity : Nat) (receiver :
PublicKey)↩→

: Result TokenError Transaction :=
let
myself : PublicKey := KeyPair.pubKey self;

nk : PrivateKey := KeyPair.privKey self;

newToken : Resource := mkToken@{quantity; tokenLabel := label; npk :=
receiver};↩→

ephToken := newToken@Resource{npk := myself; eph := true};

tx : Transaction := mkTxWithExtraData@{nk; consumed := [ephToken]; created

:= [newToken]};↩→

in
case Label.supply label of
| Unbound := ok tx

| Capped := throw mkError@{msg := "Tokens with capped supply are not

supported yet."}↩→

| (Fixed f) := ok

compose@{

tx1 := tx;

tx2 := Dummy.finalize@{self; dummy := anomaGet(FixingNullifier.nf
f)}↩→

};

Listing 18. The transaction function initializing a token resource with a given amount being
owned by a receiver.

finalize (self : KeyPair) (token : Resource)
: Result TokenError Transaction :=
let
myself : PublicKey := KeyPair.pubKey self;

nk : PrivateKey := KeyPair.privKey self;

owner : PublicKey := Resource.npk token;

ephToken := token@Resource{eph := true; npk := Zero.pubKey};
in if
| owner /= myself := throw mkUnauthorizedError@{expected := myself; actual

:= owner}↩→

| else :=
case getSupply token of
| Unbound := ok mkTxWithExtraData@{nk; consumed := [token]; created

:= [ephToken]}↩→

| Capped := throw mkError@{msg := "Tokens with capped supply are not

supported yet."}↩→

| (Fixed _) := throw mkError@{msg := "Tokens with fixed supply

cannot be burned."};↩→

Listing 19. The transaction function finalizing a token resource. The function requires the
caller to be the owner and handles the different token supply types.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 24

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

transfer (self : KeyPair) (token : Resource) (receiver : PublicKey)
: Result TokenError Transaction :=
let
myself : PublicKey := KeyPair.pubKey self;

nk : PrivateKey := KeyPair.privKey self;

owner : PublicKey := Resource.npk token;

newToken := token@Resource{npk := receiver};

in if
| not (isTransferable token) := throw mkNonTransferableError

| owner /= myself := throw mkUnauthorizedError@{expected := myself; actual

:= owner}↩→

| else := ok mkTxWithExtraData@{nk; consumed := [token]; created :=
[newToken]};↩→

Listing 20. The transaction function transferring a token resource to another owner.

the sender is the current owner of the passed token resource and returns
respective errors otherwise. Next, it constructs a token with the same label
and quantity as the input token but with the receiver’s public key as the owner.
Lastly, after again preparing the authorization extra data, a transaction object
is constructed consuming the input token and creating the tokens for the
receivers.

Split. The split transaction function shown in Listing 21 receives the key
pair (self : KeyPair) of the sender, the resource plaintext (token : Resource)
of the token resource to be split, and finally, a list of quantities and re-
ceivers quantitiesAndReceivers : List (Pair Nat PublicKey). As for
the transfer function, the split function first checks that the input token
is transferable and owned by the sender. Additionally, it checks that the
input quantities sum up to the input token quantity. If these checks pass, the
function creates a list of tokens with the same label as the input token and
the specified quantities and receivers. After populating the extra data, the
transaction object is returned.

Merge. The merge transaction function shown in Listing 22 receives the
key pair (self : KeyPair) of the sender, a list of resource plaintexts (tokens :
List Resource) of the token resources to be merged, and finally, a receiver
(receiver : PublicKey). First, the function checks that the first token is trans-
ferable as encoded by its label and that all the labels are identical. Moreover,
it checks that all input tokens have the same resource logic and are all owned
by the sender. Next, the function constructs a token with the same label as
the input tokens, the specified receiver as the owner, and its quantity equal
to the total input token quantities. Lastly, a transaction object is constructed,
consuming the input tokens and creating the token for the receiver, where the
extra data contains a map entry for each consumed token as the lookup key.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 25

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

split (self : KeyPair) (token : Resource) (quantitiesAndReceivers : List (Pair
Nat PublicKey))↩→

: Result TokenError Transaction :=
let
myself : PublicKey := KeyPair.pubKey self;

nk : PrivateKey := KeyPair.privKey self;

owner : PublicKey := Resource.npk token;

label : Label := anomaDecode (Resource.label token);

sum : Nat := for (acc := 0) ((quantity, _) in quantitiesAndReceivers)

{quantity + acc};↩→

balance := Resource.quantity token;

created : List Resource := map ((quantity, receiver) in
quantitiesAndReceivers) {↩→

mkToken@{quantity; tokenLabel := label; npk := receiver}

};

in if
| not (isTransferable token) := throw mkNonTransferableError

| owner /= myself := throw mkUnauthorizedError@{expected := myself; actual

:= owner}↩→

| balance /= sum := throw mkInsufficientQuantityError@{limit := balance;

actual := sum}↩→

| else := ok mkTxWithExtraData@{nk; consumed := [token]; created};

Listing 21. The transaction function splitting a token resource with a given quantity into
multiple sub-quantities owned by different receivers.

