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A IMPLEMENTATION OF FPAA
In this section, we describe details on the implementation of FPAA [Yoder et al. 2014]. While much of

this section reformulates results from [Yoder et al. 2014], we have included it in the Supplementary

Material for the sake of completeness of the paper..

Derivation of Parameters 𝛼 , 𝛽 . As stated in Proposition 5.1, the desired amplifier is realized

by a 𝑙-sequence of the generalized Grover operator 𝐺 (𝛼 𝑗 , 𝛽 𝑗 ) for 𝑗 = 1, .., 𝑙 . Given 𝑙 and 𝛿 , each

parameter 𝛼 𝑗 and 𝛽𝑖 is derived as :

𝛼 𝑗 = −𝛽𝑙− 𝑗+1 = 2 cot
−1

(
tan(2𝜋 𝑗/𝐿)

√︃
1 − (𝑇1/𝐿 (1/𝛿))−2

)
,

where 𝑇𝑥 denotes the Chebyshev polynomial (for the proof, refer to Yoder et al. [2014]).

Constructing Reflection over |𝐸⊥⟩. Given a target state |𝑡⟩ and a source state |𝑠⟩, FPAA amplifies

| ⟨𝑡 |𝑠⟩ |2, the amplitude of |𝑡⟩ within |𝑠⟩. The implementation of FPAA includes a quantum circuit

for reflection over |𝑡⟩, denoted as 𝑆𝑡 and presented in (6). Note that our original goal is to amplify

|𝐸⊥⟩, where |𝑡⟩ = |𝐸⊥⟩ and |𝑡⊥⟩ = |𝐸⟩. Hence we need to implement reflection over |𝐸⊥⟩ as follows:
𝑆𝑡 (𝛽) = 𝑆𝐸⊥ (𝛽) = 𝐼 − (1 − 𝑒𝑖𝛽 ) |𝐸⊥⟩ ⟨𝐸⊥ | .

However, while |𝐸⟩ is known from user-provided specification, |𝐸⊥⟩ may not readily available

(as we do not know the exact |𝑃⟩, we cannot calculate |𝐸⊥⟩). Consequently, we cannot directly
implement a quantum circuit for 𝑆𝐸⊥ . Yet, we know |𝐸⟩ from user-provided specification and hence

reflection over |𝐸⟩, 𝑆𝐸 (𝛽 ′) = 𝐼 − (1 − 𝑒𝑖𝛽 ′ ) |𝐸⟩ ⟨𝐸 | is directly implementable. Then, we can obtain

𝑆𝐸⊥ (𝛽) by following relation:

𝑆𝐸⊥ (𝛽) = 𝑆𝐸 (−𝛽) upto global phase. (26)

Therefore, in the implementation details of 𝑆𝑡 provided below, we instead describe the implementa-

tion for 𝑆𝐸 (𝛽).

Additional Unitary Transformation on 𝑃 . We can always set |𝐸⟩ = |0⟩ by assuming the

unitary operator 𝑉 such that 𝑉 |𝐸⟩ = |0⟩. If such 𝑉 is obtained, then we can represent the program

state as follows:

𝑉𝑃 |𝐼 ⟩ = 𝑉 |𝑃⟩ =
√
𝑎 |0⟩ +

√
𝑏𝑒𝑖𝜃 |0⊥⟩ ,

where |0⊥⟩ = 𝑉 |𝐸⊥⟩. The unitary transformation 𝑉 may be provided manually by the user or

generated by a state preparation algorithm. For example, if |𝐸⟩ = |0010⟩, the user could provide
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𝑉 = 𝐼 ⊗ 𝐼 ⊗ 𝑋 ⊗ 𝐼 1. Introducing 𝑉 ensures that the oracle required for 𝑆𝐸 (𝛽) (discussed below) is

fixed and implementable.

We note that the additional requirement of the unitary operator 𝑉 also arises in prior work.

For instance, Li et al. [2020] required such a unitary due to physical constraints that projective

measurements can only be realized in the computational basis.

Furthermore, we assume the input preparation unitary operator𝑊 such that𝑊 |0⟩ = |𝐼 ⟩ exists.
Thereby, we can always assume that the program state |𝑃⟩ is prepared from the input |0⟩ as
|𝑃⟩ = 𝑃𝑊 |0⟩. Providing𝑊 will not be an additional overhead for users, since real-world quantum

hardware initializes the qubit register state to |0⟩ by default. Thus, users need to prepare such a

unitary𝑊 , in anyway.

