Supplementary Material for Paper “Statistical Testing of
Quantum Programs via Fixed-Point Amplitude Amplification”
in OOPSLA 2024

CHAN GU KANG?, Korea University, South Korea
JOONGHOON LEE, Korea University, South Korea
HAKJOO OHT, Korea University, South Korea

A IMPLEMENTATION OF FPAA

In this section, we describe details on the implementation of FPAA [Yoder et al. 2014]. While much of
this section reformulates results from [Yoder et al. 2014], we have included it in the Supplementary
Material for the sake of completeness of the paper..

Derivation of Parameters «, . As stated in Proposition 5.1, the desired amplifier is realized
by a I-sequence of the generalized Grover operator G(«;j, §;) for j = 1,., 1. Given [l and §, each
parameter «; and f; is derived as :

aj=—Pi-js1 = 2cot™! (tan(Z;rj/L) 1- (Tl/L(1/5))‘2),
where T, denotes the Chebyshev polynomial (for the proof, refer to Yoder et al. [2014]).

Constructing Reflection over |E,). Given a target state |¢) and a source state |s), FPAA amplifies
| (t|s) |?, the amplitude of |t) within |s). The implementation of FPAA includes a quantum circuit
for reflection over [t), denoted as S; and presented in (6). Note that our original goal is to amplify
|EL), where |t) = |E,) and |t,) = |E). Hence we need to implement reflection over |E,) as follows:

S:(B) =S, (B) =T—(1—-e€)|EL) (EL|.
However, while |E) is known from user-provided specification, |E,) may not readily available
(as we do not know the exact |P), we cannot calculate |E,)). Consequently, we cannot directly
implement a quantum circuit for Sg, . Yet, we know |E) from user-provided specification and hence
reflection over |E), Sg(f’) =1 — (1 — ¢#) |E) (E| is directly implementable. Then, we can obtain
Sk, (p) by following relation:

Se, (B) = Se(—p) upto global phase. (26)

Therefore, in the implementation details of S; provided below, we instead describe the implementa-
tion for Sg(f).

Additional Unitary Transformation on P. We can always set |[E) = |0) by assuming the
unitary operator V such that V |E) = |0). If such V is obtained, then we can represent the program
state as follows:

VPII) =V |P) = Va o) + Vbe' 0.,
where [0,) = V |E,). The unitary transformation V may be provided manually by the user or
generated by a state preparation algorithm. For example, if |E) = [0010), the user could provide

“Current affiliation : Furiosa AI
* Corresponding author

Authors’ addresses: Chan Gu Kang, Korea University, Seoul, South Korea, changukang@korea.ac.kr; Joonghoon Lee,
Korea University, Seoul, South Korea, joonghoonlee@korea.ac.kr; Hakjoo Oh, Korea University, Seoul, South Korea,
hakjoo_oh@korea.ac kr.

HTTPS://ORCID.ORG/0009-0004-1676-8417
HTTPS://ORCID.ORG/0009-0005-3903-9521
HTTPS://ORCID.ORG/0000-0002-1900-7654
https://orcid.org/0009-0004-1676-8417
https://orcid.org/0009-0005-3903-9521
https://orcid.org/0000-0002-1900-7654

2 Chan Gu Kang, Joonghoon Lee, and Hakjoo Oh

V =1®I® X ®I'. Introducing V ensures that the oracle required for Sg(f) (discussed below) is
fixed and implementable.

We note that the additional requirement of the unitary operator V also arises in prior work.
For instance, Li et al. [2020] required such a unitary due to physical constraints that projective
measurements can only be realized in the computational basis.

Furthermore, we assume the input preparation unitary operator W such that W |0) = |I) exists.
Thereby, we can always assume that the program state |P) is prepared from the input |0) as
|P) = PW |0). Providing W will not be an additional overhead for users, since real-world quantum
hardware initializes the qubit register state to |0) by default. Thus, users need to prepare such a
unitary W, in anyway.

To summarize, whenever the provided states |E) and |I) are not equal to |0), we assume that the
additional unitary operator V and W exist. Therefore, we consider the quantum circuit program P
to be transformed as follows:

P — VPW.

This transformation ensures that the problem is defined with |E) = |0) and |I) = |0), without loss
of generality.

Implementation of S;. As describe through (26), we instead describe how to implement reflection
over |E), which is Sg(f) = I — (1 — ¢'P) |E) (E|. The implementation of Sg requires oracle O of |E)
which is O |E) |b) = |E) |-b) and O |EL) |b) = |EL) |b), for boolean b = 0,1, with an additional
single ancila bit for |b). Since we assumed to be |E) = [0)®", the desired O is realized in NC"X gate.
The quantum circuit for Sg(f) using the oracle is :

T s s o

l0) ==== l0)

where Rz (0) = e~ 149/2,

Implementation of Ss. The implementation of S (remind that our source state is |s) = |P))
requires application of two NC"~! and phases Rz (—a/2), sandwiched by target program to test P.
Note that this P is assumed to prepare program state as |P) = P |0). Quantum circuit for Ss(«) also
requires additional single ancila bit. Following circuit implements the Ss operation :

]]

n-qubits pf I I P

HRz(=5) FD Rz (=) L@ Rz (-5) H
|0) D Rz(=%) b 0)

Optimized NC"X by Ancila Bits. Note that for n-qubit target program, S; and Ss includes
operation of NC"X, NC"™'X gates, respectively. Originally, NCKX gives quantum circuit of depth

Here I denotes the identity matrix, not to be confused with input ket-state |I).