This is because every consumed token resource logic will be conducting the
validity check and require a ResourceRelationship message and associated
owner signature to be present.

Send. The send transaction function shown in Listing 23 is a convenience
function allowing the sending of the total or partial quantity of a token to
a receiver, thus providing an abstraction over the transfer and split func-
tions. It receives the key pair (self : KeyPair) of the sender, the resource
plaintext (token : Resource) of the token resource to be consumed, a quan-
tity (quantity : Nat) to be sent, and a receiver (receiver : PublicKey). The
function compares the available quantity from the input token quantity with
the requested quantity to be sent. If the available quantity is less than the
requested quantity, an error is returned. If the quantities are equal, the trans-
fer function is called. Lastly, if the available quantity is greater than the
requested quantity, two tokens are created via the split function, where the
first has the requested quantity as its quantity and is owned by the receiver
and the second has the difference to the available quantity as its quantity and
is owned by the sender.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 26

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

merge (self : KeyPair) (tokens : List Resource) (receiver : PublicKey)
: Result TokenError Transaction :=
case tokens of
| nil := throw mkInsufficientElementsError@{limit := 1; actual := 0}

| (t :: _) :=
let

myself : PublicKey := KeyPair.pubKey self;

nk : PrivateKey := KeyPair.privKey self;

kind : Kind := anomaKind t;

totalQuantity : Nat := for (acc := 0) (t in tokens) {Resource.quantity t

+ acc};↩→

merged := t@Resource{quantity := totalQuantity; npk := receiver};

in if
| not (isTransferable t) := throw mkNonTransferableError

| else :=
case find ((/=) myself) (map Resource.npk tokens) of
| just notMyself := throw mkUnauthorizedError@{expected := myself;

actual := notMyself}↩→

| nothing :=
case find ((/=) kind) (map anomaKind tokens) of
| just otherKind := throw mkInvalidKindError@{expected := kind;

actual := otherKind}↩→

| nothing := ok mkTxWithExtraData@{nk; consumed := tokens;

created := [merged]};↩→

Listing 22. The transaction function merging multiple token resources into one, if all input
resources are owned by the caller, have the same label,and have the same logic.

send (self : KeyPair) (token : Resource) (quantity : Nat) (receiver :
PublicKey)↩→

: Result TokenError Transaction :=
let
myself : PublicKey := KeyPair.pubKey self;

balance : Nat := Resource.quantity token;

in case (compare balance quantity) of
| LT := throw mkInsufficientQuantityError@{limit := balance; actual :=

quantity}↩→

| EQ := transfer self token receiver

| GT :=
let

difference : Nat := toNat (intSubNat balance quantity);

in
split self token [(quantity, receiver); (difference, myself)];

Listing 23. A convenience transaction function to send a token amount. After checking the
available and requested amount, the function either calls transfer, split, or throws and
error.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 27

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

swap (self : KeyPair) (token : Resource) (want : QuantifiedAssets) (solver :
PublicKey)↩→

: Result TokenError Transaction :=
let
myself : PublicKey := KeyPair.pubKey self;

nk : PrivateKey := KeyPair.privKey self;

owner : PublicKey := Resource.npk token;

in if
| not (isTransferable token) := throw mkNonTransferableError

| owner /= myself := throw mkUnauthorizedError@{expected := myself; actual

:= owner}↩→

| else := ok

mkTxWithExtraData@{

nk;

consumed := [token];

created := [mkSwapIntent@{want; receiver := myself; solver}]

};

Listing 24. The transaction function swapping a token resource for a list of quantifier assets.

Swap. All the transaction functions presented so far can be settled by the
sender without requiring a second party. The swap transaction function
shown in Listing 24, however, includes an intent resource (see Section 3.9)
being shown in Listings 25 and 26 and, thus, needs a counterparty to be
settled. It receives the key pair (self : KeyPair) of the sender, the plaintext
(token : Resource) of the resource to be consumed in the swap, a list of
quantified assets (want : QuantifiedAssets, see Section 3.9) to receive, and a
receiver (receiver : PublicKey).