To summarize, whenever the provided states |𝐸⟩ and |𝐼 ⟩ are not equal to |0⟩, we assume that the

additional unitary operator 𝑉 and𝑊 exist. Therefore, we consider the quantum circuit program 𝑃

to be transformed as follows:

𝑃 ← 𝑉𝑃𝑊 .

This transformation ensures that the problem is defined with |𝐸⟩ = |0⟩ and |𝐼 ⟩ = |0⟩, without loss
of generality.

Implementation of 𝑆𝑡 . As describe through (26), we instead describe how to implement reflection

over |𝐸⟩, which is 𝑆𝐸 (𝛽) = 𝐼 − (1 − 𝑒𝑖𝛽 ) |𝐸⟩ ⟨𝐸 |. The implementation of 𝑆𝐸 requires oracle 𝑂 of |𝐸⟩
which is 𝑂 |𝐸⟩ |𝑏⟩ = |𝐸⟩ |¬𝑏⟩ and 𝑂 |𝐸⊥⟩ |𝑏⟩ = |𝐸⊥⟩ |𝑏⟩, for boolean 𝑏 = 0, 1, with an additional

single ancila bit for |𝑏⟩. Since we assumed to be |𝐸⟩ = |0⟩⊗𝑛 , the desired𝑂 is realized in 𝑁𝐶𝑛𝑋 gate.

The quantum circuit for 𝑆𝐸 (𝛽) using the oracle is :

...
...

𝑛-qubits

|0⟩ 𝑅𝑍 (𝛽) |0⟩

where 𝑅𝑍 (𝜃 ) = 𝑒−𝑖𝑍𝜃/2.

Implementation of 𝑆𝑠 . The implementation of 𝑆𝑠 (remind that our source state is |𝑠⟩ = |𝑃⟩)
requires application of two 𝑁𝐶𝑛−1

and phases 𝑅𝑍 (−𝛼/2), sandwiched by target program to test 𝑃 .

Note that this 𝑃 is assumed to prepare program state as |𝑃⟩ = 𝑃 |0⟩. Quantum circuit for 𝑆𝑠 (𝛼) also
requires additional single ancila bit. Following circuit implements the 𝑆𝑠 operation :

𝑃† 𝑃
...

...

𝑅𝑍 (−𝛼
2
) 𝑅𝑍 (−𝛼

2
) 𝑅𝑍 (−𝛼

2
)


𝑛-qubits

|0⟩ 𝑅𝑍 (−𝛼
2
) |0⟩

Optimized 𝑁𝐶𝑛𝑋 by Ancila Bits. Note that for 𝑛-qubit target program, 𝑆𝑡 and 𝑆𝑠 includes

operation of 𝑁𝐶𝑛𝑋, 𝑁𝐶𝑛−1𝑋 gates, respectively. Originally, 𝑁𝐶𝑘𝑋 gives quantum circuit of depth

1
Here 𝐼 denotes the identity matrix, not to be confused with input ket-state |𝐼 ⟩.
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quadratic to 𝑘 when decomposing into 𝐶𝑁𝑂𝑇+single qubit gates. However, by bringing addi-

tional 𝑘 − 1 qubits register as ancila qubits, 𝑁𝐶𝑘𝑋 can be implemented in linear depth quantum

circuit [Nielsen and Chuang 2010].

In the cost analysis of Fpaa (in Section 6), we adopted this method for implementing 𝑁𝐶𝑘𝑋

gates. There for, we presumed an additional 𝑛 qubit space beyond another 𝑛-qubit space needed for

running the program 𝑃 . This includes a single qubit for implementing both 𝑆𝑠 and 𝑆𝑡 , plus 𝑛 − 1
qubit space for implementing 𝑁𝐶𝑛𝑋 and 𝑁𝐶𝑛−1𝑋 gates.