Supplementary Material 3

quadratic to k when decomposing into CNOT+single qubit gates. However, by bringing addi-
tional k — 1 qubits register as ancila qubits, NC*X can be implemented in linear depth quantum
circuit [Nielsen and Chuang 2010].

In the cost analysis of Fraa (in Section 6), we adopted this method for implementing NCKX
gates. There for, we presumed an additional n qubit space beyond another n-qubit space needed for
running the program P. This includes a single qubit for implementing both Sg and S;, plus n — 1
qubit space for implementing NC"X and NC"1X gates.

B PROOF OF BUG MODEL

Let P and Pyg, denote the n-qubit quantum circuit, as illustrated in Fig. 6a and 6b, respectively
correct and buggy one. Note that Pggy, is dependent to the parameter ¢ through the injection of
Z'. Hence, we denote the buggy program as Ppggy (1).

In this section, we show that the working example (Section 3) and case study (Section 7) illustra-
tion by Ppyggy and setting of [I) = [0)*" is general. Specifically, we show that for any 0 < b < 1
there exists t € [0, 1] such that b = [(E_ | Ppuggy (1)) |2, where |E) = P |I) for any I € {0, 1}". This
shows the existence of at least one possible buggy program for each b € [¢, 1], supporting the
generality of the case study.

Furthermore, we show that for each fixed ¢t € [0, 1], the probability of measuring |E,) over
|Pouggy (1)) is invariant for any input |I), where I € {0, 1}" by the corresponding |E) = P |I). That
is, |(E 1 P,Duggy(t))|2 is always the same, regardless of the input I € {0, 1}". This supports that
our choice of |I) = [0)®" for the case studies does not loss generality, and the bug detection of
|Ppuggy (t)) cannot be simply done by giving input specification other than assumed |I) = [0)®™.

Altogether, these results are formulated in following Proposition B.1. The result naturally extend
to case of Controlled Draper Adder (Fig. 7a and Fig. 7b).

PROPOSITION B.1. Let Pyggy (t) denote the n-qubit buggy implementation as illustrated in Figure 6b.
Then, for any |I) wherel € {0,1}" (and by the corresponding |E)),

L9, T
I <EL|Pbuggy(t)> |2 = Slnz(gt)
(thereby, for any b € [0,1] there exist t € [0,1] such that | (EL|Ppyggy (1)) [2=0).

Proor. Let |I) = |y) ® |x), where |x) and |y) are m-qubit binary state vectors with n = 2m.
Define | (x)) as follows [Draper 2000]:

|¢k(x)> — % (|0> +627ri-(0.xkxk,1‘..x1) |1>) ;

where x is the k-th digit of x in binary representation. If the QFT operates on |x), the state
becomes:

QFT |x) = [{m(x)) ® [Ym-1(x)) ® - - - ® [¢1(x)) .

Let z=x+y mod 2™ For 1 < k < m, by the controlled phases CR; appeared in the middle of
Draper Adder, the state |/ (x)) evolves to:

() = = (10) + e O) (26)
V2
The proof proceeds by applying Z* gate and QFT~! on (26) as shown in Figure 6b. The operation
sequence of applying Z! and QFT ! is illustrated in Fig. 8.
In Fig. 8, M represents a moment in the circuit right before applying the last three gate sequences:
H,CR; 1 and another H. At the moment M, the k-th qubit for 1 < k < m — 2 is already in its final

4 Chan Gu Kang, Joonghoon Lee, and Hakjoo Oh

Iym(2)) L L e Ly R
|
Wm1(2)) T e «I@]
|
5 |
|
IY2(2)) ‘
|
W1 (2)) ——] |

Fig. 8. The Zf and QFT~! application on |¢y (z)) states. Here, R;l represents ((l) e,zfi/zk)

state, correctly derived as |z). For the m — 1-th qubit, due to the effect of the bug gate Z*, its state

1S:
1

V2

(|0> + eZﬂi-(O.zm_1+t/2) |1>))
For the m-th qubit, its state is:
1
V2

Summing up, the state at moment M becomes:

1 ; 1 .
- (|0> + eZJrL(O.zmzm_l) |1>) ® @ (|0> + eZm-(O.zm_1+t/2) |1>) ® |Zm—2> ® - ® |21>)

V2

(|0> + eZn’i»(O.zmzm,l) |1>)

=l¢1)®|¢2)

Since subsequent gates (I ® H),CR; ", (H ® I) only apply to the m-th and (m — 1)-th qubits, we
consider the state evolution on |¢;), |¢2). By calculation, we can check that

H1g2) = 2 [(1+ €7 lam 1) + (1= &) |z)] = 17)

where z,,_1 € {0, 1} (which will be decided by input |I)). Then, after the application of remaining
gates CR;! (where the control is applied on the (m — 1)-th qubit) and (H ® I), sequentially, the
state ends in

|67) = (H® DCR, " (I$1) ® |43)) = % [(1+e™) |zm) [z2m-1) + (1= ™) |2) |mzm-1)] (26)

where the part |?) is result of applying phase R, ! wrongly controlled by |-z,,—1).
Remind that |E) = |z;;) ® |zm—1) ® -+ - ® |z1). Then, the final program state vector can be
represented in:

. 1+ ein’t 1— ein’t
|Pbuggy(t)> =9 ®|zm-2) ® - ®|z1) = 2 |E) + 5 |EL)

Hereby, we can check that the probability of measuring |E,) is

‘l_eintz

. o, Tt
=sin“(—).
()

This derivation was independent to choice of |I), hence the result holds for all I € {0, 1}".

	A Implementation of FPAA
	B Proof of Bug Model