Like the transfer function, it checks if the passed token is transferable and
if the sender is the current owner and returns respective errors otherwise. If
the checks pass, the token is consumed, a swap intent resource is created, and
the authorization extra data is populated with the token and intent resource
being referenced in the origin and mustBeCreated fields, respectively. This
prevents the intent from being removed from the transaction object. The
intent resource itself, shown in Listing 25, is created from a wanted list
of quantified assets (want : QuantifiedAssets) and the public keys of the
receiver and solver (receiver solver : PublicKey). The want asset list and
the receiver public key are used in the resource logic Listing 26 to specify
the properties of the created resources that the sender desires to receive. If
the intent is created and ephemeral, it is checked if the assets specified in
the want : QuantifiedAssets record are part of the commitment set of the
transaction object with the receiver as the owner. Here, two cases must be
distinguished. For the Any quantifier, only one asset must be present for the
intent to be satisfied. For the All quantifier, all assets from the list must
be present. Given this information, the solver identity being specified as

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 28

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

mkSwapIntent (want : QuantifiedAssets) (receiver solver : PublicKey) :
Resource :=↩→

Resource.mk@{
logic := swapIntentLogic want receiver;

label := anomaEncode "TokenSwapIntent";

quantity := 1;

data := 0;

eph := true;

npk := solver;

nonce := rand;

rseed := 0

};

Listing 25. The swap intent resource constructor.

swapIntentLogic (want : QuantifiedAssets) (receiver : PublicKey) (self :
Resource) (tx : Transaction)↩→

: Bool :=
case lifecycle self tx, ephemerality self of
| Created, Ephemeral :=

let
created := map commitmentResource (Transaction.commitments tx);

in case QuantifiedAssets.quantifier want of {

| Any :=
any (asset in QuantifiedAssets.assets want)

includesAsset@{ asset; receiver; resources := created}

| All :=
all (asset in QuantifiedAssets.assets want)

includesAsset@{ asset; receiver; resources := created}

}

| Consumed, Ephemeral := true

| _, _ := false;

Listing 26. The swap intent logic function implementation.

the annuler in the intent resource constructor (which can be a composed or
universal identity; see Section 3.4) can try to find a matching, unbalanced
transaction object from a counterparty. If a match is found, the transaction
objects of the two or more parties can be composed (see Listing A.1), and
the created intent resources can be consumed by the solver to produce a
balanced and valid transaction. Note that the intent resource logic returns
true on consumption as long as the consumed intent resource is ephemeral.
For non-ephemeral resources or one’s with unknown lifecycle status, the
logic will always return false.
The elementary transaction functions presented are reusable and can be

composed with each other. For example, a resource can be initialized and split,
or multiple resources can be merged and sent within an atomic transaction.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 29

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

balance (resources : Set Resource) : Nat :=
for (sum := 0) (r in Set.toList resources) {sum + Resource.quantity r};

Listing 27. The projection function calculating the balance as the total quantity of from a
set of resources. This assumes that the passed resources have the same kind and are owned
by the same account.

fetchOwnedResources (kind : Kind) (account : PublicKey) : Set Resource :=
let

ownedResources : List Commitment := anomaGet (kind, account);

in Set.fromList (map commitmentResource ownedResources);

Listing 28. A function fetching owned resources from the nodes local key-value store. This
assumes that a key-value map of public keys and commitments exists and is maintained for
each resource kind by the node.

Next, we discuss projection functions for tokens.

3.10.4. Projection Functions
The balance projection function shown in Listing 27 receives a set of owned
token resource (resources : Set Resource) that are assumed to be of the
same kind and owned by the same account as the input and returns the
balance as the sum over all resource quantities. For now, the set of resources
can be obtained via a helper function shown in Listing 27 that receives
the resource kind (kind : Kind) of the resource to look up, and the account
(account : PublicKey) to calculate the balance for. The kind and account
constitute a lookup key in Anoma’s key-value store to the commitment set
of resources of the specified kind being owned by the account. Currently, we
assume the set to be up-to-date. In the future, data indexing and availability
services can provide this data and will be discussed in Section 2.4.1.

4. Applications
With the patterns and primitives discussed in the last section, we can now
describe the first applications.

