
Enlarging Effective DRAM
Capacity through Hermes

Luke Logan
Llogan@hawk.iit.edu

Gnosis Research Center @ Illinois Tech

1

Logan, Luke, Xian-He Sun, and Anthony Kougkas. "MegaMmap: Blurring the Boundary Between Memory and Storage
for Data-Intensive Workloads." The International Conference for High Performance Computing, Networking, Storage,
and Analysis, 2024 (SC'24).

mailto:Llogan@hawk.iit.edu

Memory-Centric, Data-Intensive Workloads

• Workloads are becoming increasingly data-intensive

The data volume is increasing beyond
what main memory can hold!

Two Main Solutions

Just buy more
DRAM...

Out-of-core
Programming

Just Buy More DRAM

Don't need to
change

applications

Pros: Cons:

DRAM is very
expensive

DRAM has a very high
energy cost

Price Capacity $/GB

DRAM $106 32GB $3.30

PMEM $275 128GB $2.10

NVMe $169 2TB $0.08

SATA SSD $175 4TB $0.04

HDD $369 18TB $0.02

Out-Of-Core Programming

• Use storage to offload memory pressure

Don't need to
spend money
on hardware

Development
Complexity

Pros: Cons:

Suboptimal, one-off,
manual solutions

More energy
efficient

(less DRAM)

Typical Out-Of-Core Programming Approach
• Have separate, synchronous phases for compute and I/O
• Incur memory wall in the compute phases
• Incur I/O bottleneck in the I/O phases
• When combined, they make for a very slow program!

Compute I/O Map Shuffle Reduce

Memory Wall I/O Bottleneck Memory Wall I/O Bottleneck Memory Wall

(e.g., many scientific simulations) (e.g., Apache Spark)

We want an effectively infinite memory abstraction to interact
with data, but without having to purchase more DRAM!

Blurring The Line Between Memory and Storage

9

• Storage has emerged with similar
performance to DRAM

• Compute Express Link (CXL) is emerging that
allows storage to be accessed as memory

• We can combine DRAM and storage into a
tiered distributed shared memory (DSM)

But how can we efficiently hide this high-performance storage
under a memory abstraction?

Limitations of Existing DSMs

• Agnostic to application behavior
o Significant performance overhead to maintain coherence
o Flurries of small messages to handle caching and replication
o E.g., locking a page to ensure coherence

• DSMs are Cloud-focused
o Provide replication to handle frequent hardware failures, incurring overhead
o Must handle multi-tenancy, requiring acceptable performance for all but best for

none
o No optimizations for coordinated (e.g., MPI) workloads common in HPC

• No tiering
o Most DSMs focus only on DRAM, but ignore storage tiers
o Limited capacity

Tiered DSM Challenges

• Applications must be able to propagate access pattern intentions
oCan reduce the need for fine-grained synchronizations
oCan improve tiered data organization decisions

• Memory coherence policies must be optimized to address the
characteristics of HPC
oCoordinated workloads do not always need aggressive cache evictions
oFor example, read-only analysis workflows never need to invalidate

caches

• New data placement + prefetching policies must be developed to
address memory behavior, rather than storage

Our Approach: The MegaMmap Adapter

• A durable, persistent, and intuitive DSM system that allows massive
datasets to be presented as memory
o Reduces out-of-core complexity

• A user-driven transactional memory access API, which leads to
improved decision-making in cache coherence and data organization
policies by propagating memory access intent

• Intent-aware memory coherence optimizations, which improves the
latency and bandwidth of memory accesses based on workload
characteristics.

• Tiered data organization policies, which minimize I/O stall times by
leveraging heterogeneous storage hardware and advance knowledge of
access pattern intent.

An Infinite Nonvolatile
Memory Abstraction

Presenting Datasets As Memory

• Mass datasets in memory
• Transactions mark the access

pattern
• Transactions are not a

significant burden to users
since they are similar to
iterators

Actively Ensuring Data
Persistence and Consistency

Actively Ensuring Persistence

• We use Hermes to persist data from
applications

• Data must be persisted before the job ends
• The shared cache (Hermes) handles this

situation
• The shared cache also handles consistency

– all processes have the same view

Efficient Memory Coherence

An Infinite Non-Volatile Memory Abstraction

• R/W local avoids cache coherence overheads completely, since all
data is accessed locally

• R global avoids cache coherence as well since no one modifies data
• R/W/A global minimizes the overhead using properties of queueing –

modifications are sent asynchronously and sequenced

Masking I/O Stalls with Informed
Tiered Data Movement Policies

Masking I/O Stalls

Evaluation

Evaluation Objectives

• Memory coherence of DSM are not a scalability bottleneck
compared to leading HPC+Cloud communication solutions, such
as MPI and Spark.

• Tiering memory can increase the resolution of scientific datasets
by eliminating memory constraints, allowing more detail in the
final simulation data.

• Intelligently tiering memory can bring performance benefits to
out-of-core algorithms.

• DRAM consumption can be lowered by offloading memory to
tiered storage.

• MegaMmap scales just as well as MPI
• MegaMmap scales and performs better

than spark

DSMs can
perform well

We can do more science!

• MegaMmap allows for twice the data to be
processed without crashing

We can use less memory!

• MegaMmap algorithms can use half the
memory with minimal performance
impacts

Conclusion

Conclusion

• We demonstrate that the complexity of developing out-of-core
algorithms can be reduced by enabling massive persistent
datasets to be presented as memory

• We demonstrate how leveraging a transactional memory API can
be used to reap substantial benefits in tiering performance.

• Evaluations showcase that developing algorithms with
MegaMmap reduces peak memory utilization by as much as 2x

	Slide 1: Enlarging Effective DRAM Capacity through Hermes
	Slide 2: Memory-Centric, Data-Intensive Workloads
	Slide 3
	Slide 4: Two Main Solutions
	Slide 5: Just Buy More DRAM
	Slide 6: Out-Of-Core Programming
	Slide 7: Typical Out-Of-Core Programming Approach
	Slide 8
	Slide 9: Blurring The Line Between Memory and Storage
	Slide 10
	Slide 11: Limitations of Existing DSMs
	Slide 12: Tiered DSM Challenges
	Slide 13: Our Approach: The MegaMmap Adapter
	Slide 14: An Infinite Nonvolatile Memory Abstraction
	Slide 15: Presenting Datasets As Memory
	Slide 16: Actively Ensuring Data Persistence and Consistency
	Slide 17: Actively Ensuring Persistence
	Slide 18: Efficient Memory Coherence
	Slide 19: An Infinite Non-Volatile Memory Abstraction
	Slide 20: Masking I/O Stalls with Informed Tiered Data Movement Policies
	Slide 21: Masking I/O Stalls
	Slide 22: Evaluation
	Slide 23: Evaluation Objectives
	Slide 24: DSMs can perform well
	Slide 25: We can do more science!
	Slide 26: We can use less memory!
	Slide 27: Conclusion
	Slide 28: Conclusion

