Supplementary Material for Paper "Statistical Testing of Quantum Programs via Fixed-Point Amplitude Amplification" in OOPSLA 2024

CHAN GU KANG^{*}, Korea University, South Korea JOONGHOON LEE, Korea University, South Korea HAKJOO OH[†], Korea University, South Korea

A IMPLEMENTATION OF FPAA

In this section, we describe details on the implementation of FPAA [Yoder et al. 2014]. While much of this section reformulates results from [Yoder et al. 2014], we have included it in the Supplementary Material for the sake of completeness of the paper.

Derivation of Parameters α , β . As stated in Proposition 5.1, the desired amplifier is realized by a *l*-sequence of the generalized Grover operator $G(\alpha_j, \beta_j)$ for j = 1, .., l. Given *l* and δ , each parameter α_j and β_i is derived as :

$$\alpha_j = -\beta_{l-j+1} = 2 \cot^{-1} \left(\tan(2\pi j/L) \sqrt{1 - (T_{1/L}(1/\delta))^{-2}} \right)$$

where T_x denotes the Chebyshev polynomial (for the proof, refer to Yoder et al. [2014]).

Constructing Reflection over $|E_{\perp}\rangle$. Given a target state $|t\rangle$ and a source state $|s\rangle$, FPAA amplifies $|\langle t|s\rangle|^2$, the amplitude of $|t\rangle$ within $|s\rangle$. The implementation of FPAA includes a quantum circuit for reflection over $|t\rangle$, denoted as S_t and presented in (6). Note that our original goal is to amplify $|E_{\perp}\rangle$, where $|t\rangle = |E_{\perp}\rangle$ and $|t_{\perp}\rangle = |E\rangle$. Hence we need to implement reflection over $|E_{\perp}\rangle$ as follows:

$$S_t(\beta) = S_{E_\perp}(\beta) = I - (1 - e^{i\beta}) |E_\perp\rangle \langle E_\perp|.$$

However, while $|E\rangle$ is known from user-provided specification, $|E_{\perp}\rangle$ may not readily available (as we do not know the exact $|P\rangle$, we cannot calculate $|E_{\perp}\rangle$). Consequently, we cannot directly implement a quantum circuit for $S_{E_{\perp}}$. Yet, we know $|E\rangle$ from user-provided specification and hence reflection over $|E\rangle$, $S_E(\beta') = I - (1 - e^{i\beta'}) |E\rangle \langle E|$ is directly implementable. Then, we can obtain $S_{E_{\perp}}(\beta)$ by following relation:

$$S_{E_{\perp}}(\beta) = S_E(-\beta)$$
 upto global phase. (26)

Therefore, in the implementation details of S_t provided below, we instead describe the implementation for $S_E(\beta)$.

Additional Unitary Transformation on P. We can always set $|E\rangle = |0\rangle$ by assuming the unitary operator *V* such that $V |E\rangle = |0\rangle$. If such *V* is obtained, then we can represent the program state as follows:

$$VP \left| I \right\rangle = V \left| P \right\rangle = \sqrt{a} \left| 0 \right\rangle + \sqrt{b} e^{i\theta} \left| 0_{\perp} \right\rangle,$$

where $|0_{\perp}\rangle = V |E_{\perp}\rangle$. The unitary transformation *V* may be provided manually by the user or generated by a state preparation algorithm. For example, if $|E\rangle = |0010\rangle$, the user could provide

*Current affiliation : Furiosa AI

[†]Corresponding author

Authors' addresses: Chan Gu Kang, Korea University, Seoul, South Korea, changukang@korea.ac.kr; Joonghoon Lee, Korea University, Seoul, South Korea, joonghoonlee@korea.ac.kr; Hakjoo Oh, Korea University, Seoul, South Korea, hakjoo_oh@korea.ac.kr.

 $V = I \otimes I \otimes X \otimes I^1$. Introducing *V* ensures that the oracle required for $S_E(\beta)$ (discussed below) is fixed and implementable.

We note that the additional requirement of the unitary operator V also arises in prior work. For instance, Li et al. [2020] required such a unitary due to physical constraints that projective measurements can only be realized in the computational basis.

Furthermore, we assume the input preparation unitary operator W such that $W |0\rangle = |I\rangle$ exists. Thereby, we can always assume that the program state $|P\rangle$ is prepared from the input $|0\rangle$ as $|P\rangle = PW |0\rangle$. Providing W will not be an additional overhead for users, since real-world quantum hardware initializes the qubit register state to $|0\rangle$ by default. Thus, users need to prepare such a unitary W, in anyway.