4.1. Kudos
Kudos is an accounting primitive embodying trust relationships between
identities[compare Goe22, LPNS23]. As such, it allows identities to create
their own tokens and specify their issuance and transfer conditions. Use
cases, for example, are traffic accounting for peer-to-peer routing, trust or
reputation systems, accounting and swaps for bandwidth, storage or compute
resources. Trust and reputation systems could use non-transferable kudos,
for example, to express user ratings of interactions with a service. In contrast,
routing and resource accounting and exchanges could utilize transferable

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 30

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

mkKudoLabel (originator : PublicKey) : Label :=
mkLabel@{

name := "Kudos";

symbol := "KDS";

decimals := 18;

supply := Unbound;
transferable := true;

originator

};

Listing 29. The constructor of an example Kudos label (see Listing 12) for a transferable
Kudos token with unbound supply.

kudos to discern which specific bandwidth or storage is being recorded or
traded.

With the token primitives provided in Section 3.10, in particular the initialize
transaction function discussed in Section 3.10.3, identities can create new
kudos denominations by encoding the desired properties in the token label
(see Listing 12) and utilizing the token logic from Listing 14. An example of a
Kudos label is shown in Listing 29.
Through the supply type (see Listing 13), identities can limit the total

supply or create Kudos with unbound supply relying on trust relationships.
By issuing non-transferable Kudos, SBTs can be created representing commit-
ments, credentials, and affiliations [OWB22]. Transaction functions such as
merge, split, transfer, send, and swap, transferable Kudos can be distributed
and accumulated as credit in exchange for goods and services. Lastly, Kudos
with capped or unbound supply can be destroyed using the finalize function,
e.g., for supply correction.

5. Concluding remarks
In this report, we described the general architecture of applications, an initial
set of application design patterns and primitives, and Kudos as the first
application. In upcoming versions of this report, these will be refined, and
new applications will be added, namely:

• Multichat: A distributed messaging protocol without a central server
operator.

• A simplified Proof-of-Stake protocol assigning voting power to valida-
tors.

• Public Signal: An intent-centric crowd-funding protocol being supply-
but also demand-side driven.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 31

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

6. Acknowledgements
We would like to thank Christopher Goes for his guidance on shaping the
report’s scope and emphasis and the time he took for discussions on autho-
rization mechanisms and application service commitments, Paul Cadman
for all the help and discussions, Lukasz Czajka and Jan Mas Rovira for their
work on the Juvix compiler, and Yulia Khalniyazova for her clarifications and
answers related to the ARM specifications. This work was supported by the
Anoma Foundation.

References
CHMR24. Paul Cadman, Michael Andreee Heuer, and Jan Mas Rovira. A Juvix library

for writing Anoma applications v0.4.0, 2024. URL: https://github.com/anoma/
juvix-anoma-stdlib/releases/tag/v0.4.0. (cit. on p. 11.)

CMRCPC24. Paul Cadman, Jan Mas Rovira, Lukasz Czajka, and Jonathan Prieto-Cubides.
Immutable container types for Juvix v0.13.0, 2024. URL: https://github.com/
anoma/juvix-containers/releases/tag/v0.13.0. (cit. on p. 11.)

CPCMRC24a. Paul Cadman, Jonathan Prieto-Cubides, Jan Mas Rovira, and Lukasz Czajka.
Juvix: A Language for Intent-Centric and Declarative Decentralized Applica-
tions, 2024. URL: https://docs.juvix.org/0.6.3/README.html. (cit. on pp. 3
and 11.)

CPCMRC24b. Paul Cadman, Jonathan Prieto-Cubides, Jan Mas Rovira, and Lukasz Czajka.
The Juvix standard library v0.5.0, 2024. URL: https://github.com/anoma/
juvix-stdlib/releases/tag/v0.5.0. (cit. on p. 11.)

Cza23. Lukasz Czajka. The Core language of Juvix. Anoma Research Topics, Aug 2023.
URL: https://doi.org/10.5281/zenodo.8268849, doi:10.5281/zenodo.8268850.
(cit. on pp. 3 and 11.)

Dan15. Quynh H. Dang. Secure Hash Standard. Technical Report August, National
Institute of Standards and Technology, Gaithersburg, MD, Jul 2015. URL:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf, doi:10.6028/
NIST.FIPS.180-4. (cit. on p. A-2.)

Goe22. Christopher Goes. Towards heterotopia - the prerequisite cultural and tech-
nological substrate for a return to a world of scale-free credit money, 2022.
URL: https://pluranimity.org/2022/09/26/towards-heterotopia/. (cit. on p. 30.)

