
Hermes: A Multi-Tiered 
Distributed I/O Buffering System

Luke Logan, Anthony Kougkas, Xian-He Sun
llogan@hawk.iit.edu, akougkas@iit.edu, sun@iit.edu

Gnosis Research Center @ Illinois Tech

1

mailto:Llogan@hawk.iit.edu
mailto:akougkas@iit.edu
mailto:sun@iit.edu


Rapid Hardware Evolution

2

• Storage has become complex
• Many different types of hardware 

emerged or currently emerging
• Machines integrating several at once

• E.g., El Capitan & Aurora



Deciding Where To Put Data is a Challenge!

3

2. Data placement is left to the user

1. HDF5 does not support I/O buffering natively 

4. Poor data placements lead to I/O stalls

3. Domain scientists are not I/O experts



Tiered I/O Must Become Simpler

4

1. Intelligently decide where to place data based 
on device & application characteristics

2. Correct the placement of data dynamically to 
adapt to application behavior

3. Support a variety of applications without 
requiring code changes

Remove the responsibility of tiered data 
placement from users!



Hermes: A Multi-Tiered Buffering System

5

1. Intelligently decide where to place data based 
on device & application characteristics
o Data Placement Engines

2. Correct the placement of data dynamically to 
adapt to application behavior
o Buffer Organization Polices

3. Support a variety of applications without 
requiring code changes
o Adapters

Remove the responsibility of tiered data 
placement from users!



Hermes: A Multi-Tiered Buffering System

6

1. Hermes is a multi-million dollar NSF project 
between HDFGroup & Gnosis@Illinois Tech

2. Hermes version 1.2 is available
3. This talk will discuss the core design of 

Hermes, recent feature additions, and various 
use-cases

Remove the responsibility of tiered data 
placement from users!



Design
Overview

7



General Use Case

8

• Hermes runs within the context of 
an HPC job

• Applications can buffer data within 
Hermes during the job

• At the end of the job, Hermes 
flushes all data to the PFS

• During the job, Hermes 
asynchronously moves data to the 
PFS to make this flushing faster



Native API

9

Blob
An array of bytes

Bucket
A named collection 

of blobs

• Applications can call the native Hermes API to 
interact with data

• Hermes has two primary data types:

Analogous to a key-value store API
(PutBlob & GetBlob)

Key Calories Sat. Fat Carbs

Butter 714 50g 0g

Olive Oil 800 13.3g 0g

Chicken 188 2.94g 1.18g

Blob 1: Butter

Blob 2: Olive Oil

Blob 3: Chicken

Bucket: USDA Nutrition Data



Adapters

10

• Intercept I/O and convert them into 
Hermes Native API calls

• Avoids application changes to use 
Hermes!

• Various APIs are supported

(MPICH)

*In Progress



Hermes Runtime

11

• The Hermes Library converts Native 
API calls into messages, which are 
executed by the Hermes Runtime

• Messages sent through shared-
memory, lock-free queues

• Two main benefits:

Many applications 
can use Hermes 
simultaneously

Hermes can run 
longer than a single 
application



Data Placement Engine

12

• Decides the initial placement of data 
during a PutBlob operation

• Three given algorithms:

MinIo
Time

Round
Robin Rand

Place data in 
fastest tier with 

space

Each tier assigned 
an equal number 

of blobs

Randomly 
choose tier



Impact of Tiering on Application Performance

13

• Compare tiering for two workloads:
• VPIC: particle-in-cell simulation code for 

modeling 3D kinetic plasmas (write-only)* 
• BD-CATS: particle clustering algorithm 

(read-only)
• 16 nodes, 16 processes per node
• MinIOTime DPE



Impact of Tiering on Application Performance

14

• With each additional tier, Hermes 
performs several times better

• Full tiering yields minimum 15x 
performance boost for read and write

• DPEs can efficiently remove the burden of 
data placement from users



Pros and Cons of DPE Choice

15

• Synthetic benchmark that PUTs 
10GB worth of blobs per node

• 8 nodes and 16 processes per node

0

20

40

60

80

100

120

MinIO RR Rand

U
ti

liz
at

io
n 

%

Memory Nvme HDD

• MinIO places data in the fastest 
tiers, and thus performs the best

• Round-Robin and Rand utilize all 
resources, reducing RAM pressure



Metadata Manager

16

• Stores the metadata for blobs and 
buckets
o E.g., position of blob in the DMSH