B PROOF OF BUG MODEL
Let 𝑃 and 𝑃buggy denote the 𝑛-qubit quantum circuit, as illustrated in Fig. 6a and 6b, respectively

correct and buggy one. Note that 𝑃buggy is dependent to the parameter 𝑡 through the injection of

𝑍 𝑡
. Hence, we denote the buggy program as 𝑃buggy (𝑡).
In this section, we show that the working example (Section 3) and case study (Section 7) illustra-

tion by 𝑃buggy and setting of |𝐼 ⟩ = |0⟩⊗𝑛 is general. Specifically, we show that for any 0 ≤ 𝑏 ≤ 1

there exists 𝑡 ∈ [0, 1] such that 𝑏 = | ⟨𝐸⊥ | 𝑃buggy (𝑡)⟩ |2, where |𝐸⟩ = 𝑃 |𝐼 ⟩ for any 𝐼 ∈ {0, 1}𝑛 . This
shows the existence of at least one possible buggy program for each 𝑏 ∈ [𝜖, 1], supporting the

generality of the case study.

Furthermore, we show that for each fixed 𝑡 ∈ [0, 1], the probability of measuring |𝐸⊥⟩ over
|𝑃buggy (𝑡)⟩ is invariant for any input |𝐼 ⟩, where 𝐼 ∈ {0, 1}𝑛 by the corresponding |𝐸⟩ = 𝑃 |𝐼 ⟩. That
is,

��⟨𝐸⊥ | 𝑃buggy (𝑡)⟩��2 is always the same, regardless of the input 𝐼 ∈ {0, 1}𝑛 . This supports that
our choice of |𝐼 ⟩ = |0⟩⊗𝑛 for the case studies does not loss generality, and the bug detection of

|𝑃buggy (𝑡)⟩ cannot be simply done by giving input specification other than assumed |𝐼 ⟩ = |0⟩⊗𝑛 .
Altogether, these results are formulated in following Proposition B.1. The result naturally extend

to case of Controlled Draper Adder (Fig. 7a and Fig. 7b).

Proposition B.1. Let 𝑃buggy (𝑡) denote the 𝑛-qubit buggy implementation as illustrated in Figure 6b.
Then, for any |𝐼 ⟩ where 𝐼 ∈ {0, 1}𝑛 (and by the corresponding |𝐸⟩),

| ⟨𝐸⊥ |𝑃buggy (𝑡)⟩ |2 = sin
2 (𝜋

2

𝑡)

(thereby, for any 𝑏 ∈ [0, 1] there exist 𝑡 ∈ [0, 1] such that | ⟨𝐸⊥ |𝑃buggy (𝑡)⟩ |2 = 𝑏 ).

Proof. Let |𝐼 ⟩ = |𝑦⟩ ⊗ |𝑥⟩, where |𝑥⟩ and |𝑦⟩ are 𝑚-qubit binary state vectors with 𝑛 = 2𝑚.

Define |𝜓𝑘 (𝑥)⟩ as follows [Draper 2000]:

|𝜓𝑘 (𝑥)⟩ =
1

√
2

(
|0⟩ + 𝑒2𝜋𝑖 · (0.𝑥𝑘𝑥𝑘−1 ...𝑥1 ) |1⟩

)
,

where 𝑥𝑘 is the 𝑘-th digit of 𝑥 in binary representation. If the 𝑄𝐹𝑇 operates on |𝑥⟩, the state

becomes:

𝑄𝐹𝑇 |𝑥⟩ = |𝜓𝑚 (𝑥)⟩ ⊗ |𝜓𝑚−1 (𝑥)⟩ ⊗ · · · ⊗ |𝜓1 (𝑥)⟩ .
Let 𝑧 = 𝑥 + 𝑦 mod 2

𝑚
. For 1 ≤ 𝑘 ≤ 𝑚, by the controlled phases 𝐶𝑅 𝑗 appeared in the middle of

Draper Adder, the state |𝜓𝑘 (𝑥)⟩ evolves to:

|𝜓𝑘 (𝑧)⟩ =
1

√
2

(
|0⟩ + 𝑒2𝜋𝑖 · (0.𝑧𝑘𝑧𝑘−1 ...𝑧1 ) |1⟩

)
. (26)

The proof proceeds by applying 𝑍 𝑡
gate and 𝑄𝐹𝑇 −1 on (26) as shown in Figure 6b. The operation

sequence of applying 𝑍 𝑡
and 𝑄𝐹𝑇 −1 is illustrated in Fig. 8.