Goe24. Christopher Goes. Anoma as the universal intent ma-
chine for Ethereum, 2024. URL: https://ethresear.ch/t/
rfc-draft-anoma-as-the-universal-intent-machine-for-ethereum/19109. (cit.
on p. 3.)

GYB23. Christopher Goes, Awa Sun Yin, and Adrian Brink. Anoma: a unified archi-
tecture for full-stack decentralised applications. Anoma Research Topics, Aug
2023. URL: https://doi.org/10.5281/zenodo.8279841, doi:10.5281/zenodo.
8279842. (cit. on p. 3.)

Har23. Anthony Hart. Constraint Satisfaction Problems: A Survey for Anoma.
Anoma Research Topics, Oct 2023. URL: https://doi.org/10.5281/zenodo.
10019112, doi:10.5281/zenodo.10019113. (cit. on p. 18.)

HKS24. Tobias Heindel, Aleksandr Karbyshev, and Isaac Sheff. Heterogeneous Nar-
whal and Paxos. Anoma Research Topics, Jun 2024. URL: https://doi.org/10.
5281/zenodo.10498998, doi:10.5281/zenodo.10498999. (cit. on p. 3.)

HR24. Anthony Hart and D Reusche. Intent Machines. Anoma Research Topics, Feb
2024. URL: https://doi.org/10.5281/zenodo.10498992, doi:10.5281/zenodo.
10654543. (cit. on pp. 3 and 4.)

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | 32

https://github.com/anoma/juvix-anoma-stdlib/releases/tag/v0.4.0
https://github.com/anoma/juvix-anoma-stdlib/releases/tag/v0.4.0
https://github.com/anoma/juvix-containers/releases/tag/v0.13.0
https://github.com/anoma/juvix-containers/releases/tag/v0.13.0
https://docs.juvix.org/0.6.3/README.html
https://github.com/anoma/juvix-stdlib/releases/tag/v0.5.0
https://github.com/anoma/juvix-stdlib/releases/tag/v0.5.0
https://doi.org/10.5281/zenodo.8268849
https://doi.org/10.5281/zenodo.8268850
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://pluranimity.org/2022/09/26/towards-heterotopia/
https://ethresear.ch/t/rfc-draft-anoma-as-the-universal-intent-machine-for-ethereum/19109
https://ethresear.ch/t/rfc-draft-anoma-as-the-universal-intent-machine-for-ethereum/19109
https://doi.org/10.5281/zenodo.8279841
https://doi.org/10.5281/zenodo.8279842
https://doi.org/10.5281/zenodo.8279842
https://doi.org/10.5281/zenodo.10019112
https://doi.org/10.5281/zenodo.10019112
https://doi.org/10.5281/zenodo.10019113
https://doi.org/10.5281/zenodo.10498998
https://doi.org/10.5281/zenodo.10498998
https://doi.org/10.5281/zenodo.10498999
https://doi.org/10.5281/zenodo.10498992
https://doi.org/10.5281/zenodo.10654543
https://doi.org/10.5281/zenodo.10654543
https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

KG24. Yulia Khalniyazova and Christopher Goes. Anoma Resource Machine Spec-
ification. Anoma Research Topics, Jun 2024. URL: https://doi.org/10.5281/
zenodo.10498990, doi:10.5281/zenodo.10689620. (cit. on pp. 3, 4, 10, 15, 17,
18, A-1, A-2, A-3, and A-4.)

KS24. Aleksandr Karbyshev and Isaac Sheff. Heterogeneous Paxos 2.0: the Specs.
Anoma Research Topics, Jun 2024. URL: https://doi.org/10.5281/zenodo.
12572557, doi:10.5281/zenodo.12572558. (cit. on p. 3.)

LPNS23. Andrew Lewis-Pye, Oded Naor, and Ehud Shapiro. Grassroots Flash: A Pay-
ment System for Grassroots Cryptocurrencies, 2023. URL: https://arxiv.org/
abs/2309.13191, arXiv:2309.13191, doi:10.48550/arXiv.2309.13191. (cit.
on p. 30.)

OWB22. Puja Ohlhaver, Eric Glen Weyl, and Vitalik Buterin. Decentralized Society:
Finding Web3’s Soul. SSRN Electron. J., May 2022. URL: http://dx.doi.org/10.
2139/ssrn.4105763, doi:10.2139/ssrn.4105763. (cit. on p. 31.)