To summarize, whenever the provided states $|E\rangle$ and $|I\rangle$ are not equal to $|0\rangle$, we assume that the additional unitary operator *V* and *W* exist. Therefore, we consider the quantum circuit program *P* to be transformed as follows:

$$P \leftarrow VPW.$$

This transformation ensures that the problem is defined with $|E\rangle = |0\rangle$ and $|I\rangle = |0\rangle$, without loss of generality.

Implementation of S_t . As describe through (26), we instead describe how to implement reflection over $|E\rangle$, which is $S_E(\beta) = I - (1 - e^{i\beta}) |E\rangle \langle E|$. The implementation of S_E requires oracle O of $|E\rangle$ which is $O |E\rangle |b\rangle = |E\rangle |\neg b\rangle$ and $O |E_{\perp}\rangle |b\rangle = |E_{\perp}\rangle |b\rangle$, for boolean b = 0, 1, with an additional single ancila bit for $|b\rangle$. Since we assumed to be $|E\rangle = |0\rangle^{\otimes n}$, the desired O is realized in NC^nX gate. The quantum circuit for $S_E(\beta)$ using the oracle is :

where $R_Z(\theta) = e^{-iZ\theta/2}$.

Implementation of S_s . The implementation of S_s (remind that our source state is $|s\rangle = |P\rangle$) requires application of two NC^{n-1} and phases $R_Z(-\alpha/2)$, sandwiched by target program to test P. Note that this P is assumed to prepare program state as $|P\rangle = P |0\rangle$. Quantum circuit for $S_s(\alpha)$ also requires additional single ancila bit. Following circuit implements the S_s operation :

Optimized NC^nX by Ancila Bits. Note that for *n*-qubit target program, S_t and S_s includes operation of NC^nX , $NC^{n-1}X$ gates, respectively. Originally, NC^kX gives quantum circuit of depth

¹Here *I* denotes the identity matrix, not to be confused with input ket-state $|I\rangle$.

quadratic to k when decomposing into CNOT+single qubit gates. However, by bringing additional k - 1 qubits register as ancila qubits, NC^kX can be implemented in linear depth quantum circuit [Nielsen and Chuang 2010].

In the cost analysis of FPAA (in Section 6), we adopted this method for implementing NC^kX gates. There for, we presumed an additional *n* qubit space beyond another *n*-qubit space needed for running the program *P*. This includes a single qubit for implementing both S_s and S_t , plus n - 1 qubit space for implementing NC^nX and $NC^{n-1}X$ gates.

B PROOF OF BUG MODEL

Let *P* and P_{buggy} denote the *n*-qubit quantum circuit, as illustrated in Fig. 6a and 6b, respectively correct and buggy one. Note that P_{buggy} is dependent to the parameter *t* through the injection of Z^t . Hence, we denote the buggy program as $P_{\text{buggy}}(t)$.

In this section, we show that the working example (Section 3) and case study (Section 7) illustration by P_{buggy} and setting of $|I\rangle = |0\rangle^{\otimes n}$ is general. Specifically, we show that for any $0 \le b \le 1$ there exists $t \in [0, 1]$ such that $b = |\langle E_{\perp} | P_{\text{buggy}}(t) \rangle|^2$, where $|E\rangle = P |I\rangle$ for any $I \in \{0, 1\}^n$. This shows the existence of at least one possible buggy program for each $b \in [\epsilon, 1]$, supporting the generality of the case study.

Furthermore, we show that for each fixed $t \in [0, 1]$, the probability of measuring $|E_{\perp}\rangle$ over $|P_{\text{buggy}}(t)\rangle$ is invariant for any input $|I\rangle$, where $I \in \{0, 1\}^n$ by the corresponding $|E\rangle = P |I\rangle$. That is, $|\langle E_{\perp} | P_{\text{buggy}}(t)\rangle|^2$ is always the same, regardless of the input $I \in \{0, 1\}^n$. This supports that our choice of $|I\rangle = |0\rangle^{\otimes n}$ for the case studies does not loss generality, and the bug detection of $|P_{\text{buggy}}(t)\rangle$ cannot be simply done by giving input specification other than assumed $|I\rangle = |0\rangle^{\otimes n}$.

Altogether, these results are formulated in following Proposition B.1. The result naturally extend to case of Controlled Draper Adder (Fig. 7a and Fig. 7b).

PROPOSITION B.1. Let $P_{\text{buggy}}(t)$ denote the *n*-qubit buggy implementation as illustrated in Figure 6b. Then, for any $|I\rangle$ where $I \in \{0, 1\}^n$ (and by the corresponding $|E\rangle$),

$$|\langle E_{\perp}|P_{\text{buggy}}(t)\rangle|^2 = \sin^2(\frac{\pi}{2}t)$$

(thereby, for any $b \in [0, 1]$ there exist $t \in [0, 1]$ such that $|\langle E_{\perp}|P_{\text{buggy}}(t)\rangle|^2 = b$).