In Fig. 8,𝑀 represents a moment in the circuit right before applying the last three gate sequences:

𝐻 , 𝐶𝑅−1
2

and another 𝐻 . At the moment𝑀 , the 𝑘-th qubit for 1 ≤ 𝑘 ≤ 𝑚 − 2 is already in its final
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𝑀

|𝜓𝑚 (𝑧)⟩ 𝑅−1𝑚 𝑅−1𝑚−1 · · · 𝑅−1
3

𝑅−1
2

𝐻

|𝜓𝑚−1 (𝑧)⟩ 𝑍 𝑡 · · · 𝑅−1𝑚−1 · · · 𝑅−1
2

𝐻 •

...
· · · · · · • •

|𝜓2 (𝑧)⟩ 𝑅−1
2

𝐻 · · · •

|𝜓1 (𝑧)⟩ 𝐻 • · · · • •

Fig. 8. The 𝑍 𝑡 and 𝑄𝐹𝑇 −1 application on |𝜙𝑘 (𝑧)⟩ states. Here, 𝑅−1𝑘
represents

(
1 0

0 𝑒−2𝜋𝑖/2
𝑘

)
.

state, correctly derived as |𝑧𝑘⟩. For the𝑚 − 1-th qubit, due to the effect of the bug gate 𝑍 𝑡
, its state

is:

1

√
2

(
|0⟩ + 𝑒2𝜋𝑖 · (0.𝑧𝑚−1+𝑡/2) |1⟩

)
.

For the𝑚-th qubit, its state is:

1

√
2

( |0⟩ + 𝑒2𝜋𝑖 · (0.𝑧𝑚𝑧𝑚−1 ) |1⟩).

Summing up, the state at moment𝑀 becomes:

1

√
2

(
|0⟩ + 𝑒2𝜋𝑖 · (0.𝑧𝑚𝑧𝑚−1 ) |1⟩

)
⊗ 1

√
2

(
|0⟩ + 𝑒2𝜋𝑖 · (0.𝑧𝑚−1+𝑡/2) |1⟩

)
︸                                                                             ︷︷                                                                             ︸

= |𝜙1 ⟩⊗ |𝜙2 ⟩

⊗ |𝑧𝑚−2⟩ ⊗ · · · ⊗ |𝑧1⟩ .

Since subsequent gates (𝐼 ⊗ 𝐻 ),𝐶𝑅−1
2
, (𝐻 ⊗ 𝐼 ) only apply to the𝑚-th and (𝑚 − 1)-th qubits, we

consider the state evolution on |𝜙1⟩ , |𝜙2⟩. By calculation, we can check that

𝐻 |𝜙2⟩ =
1

2

[
(1 + 𝑒𝜋𝑖𝑡 ) |𝑧𝑚−1⟩ + (1 − 𝑒𝜋𝑖𝑡 ) |¬𝑧𝑚−1⟩

]
=: |𝜙 ′

2
⟩

where 𝑧𝑚−1 ∈ {0, 1} (which will be decided by input |𝐼 ⟩). Then, after the application of remaining

gates 𝐶𝑅−1
2

(where the control is applied on the (𝑚 − 1)-th qubit) and (𝐻 ⊗ 𝐼 ), sequentially, the
state ends in

|𝜙∗⟩ := (𝐻 ⊗ 𝐼 )𝐶𝑅−1
2
( |𝜙1⟩ ⊗ |𝜙 ′2⟩) =

1

2

[
(1 + 𝑒𝜋𝑖𝑡 ) |𝑧𝑚⟩ |𝑧𝑚−1⟩ + (1 − 𝑒𝜋𝑖𝑡 ) |?⟩ |¬𝑧𝑚−1⟩

]
(26)

where the part |?⟩ is result of applying phase 𝑅−1
2

wrongly controlled by |¬𝑧𝑚−1⟩.
Remind that |𝐸⟩ = |𝑧𝑚⟩ ⊗ |𝑧𝑚−1⟩ ⊗ · · · ⊗ |𝑧1⟩. Then, the final program state vector can be

represented in:

|𝑃buggy (𝑡)⟩ = |𝜙∗⟩ ⊗ |𝑧𝑚−2⟩ ⊗ · · · ⊗ |𝑧1⟩ =
1 + 𝑒𝑖𝜋𝑡

2

|𝐸⟩ + 1 − 𝑒𝑖𝜋𝑡
2

|𝐸⊥⟩

Hereby, we can check that the probability of measuring |𝐸⊥⟩ is����1 − 𝑒𝑖𝜋𝑡
2

����2 = sin
2 (𝜋𝑡

2

).

This derivation was independent to choice of |𝐼 ⟩, hence the result holds for all 𝐼 ∈ {0, 1}𝑛 .
□
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