She24. Isaac Sheff. Cross-Chain Integrity with Controller Labels and Endorse-
ment. Anoma Research Topics, Jun 2024. URL: https://doi.org/10.5281/zenodo.
10498996, doi:10.5281/zenodo.10498997. (cit. on pp. 3 and A-3.)

SWRM24. Isaac Sheff, Xinwen Wang, Robbert Van Renesse, and Andrew C. Myers.
Heterogeneous Paxos. Leibniz Int. Proc. Informatics, LIPIcs, 184(Opodis):1–16,
Jun 2024. doi:10.4230/LIPIcs.OPODIS.2020.5. (cit. on p. 3.)

Wik24. Wikipedia contributors. Application software —Wikipedia, The Free Encyclo-
pedia, 2024. URL: https://en.wikipedia.org/w/index.php?title=Application_
software&oldid=1238738001. (cit. on p. 2.)

A. Appendix
A.1. The Resource Object
In this section, we briefly describe the definitions related to resource objects.
For more details, see the ARM specifications [KG24, pp. 5 ff.].
We start with introducing notation. When referring to the resource in its
entirety as a unit of state, we will use the symbol 𝑟 and call it the resource
plaintext. When referring to it as a data structure and one of its components,
we will use the notion 𝑟 . followed by the component name in monospaced
font.
In the following, we give an overview of the primary data components

and secondary, computable components. The most characteristic resource
components are its quantity, label, and logic function. The resource quantity
(quantity : Nat) is a natural number, including zero, and expresses how many
objects this resource describes. The resource label (label : Nat9) specifies
the fungibility domain–or, in other words, what this resource describes. The
resource logic function expresses the predicates under which the resource can
be created and consumed. Instead of storing the logic function representation
directly in the resource plaintext, only the resource logic hash (logic : Nat10)
is stored. The former can be looked up in the node’s key-value storage. This

9The label type will be changed to String.
10The logic type will be changed to List Byte. Currently, the full logic function is stored directly as a Nat and not its hash.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | A-1

https://doi.org/10.5281/zenodo.10498990
https://doi.org/10.5281/zenodo.10498990
https://doi.org/10.5281/zenodo.10689620
https://doi.org/10.5281/zenodo.12572557
https://doi.org/10.5281/zenodo.12572557
https://doi.org/10.5281/zenodo.12572558
https://arxiv.org/abs/2309.13191
https://arxiv.org/abs/2309.13191
https://arxiv.org/abs/2309.13191
https://doi.org/10.48550/arXiv.2309.13191
http://dx.doi.org/10.2139/ssrn.4105763
http://dx.doi.org/10.2139/ssrn.4105763
https://doi.org/10.2139/ssrn.4105763
https://doi.org/10.5281/zenodo.10498996
https://doi.org/10.5281/zenodo.10498996
https://doi.org/10.5281/zenodo.10498997
https://doi.org/10.4230/LIPIcs.OPODIS.2020.5
https://en.wikipedia.org/w/index.php?title=Application_software&oldid=1238738001
https://en.wikipedia.org/w/index.php?title=Application_software&oldid=1238738001
https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

saves storage space in the commitment accumulator and provides information-
flow control because the function implementation can be revealed only to
selected parties.

Both, the label and logic component are used to compute the resource kind

𝑟 .kind = ℎkind(𝑟 .logic, 𝑟 .label) (A.1)

where ℎkind is the Secure Hash Algorithm 256 (SHA-256) [Dan15] hash func-
tion. Altogether, this allows, for example, to define a 5 Apple resource, where
5 is the quantity and Apple is the kind, which also encodes the predicates
under which the apple can be created and consumed.

TheARMensures that all resource logics are satisfied and that the quantities
of created and consumed resources of the same kind balance[see KG24, p. 8].
Besides these characteristic components, more fields are present in the

resource plaintext. One of them is the ephemerality flag (eph : Bool). If set, the
ARM does not check the resource’s existence in the commitment accumulator
on consumption or creation, which is essential for resource initialization
and finalization (see Section 3.1), respectively. This satisfies the balance
checker when a resource with a certain quantity is created for the first time
or permanently deleted. Moreover, it allows a resource to present only during
the transaction, which enables intents (see Section 3.9).
Another one is the data field (data : Nat11), which allows arbitrary data

(or a reference to a data BLOB) to be stored in the resource’s plaintext, e.g.,
to indicate who owns it or when it was created. This data does not affect the
resource fungibility.
In case the resource logic requires a source of randomness, a random-

ness seed (rseed : Nat) is stored. Because resource plaintexts are visible to
transaction observers (i.e., other nodes and solvers) in the transparent case
and knowledge of the seed would allow predicting numbers generated by
pseudorandom number generators, this data field is only relevant for the
shielded case. Additionally, resources carry a nonce (nonce : Nat) ensuring
that resources are unique, even if all other data components in the plaintext
are the same.
Given the plaintext 𝑟 , the commitment (cm : Nat12) of a resource is

computed as
cm = ℎcm(𝑟) (A.2)

where ℎcm is again the SHA-256 hash function. The plaintext and commitment
of a resource remain constant over the complete lifecycle from creation to
consumption.