PROOF. Let $|I\rangle = |y\rangle \otimes |x\rangle$, where $|x\rangle$ and $|y\rangle$ are *m*-qubit binary state vectors with n = 2m. Define $|\psi_k(x)\rangle$ as follows [Draper 2000]:

$$|\psi_k(x)\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot (0.x_k x_{k-1}...x_1)} |1\rangle\right),$$

where x_k is the *k*-th digit of *x* in binary representation. If the *QFT* operates on $|x\rangle$, the state becomes:

$$QFT |x\rangle = |\psi_m(x)\rangle \otimes |\psi_{m-1}(x)\rangle \otimes \cdots \otimes |\psi_1(x)\rangle$$

Let $z = x + y \mod 2^m$. For $1 \le k \le m$, by the controlled phases CR_j appeared in the middle of Draper Adder, the state $|\psi_k(x)\rangle$ evolves to:

$$|\psi_k(z)\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot (0.z_k z_{k-1}...z_1)} |1\rangle \right).$$
(26)

The proof proceeds by applying Z^t gate and QFT^{-1} on (26) as shown in Figure 6b. The operation sequence of applying Z^t and QFT^{-1} is illustrated in Fig. 8.

In Fig. 8, *M* represents a moment in the circuit right before applying the last three gate sequences: H, CR_2^{-1} and another *H*. At the moment *M*, the *k*-th qubit for $1 \le k \le m - 2$ is already in its final

Fig. 8. The Z^t and QFT^{-1} application on $|\phi_k(z)\rangle$ states. Here, R_k^{-1} represents $\begin{pmatrix} 1 & 0 \\ 0 & e^{-2\pi i/2k} \end{pmatrix}$.

state, correctly derived as $|z_k\rangle$. For the m - 1-th qubit, due to the effect of the bug gate Z^t , its state is:

$$\frac{1}{\sqrt{2}}\left(|0\rangle + e^{2\pi i \cdot (0.z_{m-1}+t/2)} |1\rangle\right)$$

For the *m*-th qubit, its state is:

$$\frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i \cdot (0.z_m z_{m-1})} |1\rangle).$$

Summing up, the state at moment *M* becomes:

$$\underbrace{\frac{1}{\sqrt{2}}\left(|0\rangle + e^{2\pi i \cdot (0.z_m z_{m-1})} |1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle + e^{2\pi i \cdot (0.z_{m-1} + t/2)} |1\rangle\right)}_{=|\phi_1\rangle \otimes |\phi_2\rangle} \otimes |z_{m-2}\rangle \otimes \cdots \otimes |z_1\rangle.$$

Since subsequent gates $(I \otimes H)$, CR_2^{-1} , $(H \otimes I)$ only apply to the *m*-th and (m - 1)-th qubits, we consider the state evolution on $|\phi_1\rangle$, $|\phi_2\rangle$. By calculation, we can check that

$$H |\phi_2\rangle = \frac{1}{2} \left[(1 + e^{\pi i t}) |z_{m-1}\rangle + (1 - e^{\pi i t}) |\neg z_{m-1}\rangle \right] =: |\phi_2\rangle$$

where $z_{m-1} \in \{0, 1\}$ (which will be decided by input $|I\rangle$). Then, after the application of remaining gates CR_2^{-1} (where the control is applied on the (m - 1)-th qubit) and $(H \otimes I)$, sequentially, the state ends in

$$|\phi^*\rangle := (H \otimes I)CR_2^{-1}(|\phi_1\rangle \otimes |\phi_2'\rangle) = \frac{1}{2} \left[(1 + e^{\pi it}) |z_m\rangle |z_{m-1}\rangle + (1 - e^{\pi it}) |?\rangle |\neg z_{m-1}\rangle \right]$$
(26)

where the part $|?\rangle$ is result of applying phase R_2^{-1} wrongly controlled by $|\neg z_{m-1}\rangle$.

Remind that $|E\rangle = |z_m\rangle \otimes |z_{m-1}\rangle \otimes \cdots \otimes |z_1\rangle$. Then, the final program state vector can be represented in:

$$|P_{\text{buggy}}(t)\rangle = |\phi^*\rangle \otimes |z_{m-2}\rangle \otimes \cdots \otimes |z_1\rangle = \frac{1+e^{i\pi t}}{2}|E\rangle + \frac{1-e^{i\pi t}}{2}|E_{\perp}\rangle$$

Hereby, we can check that the probability of measuring $|E_{\perp}\rangle$ is

$$\left|\frac{1-e^{i\pi t}}{2}\right|^2 = \sin^2(\frac{\pi t}{2}).$$

This derivation was independent to choice of $|I\rangle$, hence the result holds for all $I \in \{0, 1\}^n$.