• Can be configured to track blob and 
bucket ops
o E.g., track the order with which 

blobs are created and modified
o Useful for monitoring



Buffer Organizer

17

• Corrects the position of the blob 
after initial placement

• Various factors involved in the 
decision

Access
Frequency

Access
Recency

User
Hints

I/O Size

(e.g., IS_META)



Buffer Organizer

18

• Corrects the position of the blob 
after initial placement

• Various factors involved in the 
decision

Access
Frequency

Access
Recency

User
Hints

I/O Size

(e.g., IS_META)



Prefetcher

19

• Changes the score of a blob based by 
predicting access pattern

• Can access I/O pattern logs from the 
Metadata Manager to analyze access 
patterns dynamically



I/O Clients

20

• Interact with a variety of different 
storage hardware

• Many different storage APIs available
o POSIX
o SPDK for NVMe
o LighNVM for NVMe
o Memory Map for memory, PM, & CXL

• This class unifies the different APIs to 
allow Buffer Organizer to place data



API Additions

21



Composable, Active Storage through Traits

• Many applications desire the ability to apply operators near data
• Hermes allows for traits to be added to the I/O stack

o *Evaluation omitted due to time 

22

Compress

Encrypt

DPE

Put

Calculus

DPE

Put

Clustering

DPE

Put

(e.g., credit fraud, 
particle clustering)

(e.g., transparent 
Scientific analysis)



Hermes For the Cloud

• Hermes can also be used for Cloud 
applications

• Many cloud applications could be 
built using the Hermes API

• Key-value stores and databases are 
an example

23



Evaluation: Yahoo Cloud Service Benchmark

24

• YCSB benchmarks various web workloads
• Latency-sensitive
• We compare against Redis, a widely-used 

key-value store
o Hermes & Redis have analogous APIs

Workload %Read %Update %Insert %RMW I/O Size Description

a 50 50 0 0 1KB Session store recording recent actions

b 95 5 0 0 1KB Read/update photo tags

c 100 0 0 0 1KB User profile cache

d 95 0 5 0 1KB User status updates

f 50 0 0 50 1KB A user database

0

20000

40000

60000

80000

100000

a b c d f

Th
ro

ug
h

pu
t (

op
s/

se
c)

redis hermes



Evaluation: Yahoo Cloud Service Benchmark

25

• Hermes performs 2-3x faster
• Redis requires several copies to get data to 

the Redis daemon
• Hermes uses shared memory, reducing the 

number of data copies
• Additionally, writes are asynchronous, 

further improving latencyWorkload %Read %Update %Insert %RMW I/O Size

a 50 50 0 0 1KB

b 95 5 0 0 1KB

c 100 0 0 0 1KB

d 95 0 5 0 1KB

f 50 0 0 50 1KB

0

20000

40000

60000

80000

100000

a b c d f

Th
ro

ug
h

pu
t (

op
s/

se
c)

redis hermes



Conclusion

26



Conclusion

• Demonstrated that Hermes can yield as much as 15x performance 
boost for applications by leveraging tiering

• Showed that Hermes can be adapted to a wide variety of 
applications spanning HPC and Cloud

• Described various use-cases that can benefit from tiered, active 
storage

27


	Slide 1: Hermes: A Multi-Tiered Distributed I/O Buffering System
	Slide 2: Rapid Hardware Evolution
	Slide 3: Deciding Where To Put Data is a Challenge!
	Slide 4: Tiered I/O Must Become Simpler
	Slide 5: Hermes: A Multi-Tiered Buffering System
	Slide 6: Hermes: A Multi-Tiered Buffering System
	Slide 7: Design Overview
	Slide 8: General Use Case
	Slide 9: Native API
	Slide 10: Adapters
	Slide 11: Hermes Runtime
	Slide 12: Data Placement Engine
	Slide 13: Impact of Tiering on Application Performance
	Slide 14: Impact of Tiering on Application Performance
	Slide 15: Pros and Cons of DPE Choice
	Slide 16: Metadata Manager
	Slide 17: Buffer Organizer
	Slide 18: Buffer Organizer
	Slide 19: Prefetcher
	Slide 20: I/O Clients
	Slide 21: API Additions
	Slide 22: Composable, Active Storage through Traits
	Slide 23: Hermes For the Cloud
	Slide 24: Evaluation: Yahoo Cloud Service Benchmark
	Slide 25: Evaluation: Yahoo Cloud Service Benchmark
	Slide 26: Conclusion
	Slide 27: Conclusion