11The data type will be changed to List Byte and the field will be renamed to value.
12The cm type will be changed to List Byte.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | A-2

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

To consume a resource, a nullifier (nf : Nat13)

𝑟 .nf = ℎnf(nk, 𝑟) (A.3)

must be revealed being computed from the resource plaintext 𝑟 and a nullifier
key nk, where ℎnf is again the SHA-256 hash function. The nullifier key nk

can be randomly generated and shared with selected parties, thus allowing
them to consume the resource in agreement with the associated resource
logic. The correspondence between the revealed nullifier nf and the resource
to be consumed is achieved by storing a nullifier public key (npk : Nat14)

𝑟 .npk = ℎnpk(nk) (A.4)

in the resource plaintext being derived from the nullifier key nk.

A.2. Transaction Definitions
In this section, we briefly describe the definitions related to transaction ob-
jects. For more details, see the ARM specifications [KG24, pp. 11 ff.].
A transaction contains a set of commitments (commitments : List Commit-

ment15) and a set of nullifiers (nullifiers : List Nullifier16) of the resources
being created and consumed, respectively. This includes ephemeral resources
as well.

Additionally, a transaction contains a set of commitment tree state roots
(roots : List Nat17) that are used to prove themembership of resources in the
commitment tree, which are skipped for ephemeral resources. Multiple roots
can exist because transactions can be relayed and incrementally composed by
solvers before settlement. If other unrelated transactions have been settled
meanwhile, this can result in different state roots. It is recommended to use
fresher state roots for membership proofs to not leak information about a
resource’s age[KG24, pp. 7 ff.]. In case of conflicting state roots, i.e., double-
spends, the controller must detect and prevent this, which is described in
[She24, pp. 11 ff.].
Another data component to consider is the list of resource deltas (delta : List
DeltaComponent18), where

𝑟 .Δ = ℎΔ(kind, 𝑟 .quantity) (A.5)
13The nf type will be changed to List Byte.
14The npk type will be changed to List Byte.
15The commitments type will be changed to Set Commitment.
16The nullifiers type will be changed to Set Nullifier.
17The roots type will be changed to Set Root, where Root will be of List Byte type.
18The delta type will be changed to Set DeltaComponents

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | A-3

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

whereℎΔ is the Pedersen commitment scheme being additively homomorphic,
i.e.,

𝑟1.Δ + 𝑟2.Δ = ℎΔ(kind, 𝑟1.quantity + 𝑟2.quantity) (A.6)
and kind-distinct for different kinds
ℎΔ(𝑟1.kind, 𝑟1.quantity) + ℎΔ(𝑟2.kind, 𝑟2.quantity) = ℎΔ(kind, 𝑞kind) (A.7)
so that it is computationally infeasible to compute kind and quantity. 19
The transaction balance Δ𝑡𝑥 is a computable component representing the

total quantity change of the transaction and being derived from the resource
deltas as follows

𝑡𝑥 .Δ =
∑︁
𝑗

𝑟𝑖 𝑗 .Δ −
∑︁
𝑗

𝑟𝑜 𝑗 .Δ =
∑︁
𝑗

ℎΔ(kind, 𝑞kind), (A.8)

where 𝑟𝑖 and 𝑟𝑜 are the created and consumed resources, respectively, and
the kind-distinctness property allows resources of all kinds to be added
without the need to distinguish between them. Δ𝑡𝑥 has to compute to 0 for a
transaction to be balanced.

In this context, the transaction contains a set of proof records (proofs : List
Proof) [KG24, pp. 13 ff.] proving that the resource logics are satisfied and the
transaction balance Δ𝑡𝑥 is correctly derived from the resource deltas and com-
mits to a balancing value of 0. Moreover, it contains a set of compliance proofs
(complianceProofs : List ComplianceProof) (with ComplianceProof : Type

:= Pair Nat Nat;) proving that the transaction complies with the ARM, i.e.,
that each resource was consumed strictly after it has been created and that
the commitments and nullifiers are derived correctly.
Another important component , particularly for applications, is extra data
(extra : Nat20), which is a map and can contain arbitrary information to
be read in the resource logics accompanied by a deletion criterion (see Sec-
tion 2.4.1).
Moreover, it contains a preference function (preference : Nat21) taking a
transaction object as an input and signalling how preferable the state tran-
sition, which is relevant in the context of intent-solving. Lastly, it con-
tains an information-flow-control predicate (IFCPredicate : Transaction ->

ExternalIdentity -> Bool) specifying the transaction visibility for certain
identities, which has not yet been implemented in the Anoma node client
and Juvix.

The composition function implementation used in the current Anoma node
version is shown in Listing A.1.

19Currently, an element of delta is defined as
type DeltaComponent := mk {denom : Nat; sign : Bool; amount : Nat};

thus deviating from this definition.
20The extra type should be changed to Map (List Byte) (List Byte).
21The preference type should be changed to Transaction -> Float, where the output is normalised on the interval [0, 1].

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | A-4

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

A.3. Code Listings

compose (tx1 tx2 : Transaction) : Transaction :=
Transaction.mk@{
roots := Transaction.roots tx1 ++ Transaction.roots tx2;

commitments := Transaction.commitments tx1 ++ Transaction.commitments tx2;

nullifiers := Transaction.nullifiers tx1 ++ Transaction.nullifiers tx2;

proofs := Transaction.proofs tx1 ++ Transaction.proofs tx2;

complianceProofs := Transaction.complianceProofs tx1 ++

Transaction.complianceProofs tx2;↩→

delta := Transaction.delta tx1 ++ Transaction.delta tx2;

extra :=
let

kvList1 : List (Pair Bytes32 Bytes) := Map.toList (anomaDecode

(Transaction.extra tx1));↩→

kvList2 : List (Pair Bytes32 Bytes) := Map.toList (anomaDecode

(Transaction.extra tx2));↩→

in anomaEncode (Map.fromList (kvList1 ++ kvList2));

preference := 0

};

Listing A.1. The transaction composition function implementation.

module Universal;
keyPair : KeyPair :=
KeyPair.mk@{

pubKey := PublicKey.mk
0x29da598ba148c03aa643e21d77153265730d6f2ad0a8a3622da4b6cebc276a3b;↩→

privKey :=
PrivateKey.mk
0x29da598ba148c03aa643e21d77153265730d6f2ad0a8a3622da4b6cebc276a3b ⌋

00↩→

Listing A.2. A universal keypair derived from the seed value 0 in little-endian byte order.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | A-5

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

--- Signs a message with a private key and returns the signed message.

builtin anoma-sign

axiom anomaSign : {Message : Type} -> Message -> PrivateKey -> SignedMessage;

--- Signs a message with a private key and returns the signature.

builtin anoma-sign-detached

axiom anomaSignDetached : {Message : Type} -> Message -> PrivateKey ->
Signature;↩→

--- Verifies a signed message against a public key.

builtin anoma-verify

axiom anomaVerify : SignedMessage -> PublicKey -> Bool;

--- Verifies a signature against a message and public key.

builtin anoma-verify-detached

axiom anomaVerifyDetached : {Message : Type} -> Signature -> Message ->
PublicKey -> Bool;↩→

Listing A.3. Builtins for signing and verifying messages.

mkDummy (npk : PublicKey) (eph : Bool) : Resource :=
Resource.mk@{
logic := alwaysTrueLogic;

label := 0;

quantity := 1;

data := 0;

eph;

npk;

nonce := rand;

rseed := rand

Listing A.4. The constructor of a dummy resource.

DOI: 10.5281/zenodo.13340448 Anoma Research Topics | August 26, 2024 | A-6

https://dx.doi.org/10.5281/zenodo.13340448
http://art.anoma.net

	Introduction
	Application Architecture
	State
	Logic
	Resource Logic Functions
	Projection Functions
	Transaction Functions

	Error Handling
	Application Configurations
	Service commitments

	Application Design Patterns
	Resource Initialization & Finalization
	Finitely Callable
	Singleton
	Universal Annuler
	Resource Relationships
	Authorization
	Property Checks
	Roles
	Intents
	Domain-Specific Languages

	Token
	Resource
	Resource Logic
	Transaction Functions
	Projection Functions

	Applications
	Kudos

	Concluding remarks
	Acknowledgements
	References
	Appendix
	The Resource Object
	Transaction Definitions
	Code Listings

